Introduction

Javier Serrano on behalf of the CERN WR Team

European Organisation for Nuclear Research (CERN)

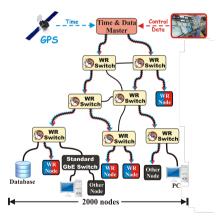
WR workshop and WR Collaboration Launch Event

21 March 2024

Outline

- 3 The White Rabbit Collaboration
- 4 Logistics for this event

Outline



2 Community

- 3 The White Rabbit Collaboration
- 4 Logistics for this event

What is White Rabbit?

- Initially meant for Big Physics facilities/projects: CERN, GSI, Nikhef...
- Based on well-established standards
 - Ethernet (IEEE 802.3)
 - Bridged Local Area Network (IEEE 802.1Q)
 - Precision Time Protocol (IEEE 1588)
- Extends standards to meet new requirements and provides
 - Sub-ns synchronisation
 - Deterministic data transfer
- Initial specs: links \leq 10 km & \leq 2000 nodes
- Open Source and commercially available

troc	luction	
00		

White Rabbit technology - sub-ns synchronisation

Based on

IEEE 1588 Precision Time Protocol on Gigabit Ethernet over fibre

White Rabbit technology - sub-ns synchronisation

Based on

• IEEE 1588 Precision Time Protocol on Gigabit Ethernet over fibre

Enhanced with

- Layer 1 syntonisation
- Digital Dual Mixer Time Difference (DDMTD)
- Link delay model

Outline

- 3 The White Rabbit Collaboration
- 4 Logistics for this event

Short history of WR

- 2008: first meeting at CERN
- 2009: first switch prototype
- 2012: first COTS switch available (open-source hardware, gateware, firmware, software)
- 2012: first operational deployment of WR (Gran Sasso National Lab)
- 2013-2018: WR concepts standardised within IEEE 1588
- 2024: creation of the WR Collaboration

WR post-standardisation

A technology supported by a friendly community working on a fully open-source implementation of IEEE 1588-2019 High-Accuracy (HA) profile, with a guaranteed sub-nanosecond accuracy.

Introduction	Community 000	WR Collaboration ●○○	Logistics
Outline			

Logistics for this event

Entering a new phase

Post-standardisation issues

- How to maintain good support after the increase in uptake of the technology, both in industry and academia?
- How to ensure a high level of quality in the foundations of WR (switch and WR PTP core)?

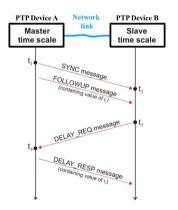
Introduction	Community 000	WR Collaboration ○○●	Logistics

White Rabbit Collaboration

See next presentation and visit https://www.white-rabbit.tech/

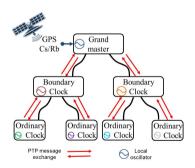
Outline

3 The White Rabbit Collaboration

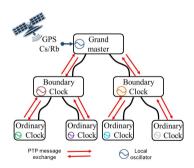

Logistics

- The Globe
- Lunch
- CERN visits this evening
- Dinner tonight
- Presentations:
 - See guidelines at
 - https://ohwr.org/project/white-rabbit/wikis/Workshop-Presentation-Guidelines
 - Bear in mind times in schedule include Q&A and transition between speakers
- Let's start!

Backup slides

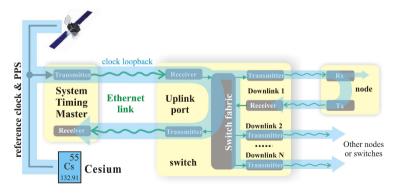

Backup slides

Precision Time Protocol (IEEE 1588)

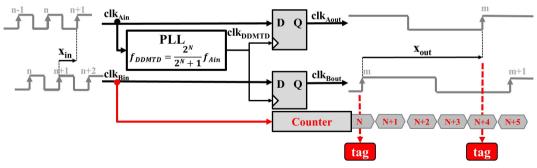

- Frame-based synchronisation protocol
- Simple calculations:
 - link delay: $\delta_{ms} = \frac{(t_4 t_1) (t_3 t_2)}{2}$
 - offset from master: $OFM = t_2 (t_1 + \delta_{ms})$

Precision Time Protocol (IEEE 1588)

- Frame-based synchronisation protocol
- Simple calculations:
 - link delay: $\delta_{ms} = \frac{(t_4 t_1) (t_3 t_2)}{2}$
 - offset from master: $OFM = t_2 (t_1 + \delta_{ms})$
- Hierarchical network

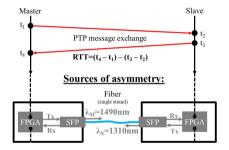

Precision Time Protocol (IEEE 1588)

- Frame-based synchronisation protocol
- Simple calculations:
 - link delay: $\delta_{ms} = \frac{(t_4 t_1) (t_3 t_2)}{2}$
 - offset from master: $OFM = t_2 (t_1 + \delta_{ms})$
- Hierarchical network
- Shortcomings of traditional PTP:
 - devices have free-running oscillators
 - frequency drift compensation traffic can compromise determinism of other messages
 - assumes symmetry of medium
 - resolution of timestamps

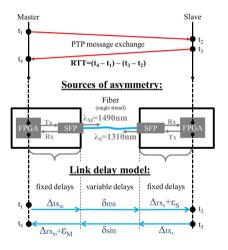

Layer 1 Syntonisation

- Clock is encoded in the Ethernet carrier and recovered by the receiver chip
- All network devices use the same physical layer clock
- Clock loopback allows phase detection to enhance precision of timestamps

