

Multiplicity-dependent resonances production in pp collisions in the EPOS4

Hyunji Lim*, Sanghoon Lim Nuclear Physics Lab, Pusan National University HIM 2024-3, 9th March 2024

Multiplicity-dependent resonances production in pp collisions in the EPOS4

Hyunji Lim*, Sanghoon Lim Nuclear Physics Lab, Pusan National University HIM 2024-3, 9th March 2024

Outline

Motivation

- Probing the properties of hadronic phase
- Rescattering in the small collision systems

Analysis Method

- Event and track selection
- Analysis Results

Summary & Plan

- EPOS4 study
- $\rho(770)^{\circ}$ in pp 13 TeV with ALICE

Probing the properties of hadronic phase:

Resonances are particles that are in unstable states and decay into stable particles with different short lifetimes around hadronic phase lifetime

Resonance	ρ ⁰	K*±	K *0	Σ*±	Λ^{\star}	Ξ*	ф
Quark contents	$(u\bar{u} + d\bar{d})/\sqrt{2}$	$\mathcal{U}\overline{S}$	ds	uus, dds	uds	USS	<u>S</u> 5
Lifetime (fm/c)	1.3	3.6	4.2	5.0-5.5	12.6	21.7	46.3

Probing the properties of hadronic phase:

Long-lived resonances:

- -mostly decay after the kinetic freeze-out
- –less rescattering effect
- –can have regeneration effect

Short-lived resonances:

- -mostly decay before the kinetic freeze-out
- -more rescattering effect
- (especially at low momentum particles, large system!)
- -can have regeneration effect

Probing the properties of hadronic phase:

Long-lived resonances:

- -mostly decay after the kinetic freeze-out
- –less rescattering effect
- –can have regeneration effect

Short-lived resonances:

- -mostly decay before the kinetic freeze-out
- -more rescattering effect
- (especially at low momentum particles, large system!)
- -can have regeneration effect

Probing the properties of hadronic phase:

ALI-PREL-523630

- The decreasing trend of the ratios of short-lived resonances indicates the **dominance of** rescattering over regeneration
- No significant multiplicity dependence for long-lived resonances

Probing the properties of hadronic phase:

ALI-PREL-523630

EPOS:

- Event generator based on 3+1D viscous hydrodynamical evolution
- Core and corona have different hadronization mechanism

UrQMD:

– UrQMD describes the full phasespace evolution based on their hadronic interactions

<u>Rescattering in the small collision systems:</u>

- Small systems show similar decrease or stable trend in small system such as pp and p-Pb
- Information about a possible short-lived hadron gas phase

<u>Rescattering in the small collision systems:</u>

EPOS - LHC:

- The EPOS-LHC model describes the multiplicity dependence of the yields well for pp collisions
- No hadronization afterbuner
- -<u>Cannot provide same physics</u> with AA collisions

EPOS4+UrQMD model study in pp collisions

<u>Rescattering in the small collision systems:</u>

ALICE Collaboration. Physics Letters B Volume 802, 135225 (2020)

 $K^{*}(892)^{0}$ Quark content: $s\bar{d}$ Lifetime: 4.2 fm/c B.R: 66.6%

Different lifetime

$\phi(1020)$ Quark content: $s\bar{s}$ Lifetime: 46.3 fm/c B.R: 49.1%

Rescattering effect

<u>Rescattering in the small collision systems:</u>

 π^+ $K^{*}(892)^{0}$ $\rho(770)^0$ Quark content: $(u\bar{u} + d\bar{d})/\sqrt{2}$ Quark content: $s\bar{d}$ Lifetime: 1.3 fm/c Lifetime: 4.2 fm/c π B.R: 66.6% B.R: 100%

Shorter lifetime: Good probe to study short-lived hadronic phase

Analysis Method

Event and Track Selection:

