18 Port White Rabbit Switch

10M SIN

LIN IP.C

TAS

Sub-ns long-haul dissemination of UTC(CH) using White Rabbit in Switzerland

Antoine Jallageas, Dominik Husmann, Jacques Morel, Fabian Mauchle, Stéphane Racine, René Mathis, Laurent Nagy MJD 60390

Overview

- 1. UTC and UTC(CH)
- 2. How METAS disseminates time
- 3. TDIS project: UTC(CH) dissemination with White Rabbit
- 4. First results
- 5. Conclusion and outlook

UTC Coordinated Universal Time

3

UTC(CH) Around 70 countries have their BIPM Bureau International des own realization of UTC: UTC(k) Poids et Mesures (Paris) UTC(CH) is the Swiss Monthly Analysis with realization of UTC **ALGOS Algorithm** - 1.13 **EAL** (Echelle Atomique Libre) stable, uncalibrated time scale Only few countries have a Calibration with Primary and Secondary frequency standards physical realization of the SIsecond TAI (Temps Atomique International) **METAS has a PFS: FoCS-2** UTC = TAI + N leap seconds 20.03.2024

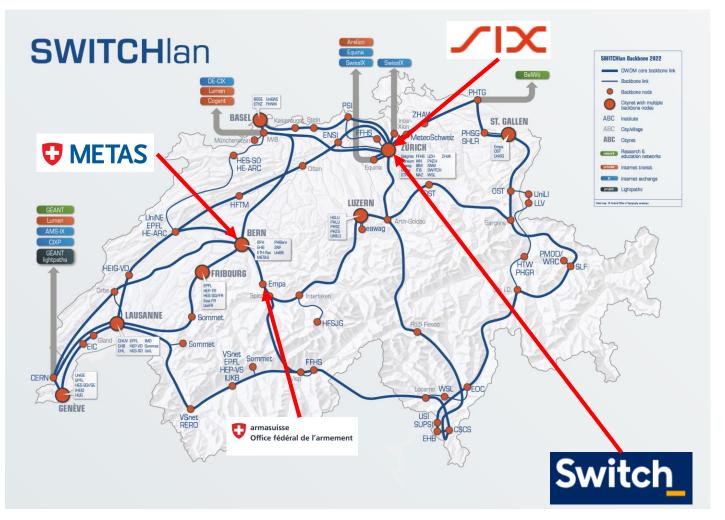
Time dissemination and comparison techniques with UTC(CH)

About timescales...

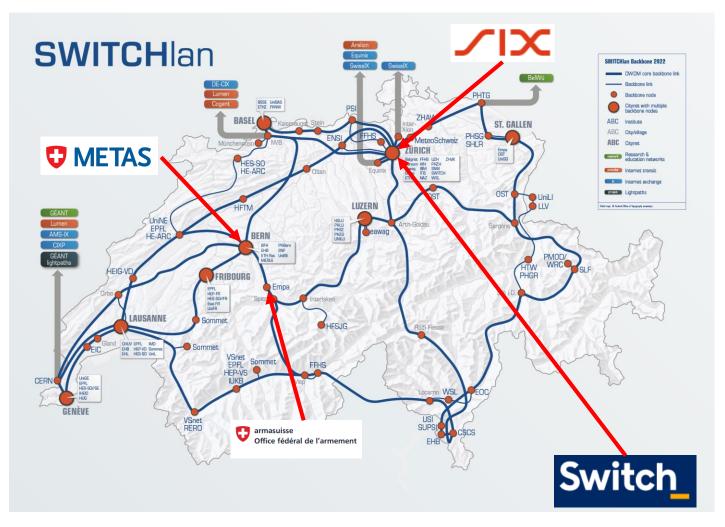
- Today UTC(CH) is already very accurate and stable
- In the future, it will be even better (new generation of atomic clocks, ...)
- But today, we require:
 - Improved dissemination techniques
 - New definition of the second
 - Support for large scale projects (quantum networks, particle colliders, astronomy...)
 - Support for industry (distributed systems, telecom, transport...)
 - > Variety in techniques to provide resilience
 - Resilience to satellite techniques
 - Solution for multi-site time scales

What is the TDIS project?

