

# Hadron-hadron interaction femtoscopy through correlation analysis using the CATS framework

900

## Seungju Lee

Dept. of Physics, Inha University

#### Heavy Ion Meeting 2024-03

March 8-9, 2024 | Yonsei University



## **Brief Introduction**

### Effective interactions between two hadrons

- Theories & Phenomenology
  - QCD: the fundamental theory
  - Argonne V18 potential (for NN interaction)
  - Boson exchange models
  - Extended-soft-core model
  - Lattice QCD calculation
- Experiments
  - Scattering experiments
    - Difficult or impossible for unstable hadrons
    - HQ measurements exist only for hadrons containing u & d quarks
  - Correlation function analysis in nuclear collisions
    - Energy and colliding particle dependence of hadron production

### Femtoscopy via correlation analysis



\* ALICE Collaboration, Nature 588, 232 - 238 (2020) (DOI: 10.1038/s41586-020-3001-6)

## CATS framework

- CATS: Correlation Analysis Tool using Schrödinger equation
- Useful for femtoscopic analysis in non-relativistic regions (approx. m > 500 MeV/c)
- \* D. L. Mihaylov et al., *Eur. Phys. J. C* (2018) 78:394 (DOI: <u>10.1140/epjc/s10052-018-5859-0</u>)
- \* Software: https://www.ph.nat.tum.de/denseandstrange/publications/software/

#### March 9, 2024



## **Two Particle Correlation Function**

### Two-particle correlation function

- Definition of the two-particle correlation function

$$C(\mathbf{p}_1, \mathbf{p}_2) \equiv \frac{P(\mathbf{p}_1, \mathbf{p}_2)}{P(\mathbf{p}_1)P(\mathbf{p}_2)}$$

- $P(\mathbf{p}_1, \mathbf{p}_2)$ ,  $P(\mathbf{p}_{1,2})$ : Lorentz invariant spectra
- Correlation in the pair rest frame from approximation

 $C(\mathbf{k}^*) = \int S(\mathbf{r}^*) |\psi(\mathbf{k}^*, \mathbf{r}^*)|^2 d^3r$ 

- $S(\mathbf{r}^*)$ : source function,  $\psi(\mathbf{k}^*, \mathbf{r}^*)$ : relative wave function
- Reformulate into experimentally accessible quantities

$$C(k^*) = \xi(k^*) \frac{N_{\text{same}}(k^*)}{N_{\text{mixed}}(k^*)}$$

- N(k\*): k\* distribution of hadron pairs produced in the same or different collisions
- $\xi(k^*)$ : corrections for experimental effect

$$\rightarrow \quad \mathcal{C}(k^*) = \int S(\mathbf{r}^*) |\psi(\mathbf{k}^*, \mathbf{r}^*)|^2 \ d^3r = \xi(k^*) \frac{N_{\text{same}}(k^*)}{N_{\text{mixed}}(k^*)}$$

## Femtoscopy via correlation analysis

- From the  $C(k^*)$  formula, if
  - Source  $S(r^*)$  size is small enough ( $r_0 \approx 1 \text{ fm}$ ),
  - Model is accurate in short-range ( $r^* = 0 2$  fm),

we can determine in detail the short-range interaction.

 $\rightarrow$  Femtoscopy (range of 1 fm scale)



\* ALICE Collaboration, *Nature* **588**, 232 - 238 (2020) (DOI:<u>10.1038/s41586-020-3001-6</u>)

#### March 9, 2024



## CATS framework

## CATS framework

- CATS: Correlation Analysis Tool using Schrödinger equation
  - \* D. L. Mihaylov et al., *Eur. Phys. J. C* (2018) 78:394 (DOI: <u>10.1140/epjc/s10052-018-5859-0</u>) \* Software: <u>https://www.ph.nat.tum.de/denseandstrange/publications/software/</u>
- Can be used for:
  - The various potentials in analytic form
  - Both of the analytic & transport sources
  - Approximately non-relativistic regions
    - Lower limit of m > 500 MeV, light mesons are off-limit
- Easy to use (instruction included in examples codes)

//you can define any potential function you want and pass it a //the trick is to leave the first 2 parameters as placeholders (u //in this example the potential function does not get any para //N.B. the array you pass to CATS should always have a min. si: double PotPars[3];

//the 0,0 means that we set the 0th channel, l=0 (1S0)
Kitty.SetShortRangePotential(0,0,ReidPotential1S0,PotPars);
//the 1,1 means that we set the 1st channel, l=1 (3PX)
Kitty.SetShortRangePotential(1,1,ReidPotential3P,PotPars);

//this is where the magic happens - we run CATS and all releva
Kitty.KillTheCat();



