# VOLUNTEER COMPUTING: AN ENERGY-CONSUMPTION PERSPECTIVE

Ana-Lucia Varbanescu University of Twente, NL

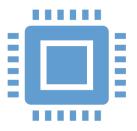
## Energy concerns around computing

- Top 10 videos on YouTube<sup>\*</sup> consumed as much as 600-700 EU persons per year (or about 400 North America persons)
- Training Alpha-Zero for a new game consumes as much as 100 EU persons per year
- A mid-size data-center alone consumes as much energy as a small town
  - And that is not considering purchasing and secondary operational costs (e.g., cooling)
- In 2019 Dutch datacenters consumed 3x more energy than the national railways
  - And consumption increased by 80% in 3 years
- The ICT sector is predicted to reach 21% of the global energy consumption by 2030

\*https://en.wikipedia.org/wiki/List\_of\_most-viewed\_YouTube\_videos#Top\_videos

### Energy concerns around computing

- Top 10 videos on YouTube\* consumed as much as 600-700 EU persons per year (or about 400 North America persons)
- Training Alpha-Zero for a new game consumes as much as 100 EU persons per year
- A mid-size data-center alone consumes as much energy as a small town


There is an imperative need to reduce energy consumption and especially energy waste in computing.

And consumption increased by 80% in 3 years

The ICT sector is predicted to reach 21% of the global energy consumption by 2030

\*https://en.wikipedia.org/wiki/List\_of\_most-viewed\_YouTube\_videos#Top\_videos

## Stakeholders



#### **Developers and users**

**Improve** the energy efficiency of their own codes, making use of algorithmic, programming, and hardware tools

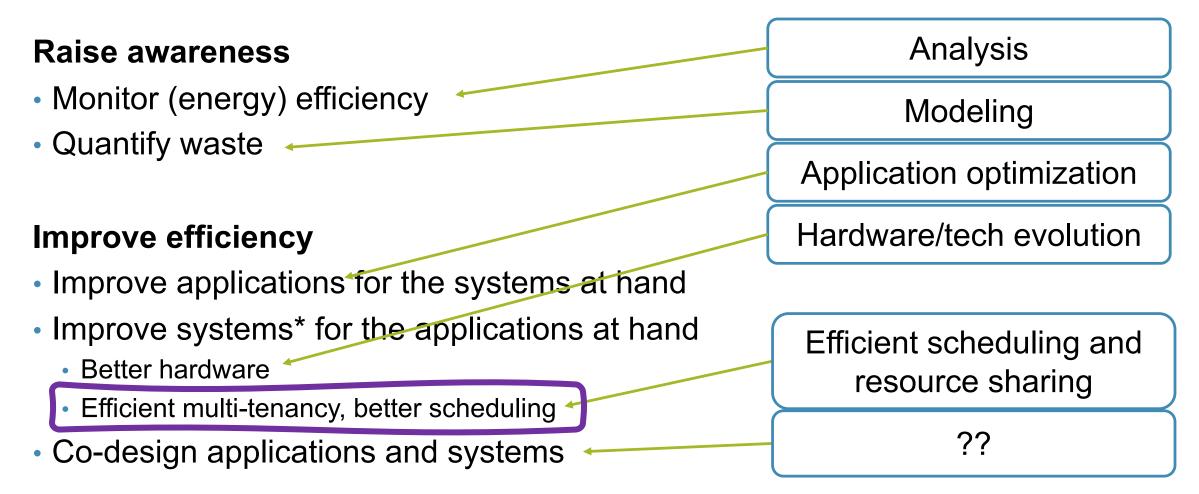
**Design and implement** applications able to adapt to the available system resources



#### **System integrators**

**Offer** the right mix of resources for the application developers and system operators.

**Include efficient hardware** to enable different application mixes.




#### **System operators**

Ensure efficient scheduling of workloads on system resources.

Harvest energy where resources/systems are massively underutilized.