- TDIS for Time DISsemination
- Main goal: Build a prototype network to demonstrate the feasibility to disseminate of UTC(CH) with sub-ns performance level using WR in an operational data-carrying network
- TDIS is project initiated by METAS with Swiss partners

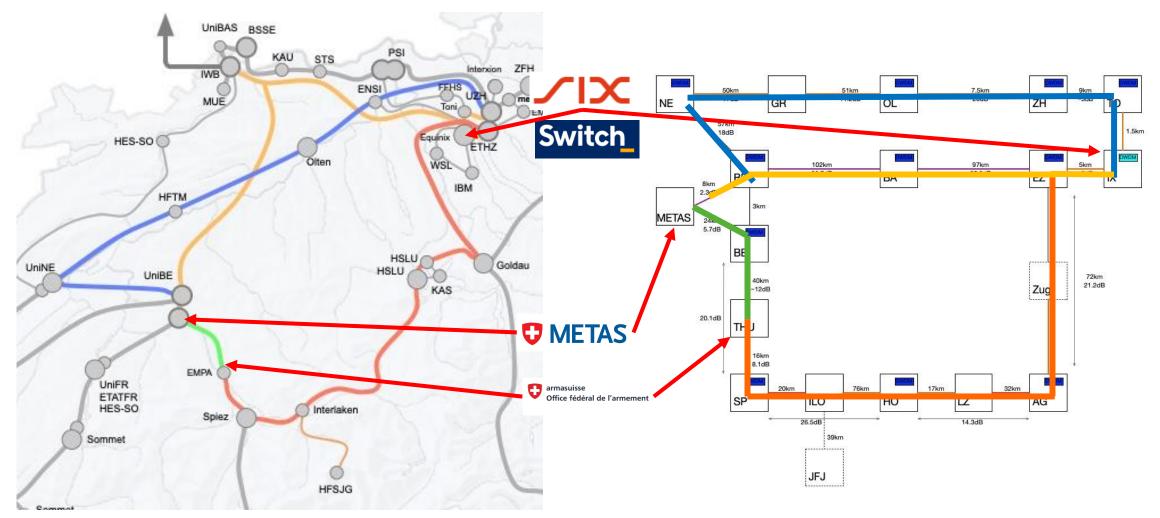

Partners of the project

• The project is a collaboration between 4 entities:


Topology of the network

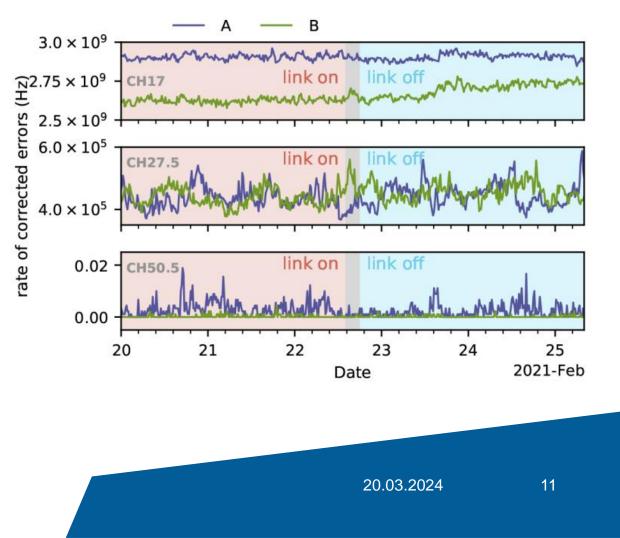
- Foundation SWITCH:
- Connects all universities
- Around 50 points of presence all over Switzerland

Which prototype network can we build?


Topology of the network

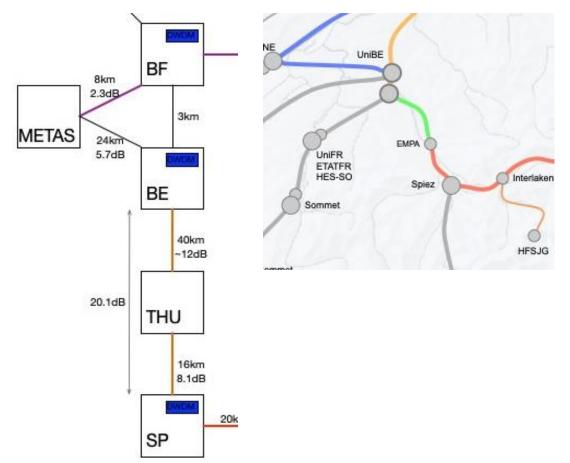
- Several criteria:
- Connect all participants
- Ring-network (for redundancy)
- Lowest complexity as possible
- We have identified 4 sections:
- Green: METAS-Armasuisse
- Red: Armasuisse-Zurich
- > Orange: METAS-SIX (via Basel)
- Blue: METAS-SIX (via Neuchâtel)