## $C(k^*)$ from example code & comparison

- In example code, they used Usmani potential for  $p-\Lambda$ 



#### March 9, 2024



## NY Interactions Used





## Analytic form with fitting

- The analytic form (fit function) of  $V^{N\Xi}(C)(r)$ 

$$\begin{aligned} V^{N\Xi}(C)(r) &= \sum_{i=1}^{3} \alpha_{i}(C) e^{-\frac{r^{2}}{\beta_{i}^{2}}} + \lambda_{1}(C) \mathcal{Y}(\rho_{1}, m_{\pi}, r) + \lambda_{2}(C) [\mathcal{Y}(\rho_{2}, m_{\pi}, r)]^{2} \\ \mathcal{Y}(\rho, m, r) &\equiv \left(1 - e^{-r^{2}/\rho^{2}}\right) \frac{e^{-mr}}{r}, \qquad m_{\pi} = 146 \text{ MeV (fixed).} \end{aligned}$$

- Fitted parameters for  $V^{N\Xi}$  with t/a = 12

|              | Gauss-1      | Gauss-2     | Gauss-3     | Yukawa      | [Yukawa] <sup>2</sup> |
|--------------|--------------|-------------|-------------|-------------|-----------------------|
| t/a = 12     | $\alpha_1$   | $\alpha_2$  | $\alpha_3$  | $\lambda_1$ | $\lambda_2$           |
| $^{11}S_0$   | -81.3(54.3)  | 171.1(59.1) | 4.9(27.3)   | -12.8(2.2)  | -97.3(9.6)            |
| $^{31}S_0$   | 1677.2(90.1) | 991.3(62.7) | 290.8(43.2) | 4.3(7)      | -97.3(9.6)            |
| $^{13}S_1$   | 449.2(52.5)  | 348.9(31.8) | 110.3(22.3) | 4.3(7)      | -97.3(9.6)            |
| ${}^{33}S_1$ | 849.5(53.4)  | 653.9(32.7) | 210.8(35.9) | -1.4(2)     | -97.3(9.6)            |
|              | $\beta_1$    | $\beta_2$   | $\beta_3$   | $\rho_1$    | $\rho_2$              |
|              | 0.124(3)     | 0.241(12)   | 0.533(22)   | 0.136(22)   | 0.603(48)             |

\* K. Sasaki et al., *Nuclear Physics A* 998 (2020), 121737 (DOI: <u>10.1016/j.nuclphysa.2020.121737</u>)

#### March 9, 2024



## NY Interactions Used



### HAL QCD - S-wave N $\Omega$ potentials



## Analytic form with fitting

- The analytic form (fit function) of  $V^{N\Omega}({}^{5}S_{2})(r)$ 

$$V^{N\Omega} ({}^{5}S_{2})(r) = b_{1}e^{-b_{2}r^{2}} + b_{3}(1 - e^{-b_{4}r^{2}})\left(\frac{e^{-m_{\pi}r}}{r}\right)^{2},$$
$$m_{\pi} = 146 \text{ MeV (fixed).}$$

- Strong coupling to the octet-octet channels for the  ${}^{3}S_{1}$  channel  $\rightarrow$  Consider  ${}^{5}S_{2} + {}^{3}S_{1}$  as Inelastic case
- Fitted parameters for  $V^{N\Omega}({}^{5}S_{2})$

| t/a                                   | 11          | 12          | 13          | 14        |
|---------------------------------------|-------------|-------------|-------------|-----------|
| $b_1 \; [\text{MeV}]$                 | -306.5(5.5) | -313.0(5.3) | -316.7(9.4) | -296(18)  |
| $b_2  [{\rm fm}^{-2}]$                | 73.9(4.4)   | 81.7(5.4)   | 81.9(8.4)   | 64(16)    |
| $b_3 \; [{\rm MeV} \cdot {\rm fm}^2]$ | -266(32)    | -252(27)    | -237(43)    | -272(109) |
| $b_4  [{\rm fm}^{-2}]$                | 0.78(11)    | 0.85(10)    | 0.91(18)    | 0.76(34)  |

\* T. Iritani et al., *Physics Letters B* 792 (2019), 284-289 (DOI: <u>10.1016/j.physletb.2019.03.050</u>)

#### March 9, 2024

#### HIM 2024-03 | Seungju Lee

### 5/12



## Correlations for NY Interactions

### $C(k^*)$ for $p\Xi^-$ (reproduced)



\* ALICE Collaboration, Nature 588, 232 - 238 (2020) (DOI: 10.1038/s41586-020-3001-6)

 $C(k^*)$  for  $p\Omega^-$  (reproduced)



\* ALICE Collaboration, *Nature* **588**, 232 - 238 (2020) (DOI: <u>10.1038/s41586-020-3001-6</u>)

#### March 9, 2024

#### HIM 2024-03 | Seungju Lee



a

3

2.5

2

1.5

 $C(k^*)$ 

## **Correlations for NY Interactions**

 $C(k^*)$  for  $p\Xi^-$  (reference) 3.5 p-Ξ **ALICE** data Coulomb Coulomb +  $p-\Xi^{-}HAL QCD$ Coulomb +  $p-\Omega^{-}$  HAL QCD elastic Coulomb +  $p-\Omega^{-}$  HAL QCD elastic + inelastic