- **Target:** Multiplicity-dependent ϕ , K^{*0}, ρ^0 production in EPOS4+UrQMD
- Collision system & Data: pp at $\sqrt{s} = 13$ TeV & Pb-Pb $\sqrt{s_{NN}} = 5.02$ TeV
- **Event selection:** INEL > 0 events (least charged π , K, p in the $|\eta| < 1.0$)
- Multiplicity: # of charged π , K, p in the VOM range (-3.7 < η < -1.7 & 2.8 < η < 5.1)
- Track selection: ϕ , K^{*0}, ρ^0 , K⁺⁻, π^{+-} in the |y| < 0.5

UrQMD OFF: Tagging from daughter particles

UrQMD ON: Tagging from daughter particles are not scattered

Analysis Results

$dN/dy vs < dN/d\eta >:$

- EPOS4 results of K*(892)^o overestimates ALICE Data

- EPOS4 UrQMD ON measured less on all particles than UrQMD OFF

<p_>vs <dN/dŋ>:

- EPOS4 reproduces the trends seen in the ALICE data

- The gaps between UrQMD ON and OFF for the short-lived resonances show rescattering

<pt> vs <dN/dη>:

- The gaps between UrQMD ON and OFF for the short-lived resonances show rescattering
- The discontinuous part between the two systems shows system effects

Ratios vs <dN/dn>:

- the hadron gas phase of pp system

- The difference between UrQMD ON and OFF is multiplicity-dependent in the short-lived resonances - Larger ON/OFF difference and a decreasing trend in $\rho(770)^{\circ}$, which may be due to the short lifetime of

Ratios vs <dN/dn>:

- the same physics in AA
- In the EPOS4 UrQMD ON/OFF, $\rho(770)^{\circ}$ shows largest effect of hadronic interaction

- EPOS4 UrQMD ON can reproduce the trend of resonance productions in small systems with

Summary & Plan

EPOS4 study:

- EPOS4 and UrQMD described the trend of resonance productions well in pp and Pb-Pb using the same physics
- Suggested that shorter-lived $\rho(770)^{\circ}$ will undergo greater change due to hadronic interaction

ρ(770)^ο in pp 13 TeV with ALICE:

- Analyze Multiplicity-dependent $\rho^0(770)$ production in pp at $\sqrt{s} = 13$ TeV & $\sqrt{s} = 13.6$ TeV

Summary & Plan

High pr

- In invariant mass distributions with likesign subtraction, peaks from various hadronic decays are recognized
- Similar performance between Run 2 and Run 3
- Currently, about x10 more statistics of data from Run 3 are available

Mutiplicity & Event

Class	<dn dη=""></dn> η <0.5			
Class	EPOS4	ALICE		
INEL > 0	6.292	6.89		
0~1%	26.858	25.75		
1~5%	17.897	19.83		
5~10%	14.285	16.12		
10~15%	12.334	13.76		
15~20%	10.950	12.06		
20~30%	9.417	10.11		
30~40%	7.694	8.07		
40~50%	6.153	6.48		
50~70%	3.979	4.64		
70~100%	2.360	2.52		