TMETAS


Topology of the network

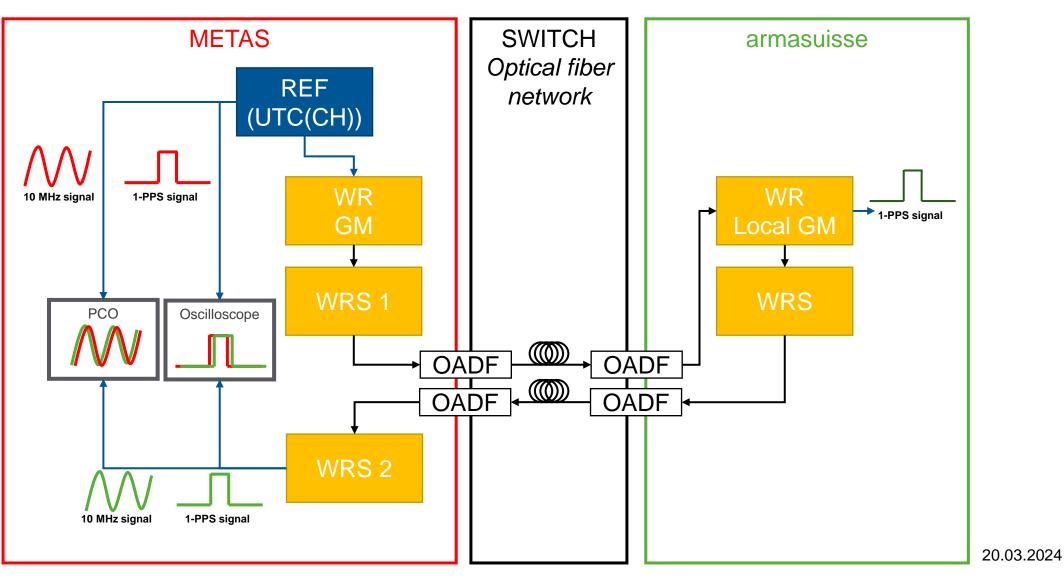
What wavelength?

- SWITCH network is operational with data traffic
- C-band is not available
- We choose to work in the L-band
- We choose DWDM SFP with
 - \succ λ(*T_X* = 1590.411) *nm* (L84)
 - $> \lambda(R_X = 1591.255) nm$ (L85)
 - $> \pm 0.1$ nm stability
- > T_X and R_X are separated by 100 GHZ > Low chromatic dispersion shift
- Is there detrimental crosstalk between the C-band and our metrology application in L-band?
- Husmann D et.al.: SI-traceable frequency dissemination at 1572.06 nm in a stabilized fiber network with ring topology. Vol. 29, No. 16 /2 August 2021 (Optics Express)

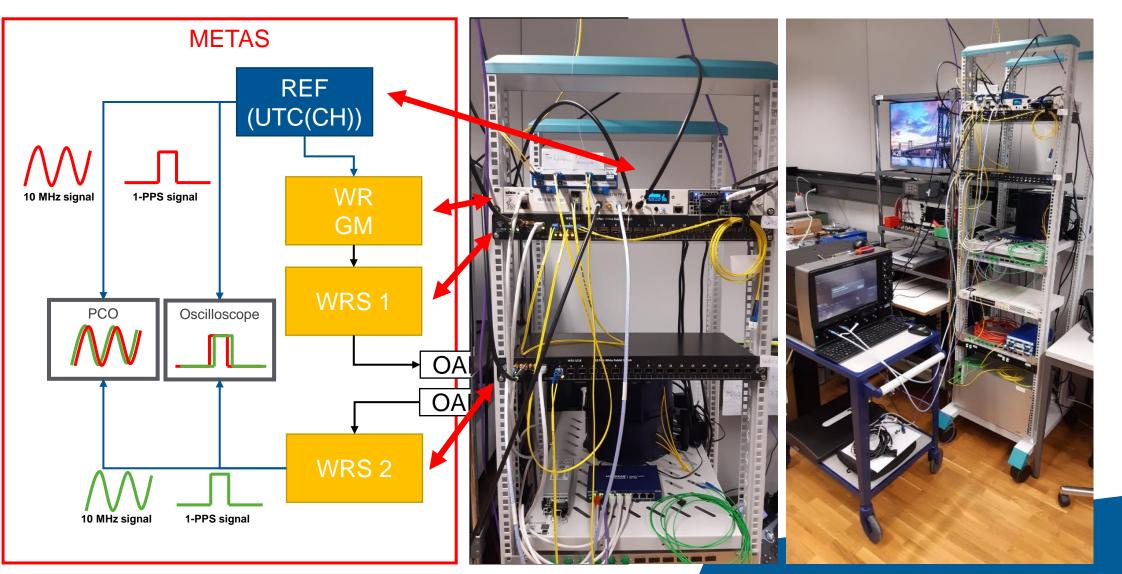

Monitoring of the bit error rate in the fibers shared with our metrological frequency signal

OMETAS

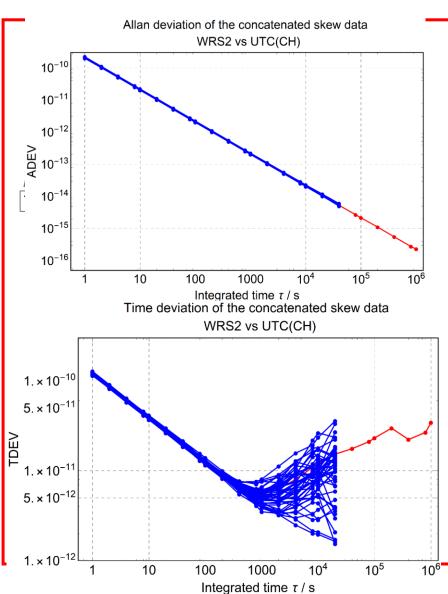
What are the results?


