Development of AT-TPC in Sejong University 2024.03.09 HIM meeting

Yechan Cheon

Contents

1. Introduction

- Hoyle state
- TPCs
- 2. Proto-type TPC
 - Experiment at HIMAC
 - Proto-type TPC geometry
 - result & performance

3. Next TPC (TPC-Drum)

- TPC-Drum design
- Detector status

Introduction

Hoyle state

One of excited state in α -conjugate nuclei, It refers to the state where α particles are resonating within the nuclei.

Hoyle state is evidently a alpha cluster state. Recently, there was many theoretical development which suggests it is in a Bose-Einstein condensate. For example. THSR model in PRL 87, 192501 (2001).

If this exists,

the symmetric 3α decay must exist, however no one observed it due to its decay rate is too low. We aim to measure this.

We also try to measure α cluster in Oxygen, It is never observed

TPCS Proto-type TPCs

In experiment at HIMAC using prototype TPCs, We successfully measured ¹²C(p, 2p) ¹¹B

TPC-Drum (Working on)

We proposed 20Ne + alpha collision experiment at RAON this year. The proposal is under PAC review. If it is approved, we will do experiment in early summer

Experiment at HIMAC p+p Quasi-Free scattering

Measurement the cross section ¹²C(p, 2p) ¹¹B

Geometry

Beam : Carbon 200MeV/u, beam intensity ~10⁶/fill

Proto-type TPC

Reconstruction **Pulse extraction & Fitting**

SEJONG UNIVERSITY

Reconstruction **Tracking algorithm**

Hough transform maps each TPC hits to curve in the space of the intercept and the angle

Reconstruction **Drift velocity & target vertex**

We extract v_d using the distance between target and the SC

Reconstruction **PID using Si-Csl**

- PID relies on the correlation of energy measured in Si (ΔE) and Csl (E)
- If we use Si and CsI, it shows differences of response of each particles
- calibration runs using a 100 MeV proton beam were conducted.

Performance Diffusion

The diffusion of electrons leaves hits of 3-5 pad per layer

The result for Left and Right TPC agree very well with each other

In MC, It can consider only the diffusion effects from GEM and Gas Hence, by comparing data and MC, we can understand unknown effects.

Performance **Tracking resolution**

Particle positions are determined for each row of the matrix and calculating the ADC-weighted mean

Deviations between the reconstructed and reference positions followed a Gaussian distribution, with resolutions ranging from 210 μ m to 250 μ m, depending on drift length.

140

Decay channels

- Target
- Ne + He -> 12C + 3α (Hoyle)
- Background
- Ne + He -> 12C + 12C -> 12C + 8Be + α -> 12C + 3 α
- Ne + He -> 16O + 8Be (2α)
- Ne + He -> 20Ne + α
- => every backgrounds were generated in NPTool MC

cay channel	$lpha+^{20}{ m Ne}$	$p+^{23}Na$	$^{12}{\rm C}{+}^{12}{\rm C}$	⁸ Be+ ¹⁶ O
$E_{\rm th} [{ m MeV}]$	9.31	11.69	13.93	14.14

TPC-Drum design This AT-TPC is EXCLUSIVELY developed for experiment at RAON

TPC-Drum design

NPTool MC provided more realistic decay kinematics and we located position of Si-CsI array to optimize α acceptance

CsI will be used for PID and Trigger system

Si-Csl

Si-Active Area : 75 x 40.3 mm x 8 CsI-Active Area : 40 x 40.3 mm x 16 **GET electronics**

Simulation NPTool

Ne + He -> 12C + 3α (Hoyle)

- Events are generated by NPTool
- Detector response by Geant4 and Garfield++
- We also developed the multi-track finding alogorithm using the Hough transform

Detector status

Type1 (GEM test)

- Assembling TPC-Drum (working on)
- Conduct GEM Gain analysis using Fe-55 source (~end of March)

Type2 (for Experiment at RAON)

- Auxiliary component, such as supporter and field cage, will be 3d printed (working on)
- Requesting the production of readout Pad (768 ch) (working on)
- Gas system is ready

Summary

We check the performance and utility of the prototype TPC though experiment at HIMAC

Characteristics of the prototype LAMPS TPC for low-energy nuclear collisions at RAON

