

Hadron-hadron interaction femtoscopy through correlation analysis using the CATS framework

apc

Seungju Lee

Dept. of Physics, Inha University

Heavy Ion Meeting 2024-03

March 8-9, 2024 | Yonsei University

Brief Introduction

Effective interactions between two hadrons

- Theories & Phenomenology
	- QCD: the fundamental theory
	- Argonne V18 potential (for NN interaction)
	- Boson exchange models
	- Extended-soft-core model
	- Lattice QCD calculation
- **Experiments**
	- Scattering experiments
		- **Difficult or impossible for unstable hadrons**
		- HQ measurements exist only for hadrons containing u & d quarks
	- **Correlation function analysis** in nuclear collisions
		- Energy and colliding particle dependence of hadron production

Femtoscopy via correlation analysis

* ALICE Collaboration, Nature **588**, 232–238 (2020) (DOI:[10.1038/s41586-020-3001-6\)](https://doi.org/10.1038/s41586-020-3001-6)

CATS framework

- CATS: **C**orrelation **A**nalysis **T**ool using **S**chrödinger equation
- Useful for femtoscopic analysis in non-relativistic regions (approx. $m > 500$ MeV/c)
- * D. L. Mihaylov et al., Eur. Phys. J. C (2018) 78:394 (DOI: [10.1140/epjc/s10052-018-5859-0\)](https://doi.org/10.1140/epjc/s10052-018-5859-0) * Software: <https://www.ph.nat.tum.de/denseandstrange/publications/software/>

March 9, 2024 HIM 2024-03 | Seungju Lee 1 / 12

Two Particle Correlation Function

Two-particle correlation function

- Definition of the two-particle correlation function

 $C(\mathbf{p}_1, \mathbf{p}_2) \equiv$ $P(\mathbf{p}_1, \mathbf{p}_2)$ $P(\mathbf{p}_1) P(\mathbf{p}_2)$

- $P(\mathbf{p}_1, \mathbf{p}_2)$, $P(\mathbf{p}_1, \mathbf{p}_2)$: Lorentz invariant spectra
- Correlation in the pair rest frame from approximation

 $C(\mathbf{k}^*) = |\mathcal{S}(\mathbf{r}^*)| \psi(\mathbf{k}^*, \mathbf{r}^*)|^2 d^3r$

- $S(r^*)$: source function, $\psi(\mathbf{k}^*, r^*)$: relative wave function
- Reformulate into experimentally accessible quantities

$$
C(k^*) = \xi(k^*) \frac{N_{\text{same}}(k^*)}{N_{\text{mixed}}(k^*)}
$$

- $N(k^*)$: k^* distribution of hadron pairs produced in the same or different collisions
- $\xi(k^*)$: corrections for experimental effect

$$
\rightarrow C(k^*) = \int S(\mathbf{r}^*) |\psi(\mathbf{k}^*, \mathbf{r}^*)|^2 d^3 r = \xi(k^*) \frac{N_{\text{same}}(k^*)}{N_{\text{mixed}}(k^*)}
$$

Femtoscopy via correlation analysis

- From the $C(k^*)$ formula, if
	- Source $S(r^*)$ size is small enough $(r_0 \approx 1 \text{ fm})$,
	- Model is accurate in short-range $(r^* = 0 2$ fm),

we can determine in detail the short-range interaction.

→ Femtoscopy (range of 1 fm scale)

* ALICE Collaboration, Nature **588**, 232–238 (2020) (DOI[:10.1038/s41586-020-3001-6\)](https://doi.org/10.1038/s41586-020-3001-6)

March 9, 2024 HIM 2024-03 | Seungju Lee 2 / 12

CATS framework

CATS framework

- CATS: **C**orrelation **A**nalysis **T**ool using **S**chrödinger equation
	- * D. L. Mihaylov et al., Eur. Phys. J. C (2018) 78:394 (DOI: [10.1140/epjc/s10052-018-5859-0\)](https://doi.org/10.1140/epjc/s10052-018-5859-0) * Software: <https://www.ph.nat.tum.de/denseandstrange/publications/software/>
- Can be used for:
	- The various potentials in analytic form
	- Both of the analytic & transport sources
	- Approximately non-relativistic regions
		- Lower limit of $m > 500$ MeV, light mesons are off-limit
- Easy to use (instruction included in examples codes)