Results from the METAS-armasuisse link

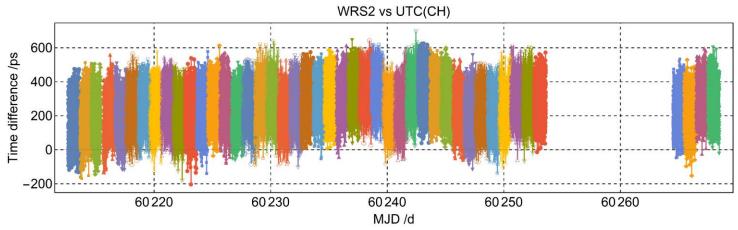
- Some information:
 - Distance: 24 + 40 = 64 km
 - ➢ No regeneration station
 - > 2 fibers available: we build a small loop
 - ➢ Round trip distance: 2*64 km = 128 km
 - ≻ L-band (around 1590 nm): no data traffic


METAS-Armasuisse link: implementation

13


D METAS

METAS-Armasuisse link: implementation



TMETAS

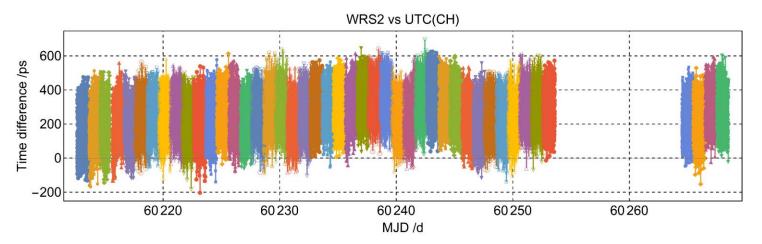
METAS-Armasuisse link: results

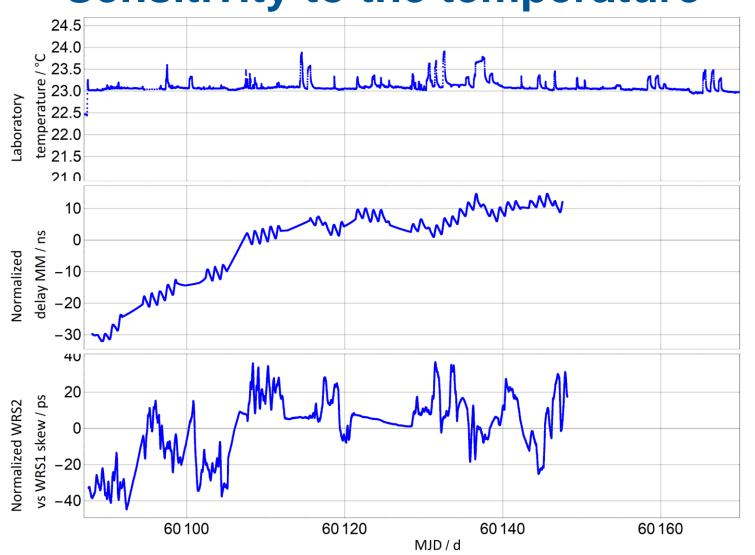
- All devices are calibrated
- 45 days of measurement
- 9 days deadtime

- > There is still a small deviation
- No noticeable drift
- Statistical uncertainty: 120 ps @ 1s (single shot measurement)