root [[0]				
Proces	sing Draw	<pre>Yield.C</pre>			
Number	of pp I	NEL>0 event: 442	26486		
mult:	100~70%	Nch: 0~15	<dn deta="">: 2.360</dn>	<dn deta="">1/3: 1.331</dn>	event #: 122244
mult:	70~50%	Nch: 16~25	<dn deta="">: 3.979</dn>	<dn deta="">1/3: 1.585</dn>	event #: 967210
mult:	50~40%	Nch: 26~31	<dn deta="">: 6.153</dn>	<dn deta="">1/3: 1.832</dn>	event #: 402586
mult:	40~30%	Nch: 32~39	<dn deta="">: 7.694</dn>	<dn deta="">1/3: 1.974</dn>	event #: 500581
mult:	30~20%	Nch: 40~47	<dn deta="">: 9.417</dn>	<dn deta="">1/3: 2.112</dn>	event #: 425767
mult:	20~15%	Nch: 48~52	<dn deta="">: 10.950</dn>	<dn deta="">1/3: 2.221</dn>	event #: 21607
mult:	15~10%	Nch: 53~59	<dn deta="">: 12.334</dn>	<dn deta="">1/3: 2.311</dn>	event #: 23768
mult:	10~5%	Nch: 60~69	<dn deta="">: 14.285</dn>	<dn deta="">1/3: 2.426</dn>	event #: 221203
mult:	5~1%	Nch: 70~91	<dn deta="">: 17.897</dn>	<dn deta="">1/3: 2.616</dn>	event #: 1831281
mult:	1~0%	Nch: 92~219	<dn deta="">: 26.858</dn>	<dn deta="">1/3: 2.995</dn>	event #: 459702
mult:	100~90%	Nch: 0~40	<dn deta="">: 4.899</dn>	<dn deta="">1/3: 1.698</dn>	event #: 8486
mult:	90~80%	Nch: 41~106	<dn deta="">: 17.711</dn>	<dn deta="">1/3: 2.607</dn>	event #: 8596
mult:	80~70%	Nch: 107~235	<dn deta="">: 43.853</dn>	<dn deta="">1/3: 3.526</dn>	event #: 8620
mult:	70~60%	Nch: 236~449	<dn deta="">: 93.399</dn>	<dn deta="">1/3: 4.537</dn>	event #: 8548
mult:	60~50%	Nch: 450~770	<dn deta="">: 173.971</dn>	<pre><dn deta="">1/3: 5.582</dn></pre>	2 event #: 857
mult:	50~40%	Nch: 771~1237	<dn deta="">: 291.86</dn>	6 <dn deta="">1/3: 6.63</dn>	33 event #: 85
mult:	40~30%	Nch: 1238~185	3 <dn deta="">: 454.3</dn>	42 <dn deta="">1/3: 7.6</dn>	588 event #: 8
mult:	30~20%	Nch: 1854~276	3 <dn deta="">: 683.6</dn>	67 <dn deta="">1/3: 8.8</dn>	309 event #: 8
mult:	20~10%	Nch: 2764~397	9 <dn deta="">: 1004.</dn>	949 <dn deta="">1/3: 10</dn>	0.016 event #:
mult:	10~0%	Nch: 3980~5936	<dn deta="">: 1458.4</dn>	.92 <dn deta="">1/3: 11.</dn>	.341 event #:

'48 355

Rescattering in the small collision systems:

Analysis Results

Ratios vs pt:

Analysis Method

EPOS4 in Pb-Pb:

- EPOS4 and UrQMD reproduce the trend observed in the ALICE Pb-Pb 5.02 TeV results

Analysis Method

- **Target:** Multiplicity-dependent $\rho^0(770)$ production
- Collision system & Data: pp at $\sqrt{s} = 13$ TeV from Run 2 & $\sqrt{s} = 13.6$ TeV from Run 3
- Event selection & Multiplicity: V0M(Run 2) & FT0M(Run 3) minimum bias events
- **Track selection:** π^{\pm} candidate with $p_T > 0.15$ GeV/c, $|\eta| < 0.8$
- Background estimation: Like-sign pair

Summary & Plan

ρ(770)⁰ in pp 13 TeV with ALICE

- Minimize the contribution from η , η ', ϕ by limiting the lower bound to 0.45 GeV/c²
- $-\omega$ and K^{*}; not applied in the fitting
- K_s; get template by GP MC, not normalized
- $-\rho^{0}$, f₀ and f₂; rBW (IF, PS term not included)
- BG: $F_{BG}(m) = (m 2 \cdot m_{\pi})^{par0} \cdot \exp(par1 + par2 \cdot m)$

Analysis in progress!