//you can define any potential function you want and pass it a // the trick is to leave the first 2 parameters as placeholders (u //in this example the potential function does not get any para [[N.B. the array you pass to CATS should always have a min. si. double PotPars[3];

(/the 0,0 means that we set the 0th channel, l=0 (1S0) Kitty.SetShortRangePotential(0,0,ReidPotential1S0,PotPars); [/the 1,1 means that we set the 1st channel, l=1 (3PX) Kitty.SetShortRangePotential(1,1,ReidPotential3P,PotPars);

//this is where the magic happens - we run CATS and all releva Kitty.KillTheCat();

∗ **from example code & comparison**

- In example code, they used Usmani potential for $p - \Lambda$

March 9, 2024 HIM 2024-03 | Seungju Lee 3 / 12

Interactions Used

Analytic form with fitting

- The analytic form (fit function) of $V^{N\Xi}(C)(r)$

$$
V^{N\Xi}(C)(r) = \sum_{i=1}^{3} \alpha_i(C)e^{-\frac{r^2}{\beta_i^2}} + \lambda_1(C)\mathcal{Y}(\rho_1, m_\pi, r) + \lambda_2(C)[\mathcal{Y}(\rho_2, m_\pi, r)]^2
$$

$$
\mathcal{Y}(\rho, m, r) \equiv (1 - e^{-r^2/\rho^2})\frac{e^{-mr}}{r}, \qquad m_\pi = 146 \text{ MeV (fixed)}.
$$

- Fitted parameters for $V^{N\Xi}$ with $t/a = 12$

* K. Sasaki et al., Nuclear Physics A 998 (2020), 121737 (DOI: [10.1016/j.nuclphysa.2020.121737\)](https://doi.org/10.1016/j.nuclphysa.2020.121737)

March 9, 2024 HIM 2024-03 | Seungju Lee 4 / 12

Interactions Used

HAL QCD - S -wave $N\Omega$ potentials

Analytic form with fitting

- The analytic form (fit function) of $V^{N\Omega}(\ ^5S_{2})(r)$

$$
V^{N\Omega} \left({}^{5}S_{2} \right)(r) = b_{1} e^{-b_{2}r^{2}} + b_{3} \left(1 - e^{-b_{4}r^{2}} \right) \left(\frac{e^{-m_{\pi}r}}{r} \right)^{2},
$$

$$
m_{\pi} = 146 \text{ MeV (fixed)}.
$$

- Strong coupling to the octet-octet channels for the ${}^{3}S_{1}$ channel \rightarrow Consider ${}^5S_2 + {}^3S_1$ as Inelastic case
- Fitted parameters for $V^{N\Omega}$ (${}^{5}S_{2}$

* T. Iritani et al., Physics Letters B 792 (2019), 284-289 (DOI: [10.1016/j.physletb.2019.03.050](https://doi.org/10.1016/j.physletb.2019.03.050))

March 9, 2024 HIM 2024-03 | Seungju Lee 5 / 12

Correlations for NY Interactions

$C(k^*)$ for $p\overline{z}^-$ (reproduced)

* ALICE Collaboration, Nature **588**, 232–238 (2020) (DOI[:10.1038/s41586-020-3001-6\)](https://doi.org/10.1038/s41586-020-3001-6)

 $C(k^*)$ for $p\Omega^-$ (reproduced)

* ALICE Collaboration, Nature **588**, 232–238 (2020) (DOI[:10.1038/s41586-020-3001-6](https://doi.org/10.1038/s41586-020-3001-6))

March 9, 2024 HIM 2024-03 | Seungju Lee 6 / 12

a

 3.5

3

 2.5

2

 1.5

 $C(k^*)$

Correlations for NY Interactions

 $C(k^*)$ for $p\overline{z}^-$ (reference) $p - \Xi$ **ALICE data** Coulomb Coulomb + p-E HAL QCD Coulomb + $p-\Omega$ HAL QCD elastic Coulomb + $p-\Omega$ ⁻ HAL QCD elastic + inelastic