20.03.2024

METAS-Armasuisse link: results

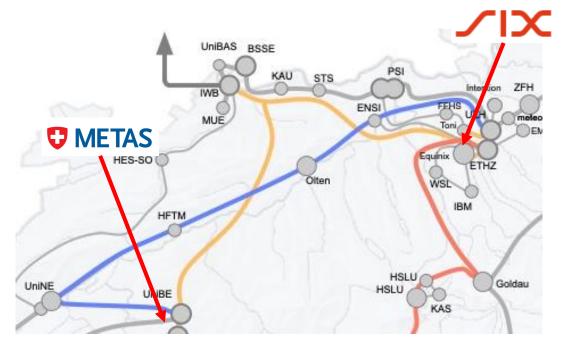

227


#	location	description	offset (ps)	uncertainty (ps)		
1	METAS	UTC(CH) /calibration of the master clock	58			
2	METAS	Coaxial cable KA-KB#1	233800	100		
3	METAS	WR Zen TP FL (Slave + Master		30		
		ports + GM offset)				
	METAS	Link between 2 WR devices /				
4		calibration of the α value /	0	0		
-		here the fiber is short (< 2m)	Ŭ			
		so no uncertaintey				
5	METAS	WRS (Master + Slave ports)		21		
6	METAS	Fiber		0		
		OADF / uncertainty is the same				
7	METAS	as a WR device as the		15		
		measurement protocol is		15		
		quite the same				
8	Outside	Calibration α value		100		
9	Customer	OADF		15		
10	Customer	short fiber		0		
11	Customer	WR GM (slave + master port)		21		
12	Customer	short fiber		0		
13	Customer	WRS (slave + master port)		21		
14	Customer	short fiber		0		
15	Customer	OADF		15		
16	Outside	Calibration α value		100		
17	METAS	OADF		15		
18	METAS	WRS (Slave port)		15		
	193					
	/	Statistical uncertainty				
19		(depending on the duration of	0	120		

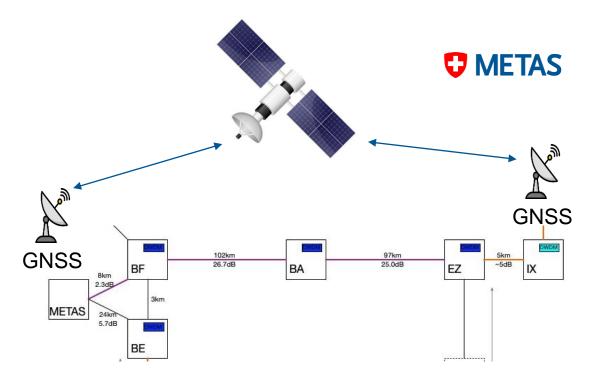
the measurement)

Total uncertainty of a the dissemination of UTC(CH) to DUT

- Statistical uncertainty: 120 ps @ 1s (single shot measurement)
- > Uncertainty from uncertainty budget: 193 ps
- > Total uncertainty (k=1) = 227 ps
- Main limitation today:
 - Noise from devices
 - \succ Estimation of the α value



Sensitivity to the temperature

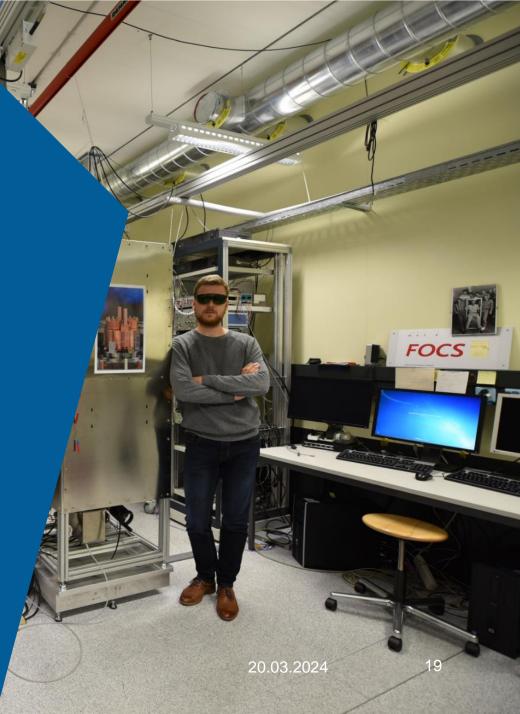

METAS

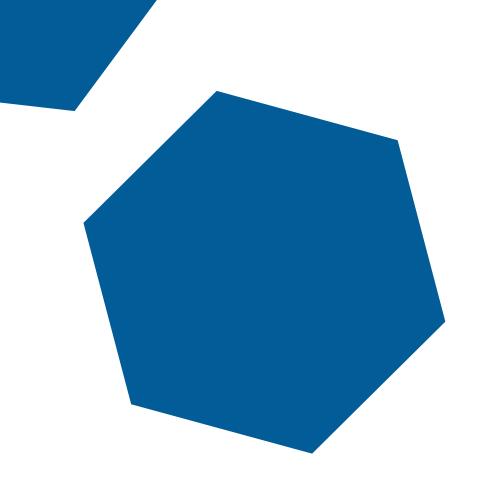
- Lab temperature is very stable
- On the round-trip time delay we clearly see the day/night temperature fluctuations
 - Amplitude around 5 ns
- These fluctuations are not visible on the 1-PPS signals generated by the WRS

Next steps of the project

- Realization of the connection to SIX is in progress
- Loop will be finished by closing the link SIX→METAS via Neuchâtel

- Estimated uncertainty for the dissemination of UTC(CH) to SIX: around 300 ps
- With SIX, we will be able to compare the dissemination via WR with a satellite comparison




Conclusion

White Rabbit is a good candidate for next gen. time dissemination

We achieved a dissemination of UTC(CH) with sub-ns precision over more than 100 km

This project already created awareness for high quality timing dissemination in Swiss industry

Thank you for your attention!

