
BOINC development

David P. Anderson

University of California, Berkeley

May 2024



Requests to projects

● Use current server software
○ don’t modify BOINC files!

● Use simplified attach
● Communicate with volunteers
● Internationalize your web site
● Publicize your project
● Publicize BOINC



AI (large neural networks)

● Increasingly relevant to science
● Can use volunteer computing to train large models?

○ NPUs
● More generally: support parallel computing in BOINC



AI startups
● Face other problems:

○ data privacy
○ financial / incentives
○ competition (e.g. Amazon)



Parallel distributed computing

● Lots of worker nodes run simultaneously
● Nodes can communicate with each other (perhaps indirectly)
● Examples

○ MPI programs (solve differential equations on grids)
○ Map/Reduce algorithms (e.g. web search)
○ Neural net training

● Normally run on data center computers
○ identical, trusted, fast interconnect



● Need to deal with
○ heterogeneity
○ intermittent availability
○ possibly slow communication

● General architecture
○ Coordinator

■ track available worker nodes
■ handles job requests

○ For each job
■ identify initial set of workers
■ send commands to workers
■ update worker set as needed

Parallel applications on volunteered computers

coordinator

jobs

worker nodes



Key features of BOINC

● Manages computing on devices, enforce prefs
○ needed for parallel computing too

● Matches app versions to devices (plan classes)
○ needed for parallel computing too

● Batch queueing system
○ useless for parallel computing- need a new scheduling model



New ‘sporadic app’ feature

● The parallel distributed system runs as a ‘guest’ on BOINC
● When the guest system wants to use a node, it can do so immediately

BOINC
client

app

BOINC
server

coordinator

. . .
BOINC
client

app



Negotiation (per processor type)

BOINC
client

guest
server

sporadic
app

I can’t compute
don’t compute

could compute

go ahead and compute

I want to compute

request confirmed

could compute

here’s a request

I can compute

(compute)
I don’t want to compute

request finished



Using heterogeneous resources for synchronous 
computing

● Divide job into N (synchronous) level 1 sub-jobs
● Divide each level 1 sub-job into some number of (synchronous) level 

2 sub-jobs
● To handle a job, the coordinator forms

○ ‘team’: a group of processors with about the same speed; each team handles a 
level 1 job

○ ‘league’: a set of teams, all with about the same total speed



League formation

‘team’: a group of processors with about the same speed

‘league’: a set of teams, all with about the same total speed

GPUs CPUs



League formation

‘team’: a group of processors with about the same speed

‘league’: a set of teams, all with about the same total speed

GPUs CPUs



Cool new app test feature

● Lets you test an app version against the BOINC client without a 
project

● I used this for debugging the sporadic apps feature
● boinc –app_test



New vboxwrapper features

● Multi-attach images
○ multiple jobs can share same VM image file

● Sharing of slot and project directories
○ from within VM, can resolve links and directly access files
○ no copying of app, input/output files

boinc/
projects/

<url>
physical_name

slots/
0/

logical_name
(<soft_link>../../projects/url/physical_name</soft_link>)



Keeping up with technology

● PHP 8
● MySQL 8
● Python 3
● Mac OS



Support for Apple Silicon GPUs

● Client detects GPU via OpenCL and/or Metal
● Reports as ‘apple_gpu’ with API, version info
● Plan classes, web preferences



Documentation

● Existing
○ combines abstraction and implementation
○ landfill effect

● cookbooks
○ project creation
○ deploy VM app
○ job processing (Python)
○ validation (Python)
○ Needed: native apps; GPU apps; graphics apps

● videos



Future

● Run apps in Docker natively (no VBox)
○ Detect Docker in client, use a wrapper
○ Move boinc2docker into BOINC
○ Windows: conflict with VBox :-(

● Detect and schedule NPUs
● Client packaging

○ Windows Installer (Wix)
● Not done but still important

○ detect movie watching
○ limit fan noise
○ power/environmental preference features