Yechan Cheon^{a,b}, Seunghwan Lee^{a,b}, Deuk Soon Ahn^c, Jung Keun Ahn^{d,b}, Joonsuk Bae^g, Yunseul Bae^h, Jeongsu Bok^e, Sung Wook Choi^{d,b}, Seungkyung Do^{d,b}, Cheong Heo^h, Byungsik Hong^{d,b}, Jangyong Huh^c, Jaein Hwang^{d,b}, Seonggeun Hwang^{a,b}, Youngseub Jang^{d,b}, Byungmin Kang^{d,b}, Aram Kim^{d,b}, Beomkyu Kim^g, Chong Kim^e, Eun-Joo Kim^j, Giyeong Kim^{f,b}, Hyunchul Kim^h, Jiseok Kim^{d,b}, Jiyoung Kim^{f,d,b}, Shinhyung Kim^{d,b}, Yongsun Kim^{a,b}, Young Jin Kimⁱ, Yongjun Kim^e, MinJung Kweon^{f,b}, Cheong Soo Leeⁱ, Hyo Sang Leeⁱ, Jaehwan Lee^{d,b}, Jong-Won Lee^{d,b}, Jung Woo Lee^c, Junseok Lee^{d,b}, Haein Lee^{d,b}, Hyungjun Lee^g, Seoung Hun Lee^{f,b}, Sungjune Lee^{d,b}, Sanghoon Lim^e, Dong Ho Moon^h, Seon Ho Nam^{d,b}, Jeonghyeok Park^{d,b}, (The LAMPS Collaboration)

We are preparing the second paper with a more physics-oriented content

The newly designed TPC-Drum, for the RAON experiment, is expected to be completed by mid-April and operational by mid-May

confident that we will deliver good results in the upcoming experiment as well.

- Our group has extensive experience with TPCs, and based on this experience, we are

Back ups

Right wing

Left wing

Si Geometry

Si Channel:

Omit-side = 4Junction-side = 16

Si active area: 75 x 40.3 mm

Junction 15
Junction 13
Junction 11
Junction 9
Junction 7
Junction 5
Junction 3
Junction 1

Time Bucket Fitting method

1. Background subtract with FPN Channel 2. Fitting with the template

The Peak of distribution of the time-bucket is decided as time-bucket each pad.

Data Analysis **AT-TPC tracking Algorithm - Hough transform**

1. Transforms over all possible angle ranges for a single point 2. Repeat the same transformation for another point

Data Analysis **AT-TPC tracking Algorithm - Hough transform**

Method of Hough transform has advantage to specify multi-tracks

houghHist_xy projection

each Pad weighted with ADC

Event-Driven method MC simulation & cluster fitting method different

PID using Si-Csl Calibration

We calibrate the energy in Si and CsI with MC result, results conducted under the same conditions

The calibration proceeded by comparing the ADC values from the data with simulation

Gas study

Longitude diffusion in drift

Attachment coefficient in GEM

	CO2 = 0 percent, pressure = 0.50 atm
—	CO2 = 1 percent, pressure = 0.50 atm
	CO2 = 5 percent, pressure = 0.50 atm
— •	CO2 = 10 percent, pressure = 0.50 atm
	CO2 = 15 percent, pressure = 0.50 atm
	CO2 = 20 percent, pressure = 0.50 atm
	CO2 = 0 percent, pressure = 0.75 atm
	CO2 = 1 percent, pressure = 0.75 atm
	CO2 = 5 percent, pressure = 0.75 atm
	CO2 = 10 percent, pressure = 0.75 atm
	CO2 = 15 percent, pressure = 0.75 atm
	CO2 = 20 percent, pressure = 0.75 atm
	CO2 = 0 percent, pressure = 1.00 atm
	CO2 = 1 percent, pressure = 1.00 atm
	CO2 = 5 percent, pressure = 1.00 atm
	CO2 = 10 percent, pressure = 1.00 atm
	CO2 = 15 percent, pressure = 1.00 atm
	CO2 = 20 percent, pressure = 1.00 atm
	CO2 = 0 percent, pressure = 1.25 atm
	CO2 = 1 percent, pressure = 1.25 atm
	CO2 = 5 percent, pressure = 1.25 atm
	CO2 = 10 percent, pressure = 1.25 atm
	CO2 = 15 percent, pressure = 1.25 atm
	CO2 = 20 percent, pressure = 1.25 atm
	CO2 = 0 percent, pressure = 1.50 atm
	CO2 = 1 percent, pressure = 1.50 atm
	CO2 = 5 percent, pressure = 1.50 atm
	CO2 = 10 percent, pressure = 1.50 atm
	CO2 = 15 percent, pressure = 1.50 atm
	CO2 = 20 percent, pressure = 1.50 atm

Gas study **Drift velocity in TPC-Drum**

Height of Field cage = 20 cm

 $20 \text{cm} / 2 \text{ cm} / \mu \text{s} = 10 \,\mu \text{s}$

- 700 ~ 800 V/cm electric field -> drift velocity = ~ 2 cm/ μ s
- Available size of 1tb (20 ns) X total 500 tb = 10 μ s

We can use this information to determine how many tracks are present in each layer.

SEJONG UNIVERSITY

Tracking

We can distinguish tracks that are closely aligned with local-maximum finding method