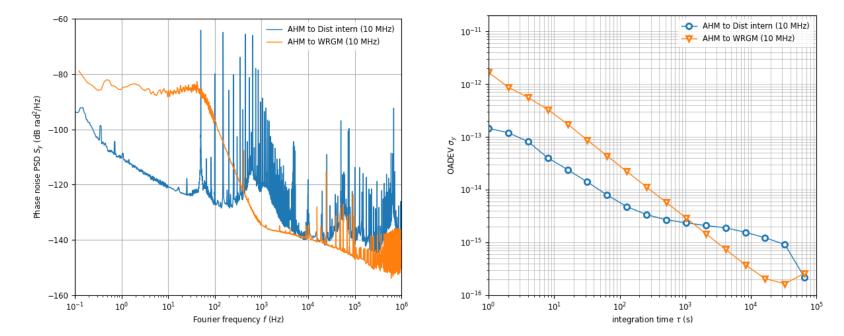
Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Eidgenössisches Institut für Metrologie METAS

CIRCULAR T 434 2024 MARCH 12, 09h UTC

BUREAU INTERNATIONAL DES POIDS ET MESURES THE INTERGOVERNMENTAL ORGANIZATION ESTABLISHED BY THE METRE CONVENTION PAVILLON DE BRETEUIL F-92312 SEVRES CEDEX TEL. +33 1 45 07 70 70 tai@bipm.org

The contents of the sections of BIPM Circular T are fully described in the document "Explanatory supplement to BIPM Circular T" available at https://webtai.bipm.org/ftp/pub/tai/other-products/notes/explanatory_supplement_v0.6.pdf

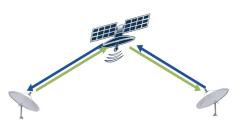

^{1 -} Difference between UTC and its local realizations UTC(k) and corresponding uncertainties. From 2017 January 1, 0h UTC, TAI-UTC = 37 s.