Plan for Signal Extraction

• Peak model based on relativistic Breit-Wigner function: ρ^0 , f_0 , f_2

$$\mathrm{rBW}(M_{\pi\pi}) = \frac{AM_{\pi\pi}M_0\Gamma(M_{\pi\pi})}{\left(M_0^2 - M_{\pi\pi}^2\right)^2 + M_0^2\Gamma^2(M_{\pi\pi})},$$

Background shape function:

 $F_{BG}(m) = (m - 2 \cdot m_{\pi})^{par0} \cdot \exp(par1 + par2 \cdot m + par3 \cdot m^2)$

- Minimize the contribution from other hadron by limiting the lower bound

3000 ALICE, $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ (c^2/GeV) 2500 $3 < p_{_{ m T}} < 5 ~{ m GeV}/c$ 2000 pp, minimum bias ····· K*(892)⁰ ΔM 1500 ----- f₀(980) Counts / 1000 500 0.8 1.2 0.2 0.4 0.6 1.0 1.8 .6 $M_{\pi^{+}\pi^{-}}$ (GeV/ c^{2})

$$\Gamma(M_{\pi\pi}) = \left(\frac{M_{\pi\pi}^2 - 4m_{\pi}^2}{M_0^2 - 4m_{\pi}^2}\right)^{(2J+1)/2} \times \Gamma_0 \times M_0/M_{\pi\pi},$$

Ignore other hadron's contribution at fitting and put it to systematic error: systematic study needed!

Event & Track selection

<u>Run2:</u>

• Dataset: LHC16, 17, 18

• Event selection cut:

Minimum Bias Trigger (kINT7) Pileup rejection using the SPD NContributors > 0.5 $|z_{vertex}| < 10 \text{ cm}$ Standard selection from AliMultSelection Percentile of VOM multiplicity should be between 0% and 100%

• Multiplicity: VOM

• Track selection cut:

Global tracking (TestFilterMask(0x20)) $|DCA_z| < 2 \text{ cm}, |DCA_r| < 0.15 \text{ cm}$ $p_T > 0.15 \text{ GeV/}c, |\eta| < 0.8$ $|\sigma_{TPC}| < 5 \text{ and } |\sigma_{TOF}| < 3 \text{ if TOF is available}$ $|\sigma_{TPC}| < 2 \text{ if TOF is not available}$

• Pair selection: |y| < 0.5

<u>Run3:</u>

- Dataset: LHC22o_pass4
- Event selection cut: sel8
- Multiplicity: FT0M

• Track selection cut:

$$\begin{split} |\mathsf{DCA}_z| &< 2 \text{ cm, } \mathsf{DCA}_r| < 0.15 \text{ cm, } \mathsf{N}_{clus} > 70 \\ \mathsf{p}_T &> 0.15 \text{ GeV/}c \text{ , } |\eta| < 0.8 \\ |\sigma_{\mathsf{TPC}}| &< 5 \text{ and } |\sigma_{\mathsf{TOF}}| < 3 \text{ if } \mathsf{TOF} \text{ is available} \\ |\sigma_{\mathsf{TPC}}| &< 2 \text{ if } \mathsf{TOF} \text{ is not available} \end{split}$$

• Pair selection: |y| < 0.5

Fitting method

Monte Carlo:

– GP MC to get template shape and initial parameter – LHC17, 18 (pass2)

Fitting method of previous analysis

ALICE Collaboration. PHYSICAL REVIEW C 99, 064901 (2019)

• Peak model based on relativistic Breit-Wigner function: ρ^0 , f_0 , f_2

$$\mathrm{rBW}(M_{\pi\pi}) = \frac{AM_{\pi\pi}M_0\Gamma(M_{\pi\pi})}{\left(M_0^2 - M_{\pi\pi}^2\right)^2 + M_0^2\Gamma^2(M_{\pi\pi})}, \qquad \Gamma(M_{\pi\pi}) = \left(\frac{M_{\pi\pi}^2 - 4m_{\pi}^2}{M_0^2 - 4m_{\pi}^2}\right)^{(2J+1)/2} \times \Gamma_0 \times M_0/M_{\pi\pi},$$