200

 $k^*$  (MeV/c)

 $C(k^*)$  for  $p\Omega^-$  (reference)



\* ALICE Collaboration, *Nature* 588, 232 - 238 (2020) (DOI:10.1038/s41586-020-3001-6)

#### March 9, 2024

0

100

\* ALICE Collaboration, Nature 588, 232 - 238 (2020) (DOI:10.1038/s41586-020-3001-6)

#### HIM 2024–03 | Seungju Lee

300



## Correlations for NY Interactions

### $C(k^*)$ for $p\Xi^-$ (overlaid)



\* ALICE Collaboration, Nature 588, 232 - 238 (2020) (DOI: 10.1038/s41586-020-3001-6)

### $C(k^*)$ for $p\Omega^-$ (overlaid)



\* ALICE Collaboration, *Nature* **588**, 232 - 238 (2020) (DOI:<u>10.1038/s41586-020-3001-6</u>)

#### March 9, 2024

#### HIM 2024-03 | Seungju Lee



## Model evaluation process

### Simple example: Yukawa potential

- The form of the Yukawa potential

$$V_{\rm Yukawa} = -g^2 \frac{e^{-x}}{x}$$

where

$$x = \mu r$$
,  $\mu = \frac{m_{\pi}c}{\hbar}$ 

and  $g^2$  treated as a parameter

- If we consider both of isospin and spin, the central term

$$V_C = \frac{g^2}{3} (\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2) (\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2) \frac{e^{-x}}{x}$$

where

$$\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 = \begin{cases} -3, & I = 0 \\ +1, & I = 1 \end{cases}, \quad \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 = \begin{cases} -3, & S = 0 \\ +1, & S = 1 \end{cases}$$

## Fitting process for $g^2$ in Yukawa potential

- Assumption: The interaction between two nucleons in a deuteron is of the form Yukawa potential.
- Set g so that the ground state energy for this potential becomes the actual ground state energy.
- In this process, interactions except for the central term were not considered. (e.g. tensor term  $V_T S_{12}$ )

| g=68.773000  | r_div: 37.424        | 46.396     | 53.647     | 61.743 | 71.575 |
|--------------|----------------------|------------|------------|--------|--------|
| Ground state | energy for g=68.7730 | 000: -2.22 | 2399139404 | 43 MeV |        |
| g=68.774000  | r_div: 37.448        | 45.954     | 54.504     | 62.257 | 69.926 |
| Ground state | energy for g=68.7740 | 000: -2.22 | 2420692443 | 38 MeV |        |
| g=68.775000  | r_div: 37.473        | 45.570     | 55.716     | 63.218 | 71.118 |
| Ground state | energy for g=68.7750 | 000: -2.22 | 2442150116 | 50 MeV |        |
| g=68.776000  | r_div: 37.498        | 45.279     | 57.813     | 64.667 | 73.598 |
| Ground state | energy for g=68.7760 | 000: -2.22 | 2463703155 | 55 MeV |        |
| g=68.777000  | r_div: 37.523        | 45.629     | 67.672     | 67.672 | 77.798 |
| Ground state | energy for g=68.7770 | 000: -2.22 | 2485256195 | 51 MeV |        |

#### March 9, 2024



## Model evaluation process

## Comparison of $V_c$ for ${}^3S_1$ channel

- For Yukawa,  $g^2 = 68.7755$
- For Reid68, also central term only



## Comparison of eigenfunctions ( ${}^{3}S_{1}$ )



#### March 9, 2024

#### HIM 2024-03 | Seungju Lee



## Model evaluation process

## $C(k^*)$ for p - p & comparison

- For Yukawa,



## $\mathcal{C}(k^*)$ in some variation in $g^2$ and $r_0$

- Source size  $r_0 = 0.96$  fm,  $g^2_{\text{modified}} = 0.94g^2$
- $E_0$  for deuteron: -2.224 MeV  $\rightarrow$  -1.427 MeV



#### March 9, 2024



## Summary

#### Conclusion

- From correlation function analysis, the interaction of fm scale could be confirmed.
- For the  $p\Xi$  and  $p\Omega$ , reproduction of correlation using HAL QCD potentials was successful.
- CATS framework for femtoscopic correlation analysis was convenient to use, and it enables us to evaluate the various models.
- If we analyze interactions between two light mesons, we need to modify CATS or make a new analysis tool.

### Plans for study

- Studying and the various hadron-hadron interactions (focusing on  $D D^*$  or  $\overline{D} D^*$  for studying  $T_{cc}$  or X(3872))
- Comparison of research results with future experimental results

#### March 9, 2024





## Thanks for listening!