## Improving energy efficiency



# Multi-tenancy

### Data center

### • Pro:

- Up-to-date HW and SW
- Dedicated/stable resources
- Fast computation & networking
- Efficient scheduling
- Job collocation
- Efficient optimizations for sustainability
- Con:
  - Low per-application utilization
  - Dedicated resources

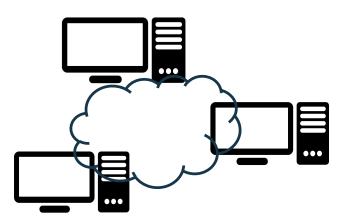
### Volunteer

- Pro:
  - Existing resources
  - Built-in OS-based multi-tenancy


### Con:

- Slow(er) computation and networking
- Difficult to reserve/account for resources
- Reduced fault-tolerance and reliability
  - Expensive redundancy
- Consumer-grade machines

## **Execution model**


### Data center

- Tightly coupled
- Faster
- Less communication
- Dedicated resources => ?? energy



### Volunteer

- Loosely-coupled
- Slower
- More communication
- Spare resources => ?? energy



Tecnologia vectors by vecteezy, https://www.vecteezy.com/free-vector/tecnologia Computer Vectors by Vecteezy, https://www.vecteezy.com/free-vector/computer

# Per task energy

Data center

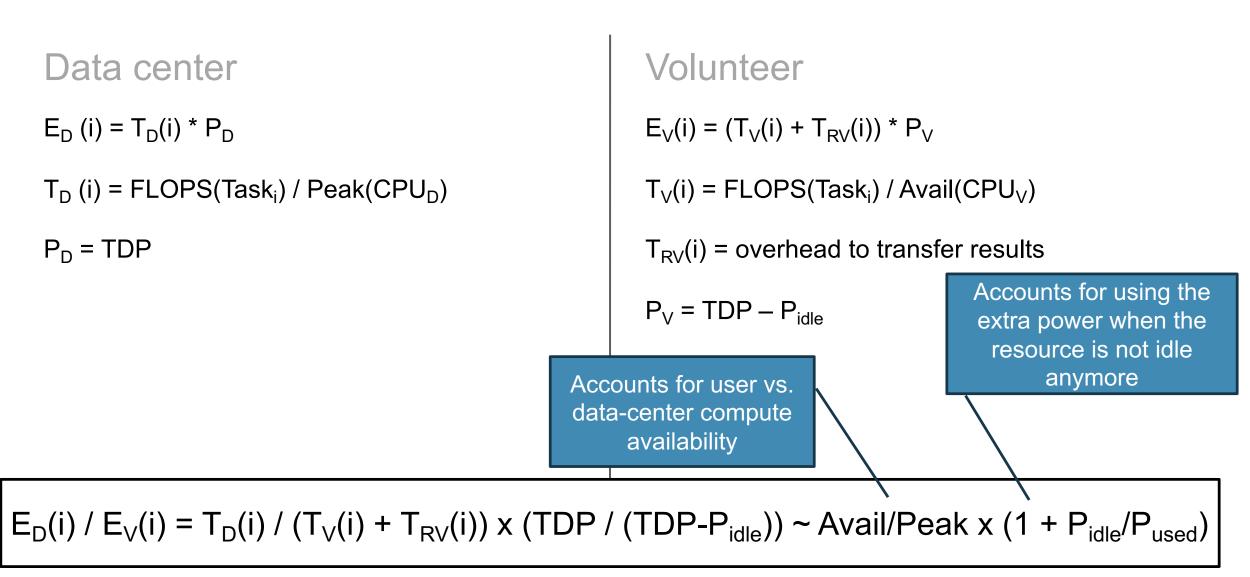
 $\mathsf{E}_{\mathsf{D}}(\mathsf{i}) = \mathsf{T}_{\mathsf{D}}(\mathsf{i}) * \mathsf{P}_{\mathsf{D}}$ 

T<sub>D</sub> (i) = FLOPS(Task<sub>i</sub>) / Peak(CPU<sub>D</sub>)

 $P_D = TDP$ 

Volunteer

 $\mathsf{E}_{\mathsf{V}}(\mathsf{i}) = (\mathsf{T}_{\mathsf{V}}(\mathsf{i}) + \mathsf{T}_{\mathsf{RV}}(\mathsf{i})) * \mathsf{P}_{\mathsf{V}}$ 


 $T_V(i) = FLOPS(Task_i) / Avail(CPU_V)$ 

 $T_{RV}(i)$  = overhead to transfer results

 $P_V = TDP - P_{idle}$ 

 $E_{D}(i) / E_{V}(i) = T_{D}(i) / (T_{V}(i) + T_{RV}(i)) \times (TDP / (TDP - P_{idle})) \sim Avail/Peak \times (1 + P_{idle}/P_{used})$ 