- Get templates from MC, normalized to known yield: K^{*0} , K_{s}^{0} , ω
- Background shape function:

$$F_{BG}(m) = (m - 2 \cdot m_{\pi})^{par0} \cdot \exp(par1 + par2 \cdot m + par3 \cdot m^2)$$

Fitting method of previous analysis

Fitting (Previous paper):

Contribution	Term	Parameters		
ρ	rBW(m) * G(m) * BE(m) * PS(m) * RecEff(m)	Free: Yield, Mass, C		
		Fixed: Γ_0 to values extracted from Monte-		
		Carlo; estimated equal to $\Gamma_0(PDG, 147.8)$		
		MeV/c ²) + 1.5 MeV/c ² from mass resolution		
f0	rBW(m) * G(m) * PS(m) * RecEff(m)	Free: Yield, Mass		
		Limited: Width to PDG limits 40-100 MeV/c ²		
f2	rBW(m) * G(m) * PS(m) * RecEff(m)	Free: Yield, Mass		
		Fixed: Width to PDG value (184.2 MeV/c ²)		
K*	Template * Amplitude	Fixed: Amplitude to expected value		
Ks	Template * Amplitude	Fixed: Amplitude to expected value		
ω	Template * Amplitude	Fixed: Amplitude to expected value		
BG	F _{FG} (m)	Free: par0, par1, par2, par3		
https://alice-notes.web.cern.ch/svstem/files/notes/analvsis/374/2018-Mav-11-analvsis note-Rho 11A pp276 TPCPID v4.pd				

background shape: $F_{BG}(m) = (m - 2 \cdot m_{\pi})^{par0} \cdot \exp(par1 + par2 \cdot m + par3 \cdot m^2)$

[▶] PHYSICAL REVIEW C **99**, 064901 (2019)

Fitting method

Peak model for ρ^0 , f_0 and f_2 :

• Basic shape (rBW):

$$\mathrm{rBW}(M_{\pi\pi}) = \frac{AM_{\pi\pi}M_0\Gamma(M_{\pi\pi})}{\left(M_0^2 - M_{\pi\pi}^2\right)^2 + M_0^2\Gamma^2(M_{\pi\pi})}, \qquad \Gamma(M_{\pi\pi}) = \left(\frac{M_{\pi\pi}^2 - 4m_{\pi}^2}{M_0^2 - 4m_{\pi}^2}\right)^{(2J+1)/2} \times \Gamma_0 \times M_0/M_{\pi\pi},$$

• Phase space (PS) correction:

$$PS(M_{\pi\pi}) = \frac{M_{\pi\pi}}{\sqrt{M_{\pi\pi}^2 + p_T^2}} \times \exp(-\sqrt{M_{\pi\pi}^2 + p_T^2}/T),$$

- Mass dependence of reconstruction efficiency: RecEff(M)
- Interference term (Söding parameterization): only needed to ρ₀

$$f_i(M_{\pi\pi}) = C \left[\frac{M_0^2 - M_{\pi\pi}^2}{M_{\pi\pi} \Gamma(M_{\pi\pi})} \right] f_s(M_{\pi\pi}),$$

rBW

Fitting method

Template normalization:

• K*:

https://alice-notes.web.cern.ch/system/files/notes/ analysis/469/2020-03-04-Analysis_notekstar_pp13TeV_MB_v3.pdf

▶ Phys. Rev. C 95 (2017) 064606

K_s:

https://alice-notes.web.cern.ch/system/files/notes/ analysis/478/2019-08-03-

ALICE analysis note CRupdate.pdf

▶ Eur. Phys. J. C 80 (2020) 167

• ω:

https://alice-notes.web.cern.ch/system/files/notes/ analysis/1313/2022-08-30-OmegaAnalysisNote_pp13TeV_v2_0.pdf