200

 $C(k^*)$ for $p\Omega^-$ (reference)

* ALICE Collaboration, Nature **588**, 232–238 (2020) (DOI[:10.1038/s41586-020-3001-6](https://doi.org/10.1038/s41586-020-3001-6))

 Ω

* ALICE Collaboration, Nature **588**, 232–238 (2020) (DOI[:10.1038/s41586-020-3001-6\)](https://doi.org/10.1038/s41586-020-3001-6)

 k^* (MeV/c)

100

March 9, 2024 HIM 2024-03 | Seungju Lee 7 / 12

300

Correlations for NY Interactions

$C(k^*)$ for $p\overline{z}^-$ (overlaid)

* ALICE Collaboration, Nature **588**, 232–238 (2020) (DOI[:10.1038/s41586-020-3001-6\)](https://doi.org/10.1038/s41586-020-3001-6)

$C(k^*)$ for $p\Omega^-$ (overlaid)

* ALICE Collaboration, Nature **588**, 232–238 (2020) (DOI[:10.1038/s41586-020-3001-6](https://doi.org/10.1038/s41586-020-3001-6))

March 9, 2024 HIM 2024-03 | Seungju Lee 8 / 12

Model evaluation process

Simple example: Yukawa potential

- The form of the Yukawa potential

$$
V_{\text{Yukawa}} = -g^2 \frac{e^{-x}}{x}
$$

where

$$
x = \mu r, \qquad \mu = \frac{m_{\pi} c}{\hbar}
$$

and g^2 treated as a parameter

- If we consider both of isospin and spin, the central term

$$
V_C = \frac{g^2}{3} (\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2) (\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2) \frac{e^{-x}}{x}
$$

where

$$
\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 = \begin{cases} -3, & I = 0 \\ +1, & I = 1 \end{cases}, \quad \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 = \begin{cases} -3, & S = 0 \\ +1, & S = 1 \end{cases}
$$

Fitting process for in Yukawa potential

- Assumption: The interaction between two nucleons in a deuteron is of the form Yukawa potential.
- Set g so that the ground state energy for this potential becomes the actual ground state energy.
- In this process, interactions except for the central term were not considered. (e.g. tensor term $V_T S_{12}$)

March 9, 2024 HIM 2024-03 | Seungju Lee 9 / 12

Model evaluation process

Comparison of V_c for 3S_1 channel

- For Yukawa, $g^2 = 68.7755$
- For Reid68, also central term only

Comparison of eigenfunctions (${}^{3}S_{1}$)

March 9, 2024 HIM 2024-03 | Seungju Lee 10 / 12

Model evaluation process

$f(k^*)$ for $p - p$ & comparison

- For Yukawa,

$\bm{c}(\bm{k}^*)$ in some variation in \bm{g}^2 and $\bm{r_0}$

- Source size $r_0 = 0.96$ fm, $g_{\text{modified}}^2 = 0.94g^2$
- E_0 for deuteron: -2.224 MeV $\rightarrow -1.427$ MeV

March 9, 2024 HIM 2024-03 | Seungju Lee 11 / 12

Summary

Conclusion

- From correlation function analysis, the interaction of fm scale could be confirmed.
- For the $p \Xi$ and $p \Omega$, reproduction of correlation using HAL QCD potentials was successful.
- CATS framework for femtoscopic correlation analysis was convenient to use, and it enables us to evaluate the various models.
- If we analyze interactions between two light mesons, we need to modify CATS or make a new analysis tool.

Plans for study

- Studying and the various hadron-hadron interactions (focusing on $D - D^*$ or $\overline{D} - D^*$ for studying T_{cc} or $X(3872)$)
- Comparison of research results with future experimental results

March 9, 2024 HIM 2024-03 | Seungju Lee 12 / 12

Thanks for listening!

March 9, 2024 HIM 2024-03 | Seungju Lee