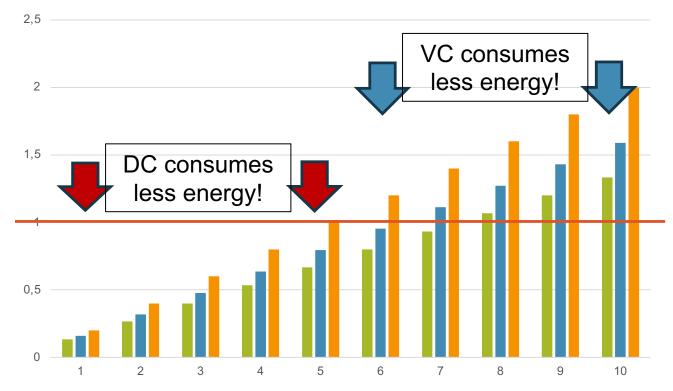
# Per task energy



# Per task energy: DC or VC ?

•  $E_D(i) / E_V(i) \sim Avail/Peak x (1 + idle/used)$ 

Proportionally slower than DC!


- Assume ...
  - Volunteer availability: 10-100%
  - Machines M1 M3
    - 0,33 idle/used (green)
    - 0,58 idle/used (blue)
    - 1,00 idle/used (orange)

# Per task energy: DC or VC ?

- $E_D(i) / E_V(i) \sim Avail/Peak x (1 + idle/used)$
- Assume ...
  - Volunteer availability: 10-100%
  - Machines M1 M3
    - 0,33 idle/used (green)
    - 0,58 idle/used (blue)
    - 1,00 idle/used (orange)

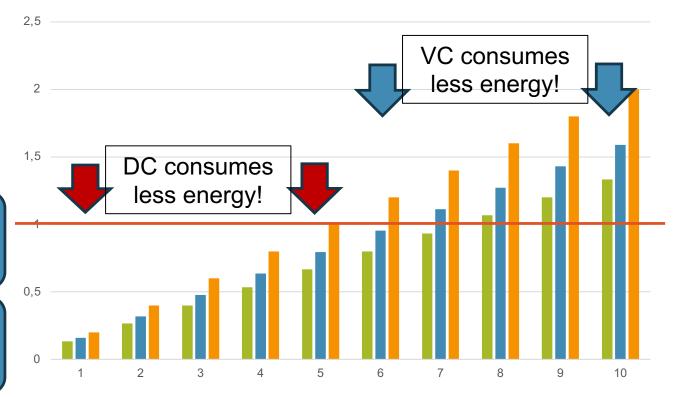
Proportionally slower than DC!

Data-center to Volunteer computing energy consumption ratio



# Per task energy: DC or VC ?

Proportionally


slower than DC!

- $E_D(i) / E_V(i) \sim Avail/Peak x (1 + idle/used)$
- Assume ...
  - Volunteer availability: 10-100%
  - Machines M1 M3
    - 0,33 idle/used (green)
    - 0,58 idle/used (blue)
    - 1,00 idle/used (orange)

There are opportunities to be more energy efficient per task for decentralized computing!

It ultimately depends on the type of machines and available cycles from the users...

Data-center to Volunteer computing energy consumption ratio



## What about the full application?

Data center

 $E_D = sum (E_D(i))$ 

Volunteer

 $E_{V} = sum ($   $E_{task}(i) \times R +$   $E_{selection}(i) +$   $E_{comm}(i) +$   $E_{scheduler}(i))$ 

... But here we need to take into account the TCO, especially for on-prem hardware ...

Energy gains **also** depend on how efficient we are on redundancy, communication, scheduling

## What about sustainability?

Data center

#### Pro:

 Additional mechanisms for in-time and in-space scheduling => better energy mix

#### Con:

- Total cost of ownership
- Additional concerns regarding infrastructure and cooling

### Volunteer

#### Pro:

- Distributed infrastructure => high probability for better energy mix
  - Implicit in-space scheduling
- Reduces compute waste to a minimum
- Default in-time scheduling

#### Con:

Additional and redundant computations

## What next?



- Collect more data
  - About the machines
  - About the user availabilities
  - About redundancy, scheduling and networking costs
- Build simulators/digital twins for such systems
  - There exist data-center simulations
  - There exist Edge/Fog computing simulations
- Quantify the reduction in compute waste for volunteer computing
- Assess the change in software to account for ...
  - Mobile computing
  - Data movement costs

We can create together the first model(s) to estimate energy gain (or reduction in energy waste) for volunteer computing !!





- Volunteer computing can be a feasible alternative for sustainability in scientific computing.
- Its success depends on ...
  - Software efficiency
  - User contributions in terms of systems and time/cycles
- Better models/more data is needed for more accurate models ...
  - But the outlook is positive!