Digital Dual Mixer Time Difference (DDMTD)


- Precise phase measurements in FPGA
- WR parameters:
 - clk_{in} = 62.5 MHz
 - *clk_{DDMTD}* = 62.496185 MHz (N=14)
 - *clk_{out}* = 3.814 kHz
- Theoretical resolution of 0.977 ps

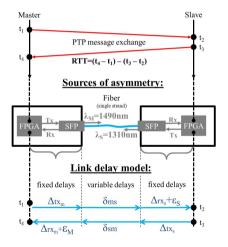
• Correction of Round Trip Time (RTT) for asymmetries



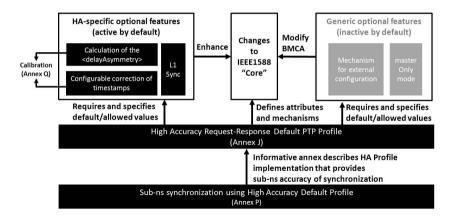
- Correction of Round Trip Time (RTT) for asymmetries
- Asymmetry sources: FPGA, PCB, electrical/optical conversion, chromatic dispersion

- Correction of Round Trip Time (RTT) for asymmetries
- Asymmetry sources: FPGA, PCB, electrical/optical conversion, chromatic dispersion
- Link delay model:
 - Fixed delays calibrated/measured
 - Variable delays evaluated online with:

$$\alpha = \frac{\nu_g(\lambda_s)}{\nu_g(\lambda_m)} - \mathbf{1} = \frac{\delta_{ms} - \delta_{sm}}{\delta_{sm}}$$


- Correction of Round Trip Time (RTT) for asymmetries
- Asymmetry sources: FPGA, PCB, electrical/optical conversion, chromatic dispersion
- Link delay model:
 - Fixed delays calibrated/measured
 - Variable delays evaluated online with:

$$\alpha = rac{
u_g(\lambda_s)}{
u_g(\lambda_m)} - 1 = rac{\delta_{ms} - \delta_{sm}}{\delta_{sm}}$$


Accurate offset from master (OFM):

$$\delta_{ms} = \frac{1+\alpha}{2+\alpha} \left(RTT - \sum \Delta - \sum \epsilon \right)$$

$$OFM = t_2 - \left(t_1 + \delta_{ms} + \Delta_{txm} + \Delta_{rxs} + \epsilon_S \right)$$

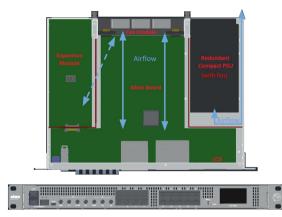
High Accuracy in IEEE 1588

Outline

Status

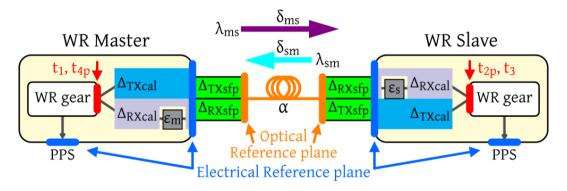
Fundamental building blocks

- Recent release of WR PTP Core v5.
- Upcoming software/gateware release (v7) for WR switch v3 hardware.


Plans

WR Switch v4

- GbE and 10GbE support
- Redundant and serviceable fans and power supplies
- Based on Xilinx/AMD Zynq UltraScale+ System-on-Chip (SoC)
- Expansion board slot for enhancements (low phase noise, hold-over...)


See https://ohwr.org/project/wr-switch-hw-v4/wikis for more details.

WR Switch v4

Prototypes next month, v3 functionality before the end of the year.

Standardisation++

Courtesy Henk Peek and Peter Jansweijer

Standardisation++ (P. Jansweijer, M. Lipiński)

Amendments to IEEE 1588-2019

- Absolute calibration
- In-situ calibration of asymmetry

Within the SNIA SFF working group

Storage of calibration parameters in SFP EEPROM

Future developments

My guess at a WR user wishlist

- Monitoring: switch front panel and programming interface
- Robustness of hardware
- Seamless system redundancy (clock ensemble)
- More automation in calibration
- Evolution of link delay model
- Standardisation/profiles
- Set of best practices for long-distance WR
- Lower barrier to entry: training, starting kit, documentation...

Join the newly-created White Rabbit Collaboration to help us shape the future of WR!

Ensuring sustainability

- Members pay a yearly fee and shape the future of the technology.
- Fees are used to pay the WR Collaboration Bureau, which offers support (including training) and ensures WRS and WRPC are always in good health.

Letting information flow

- Collaboration with vendors ensures coherent growth of the WR ecosystem
- Keeping members well informed: online presentations, forum, regular meetings...
- Connecting people, institutes, companies (e.g. connecting NRENs with industry)

Ensuring high-quality

- Making the evolution of WRS and WRPC the main task of the Bureau
- Teaming up with laboratories to establish a set of tests and qualification criteria
- Connecting the use of the WRC logo to the successful passing of those tests

Projects!

- Mobile (e.g. TDD on 5G)
- Quantum: see e.g. CERN's Quantum Tech Initiative at https://quantum.cern/
- Smart grids
- <your project here>

Open and commercially available off-the-shelf

www.ohwr.org/projects/white-rabbit/wiki/wrcompanies

Javier Serrano on behalf of the CERN WR Team

Introduction to the event