MJD 60339 60344 60349 60354 60359 60364 60369 uA uB u Laboratory k [UTC-UTC(k)]/ns [UTC-UTC(k)]/ns 0.5 78.6 769.9 759.1 740.5 738.4 752.2 0.7 3.0 3.1 AOS (Borowiec) -6.8 -6.8 -6.7 -6.5 -6.9 -7.1 -7.7 0.3 3.5 3.5 APL (Laurel) 0.5 -0.8 -1.0 -1.6 0.6 -0.4 -0.8 0.3 19.8 19.8 AUS (Sydney) -411.8 -402.9 -408.0 -412.2 -407.1 -392.0 -390.9 0.3 3.0 <	Date	2024 0h UTC	JAN 30	FEB 4	FEB 9	FEB 14	FEB 19	FEB 24	FEB 29	Unce	rtaint	y/ns Not
AGGO (La Plata) 782.2 778.6 769.9 759.1 740.5 738.4 752.2 0.7 3.0 3.1 AOS (Borowiec) -6.8 -6.8 -6.7 -6.5 -6.9 -7.1 -7.7 0.3 3.5 3.5 APL (Laurel) 0.5 -0.8 -1.0 -1.6 0.6 -0.4 -0.8 0.3 19.8 19.8 AUS (Sydney) -411.8 -402.9 -408.0 -412.2 -407.1 -392.0 -390.9 0.3 3.0 <td></td> <td>MJD</td> <td>60339</td> <td>60344</td> <td>60349</td> <td>60354</td> <td>60359</td> <td>60364</td> <td>60369</td> <td>uA</td> <td>uB</td> <td>u</td>		MJD	60339	60344	60349	60354	60359	60364	60369	uA	uB	u
AOS (Borowiec) -6.8 -6.8 -6.7 -6.5 -6.9 -7.1 -7.7 0.3 3.5 3.5 APL (Laurel) 0.5 -0.8 -1.0 -1.6 0.6 -0.4 -0.8 0.3 19.8 19.8 AUS (Sydney) -411.8 -402.9 -408.0 -412.2 -407.1 -392.0 -390.9 0.3 3.0 3.0 3.0 BEV (Wien) -10.4 -6.2 -0.1 -1.5 -6.2 -6.2 -5.2 0.3 3.0 3.0 3.0 BEV (Wien) -10.4 -6.2 -0.1 -1.5 -6.2 -6.2 -5.2 0.3 3.0 3.	Labor	ratory k				[UTC-UTC	(k)]/ns					
AOS (Borowiec) -6.8 -6.8 -6.7 -6.5 -6.9 -7.1 -7.7 0.3 3.5 3.5 APL (Laurel) 0.5 -0.8 -1.0 -1.6 0.6 -0.4 -0.8 0.3 19.8 19.8 AUS (Sydney) -411.8 -402.9 -408.0 -412.2 -407.1 -392.0 -390.9 0.3 3.0 3.0 3.0 BEV (Wien) -10.4 -6.2 -0.1 -1.5 -6.2 -6.2 -5.2 0.3 3.0 3.0 3.0 BEV (Wien) -10.4 -6.2 -0.1 -1.5 -6.2 -6.2 -5.2 0.3 3.0 3.	4660	(La Plata)	782.2	778 6	769 9	759 1	740 5	738 4	752.2	07	3.0	3 1
APL (Laurel) 0.5 -0.8 -1.0 -1.6 0.6 -0.4 -0.8 0.3 19.8 19.8 AUS (Sydney) -411.8 -402.9 -408.0 -412.2 -407.1 -392.0 -390.9 0.3 3.0 3.0 3.0 BEV (Wien) -10.4 -6.2 -0.1 -1.5 -6.2 -6.2 -5.2 0.3 3.0 3.0 3.0 BFKH (Budapest) 9603.3 9652.7 9697.4 9745.3 9787.6 9833.5 9874.2 1.5 20.0 20.1 BIM (Sofiya) 18789.2 18817.6 18816.7 18860.8 18866.6 18906.5 18945.0 0.3 3.0 3.0 3.0 BIR (Beijing) -1.5 -1.8 0.6 5.9 - 0.3 -2.9 0.3 3.4 3.4 CAO (Cagliari) -10622.4 -10737.1 -10853.8 -10968.6 -11090.9 -11210.0 -11317.1 1.5 20.0 20.1 CH (Bern-Wabern) 2.2 2.2 2.3 2.2 2.4 -0.7 -3.3 <td></td> <td>•</td> <td></td>		•										
AUS (Sydney)-411.8-402.9-408.0-412.2-407.1-392.0-390.90.33.03.0BEV (Wien)-10.4-6.2-0.1-1.5-6.2-6.2-5.20.33.03.0BFKH (Budapest)9603.39652.79697.49745.39787.69833.59874.21.520.020.1BIM (Sofiya)18789.218817.618816.718860.818866.618906.518945.00.33.03.0BIRM (Beijing)-1.5-1.80.65.9-0.3-2.90.33.43.4BY (Minsk)-0.60.30.3-0.7-1.1-2.2-2.41.53.13.4CAO (Cagliari)-10622.4-10737.1-10853.8-10968.6-11090.9-11210.0-11317.11.520.020.1CH (Bern-Wabern)2.22.22.32.22.4-0.7-3.30.51.91.9CNES (Toulouse)-2.4-1.50.6-0.5-4.2-5.5-2.60.33.03.0CNM (Queretaro)-1.9-1.71.41.81.0-1.5-2.72.04.34.7CNMP (Panama)-0.2-2.712.52.30.35.55.5DFM (Horsholm)-6.2-7.0-7.6-8.8-9.5-10.5-10.70.33.03.0												
BEV (Wien) -10.4 -6.2 -0.1 -1.5 -6.2 -6.2 -5.2 0.3 3.0 3.0 BFKH (Budapest) 9603.3 9652.7 9697.4 9745.3 9787.6 9833.5 9874.2 1.5 20.0 20.1 BIM (Sofiya) 18789.2 18817.6 18816.7 18860.8 18866.6 18906.5 18945.0 0.3 3.0 3.0 3.0 BIRM (Beijing) -1.5 -1.8 0.6 5.9 - 0.3 -2.9 0.3 3.4 3.4 BY (Minsk) -0.6 0.3 0.3 -0.7 -1.1 -2.2 -2.4 1.5 3.1 3.4 CAO (Cagliari) -10622.4 -10737.1 -10853.8 -10968.6 -11090.9 -11210.0 -11317.1 1.5 20.0 20.1 CH (Bern-Wabern) 2.2 2.2 2.3 2.2 2.4 -0.7 -3.3 0.5 1.9 1.9 CNES (Toulouse) -2.4 -1.5 0.6 -0.5 -4.2 -5.5 -2.6 0.3 3.0 3.0												
BFKH (Budapest) 9603.3 9652.7 9697.4 9745.3 9787.6 9833.5 9874.2 1.5 20.0 20.1 BIM (Sofiya) 18789.2 18817.6 18816.7 18860.8 18866.6 18906.5 18945.0 0.3 3.0 3.0 BIRM (Beijing) -1.5 -1.8 0.6 5.9 - 0.3 -2.9 0.3 3.4 3.4 BY (Minsk) -0.6 0.3 0.3 -0.7 -1.1 -2.2 -2.4 1.5 3.1 3.4 CAO (Cagliari) -10622.4 -10737.1 -10853.8 -10968.6 -11090.9 -11210.0 -11317.1 1.5 20.0 20.1 CH (Bern-Wabern) 2.2 2.2 2.3 2.2 2.4 -0.7 -3.3 0.5 1.9 1.9 CNES (Toulouse) -2.4 -1.5 0.6 -0.5 -4.2 -5.5 -2.6 0.3 3.0 3.0 CNM (Queretaro) -1.9 -1.7 1.4 1.8 1.0 -1.5 -2.7 2.0 4.3 4.7 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
BIM (Sofiya) 18789.2 18817.6 18816.7 18860.8 18966.5 18945.0 0.3 3.0 3.0 BIRM (Beijing) -1.5 -1.8 0.6 5.9 - 0.3 -2.9 0.3 3.4 3.4 BY (Minsk) -0.6 0.3 0.3 -0.7 -1.1 -2.2 -2.4 1.5 3.1 3.4 CAO (Cagliari) -10622.4 -10737.1 -10853.8 -10968.6 -11090.9 -11210.0 -11317.1 1.5 20.0 20.1 CH (Bern-Wabern) 2.2 2.2 2.3 2.2 2.4 -0.7 -3.3 0.5 1.9 1.9 CNES (Toulouse) -2.4 -1.5 0.6 -0.5 -4.2 -5.5 -2.6 0.3 3.0 3.0 CNM (Queretaro) -1.9 -1.7 1.4 1.8 1.0 -1.5 -2.7 2.0 4.3 4.7 CNMP (Panama) -0.2 -2.7 - - -12.5 2.3 0.3 5.5 5.5 DFM (Horsholm) -6.2 -7.0												
BIRM (Beijing) -1.5 -1.8 0.6 5.9 - 0.3 -2.9 0.3 3.4 3.4 BY (Minsk) -0.6 0.3 0.3 -0.7 -1.1 -2.2 -2.4 1.5 3.1 3.4 CAO (Cagliari) -10622.4 -10737.1 -10853.8 -10968.6 -11090.9 -11210.0 -11317.1 1.5 20.0 20.1 CH (Bern-Wabern) 2.2 2.2 2.3 2.2 2.4 -0.7 -3.3 0.5 1.9 1.9 CNES (Toulouse) -2.4 -1.5 0.6 -0.5 -4.2 -5.5 -2.6 0.3 3.0 3.0 CNM (Queretaro) -1.9 -1.7 1.4 1.8 1.0 -1.5 -2.7 2.0 4.3 4.7 CNMP (Panama) -0.2 -2.7 - - -12.5 2.3 0.3 5.5 5.5 DFM (Horsholm) -6.2 -7.0 -7.6 -8.8 -9.5 -10.5 -10.7 0.3 3.0 3.0												
BY (Minsk) -0.6 0.3 0.3 -0.7 -1.1 -2.2 -2.4 1.5 3.1 3.4 CAO (Cagliari) -10622.4 -10737.1 -10853.8 -10968.6 -11090.9 -11210.0 -11317.1 1.5 20.0 20.1 CH (Bern-Wabern) 2.2 2.2 2.3 2.2 2.4 -0.7 -3.3 0.5 1.9 1.9 CNES (Toulouse) -2.4 -1.5 0.6 -0.5 -4.2 -5.5 -2.6 0.3 3.0 3.0 CNM (Queretaro) -1.9 -1.7 1.4 1.8 1.0 -1.5 -2.7 2.0 4.3 4.7 CNMP (Panama) -0.2 -2.7 - - -12.5 2.3 0.3 5.5 5.5 DFM (Horsholm) -6.2 -7.0 -7.6 -8.8 -9.5 -10.5 -10.7 0.3 3.0 3.0							18866.6					
CAO (Cagliari)-10622.4 -10737.1 -10853.8 -10968.6 -11090.9 -11210.0 -11317.11.520.020.1CH (Bern-Wabern)2.22.22.32.22.4-0.7-3.30.51.91.9CNES (Toulouse)-2.4-1.50.6-0.5-4.2-5.5-2.60.33.03.0CNM (Queretaro)-1.9-1.71.41.81.0-1.5-2.72.04.34.7CNMP (Panama)-0.2-2.712.52.30.35.55.5DFM (Horsholm)-6.2-7.0-7.6-8.8-9.5-10.5-10.70.33.03.0												
CH(Bern-Wabern)2.22.22.32.22.4-0.7-3.30.51.91.9CNES (Toulouse)-2.4-1.50.6-0.5-4.2-5.5-2.60.33.03.0CNM (Queretaro)-1.9-1.71.41.81.0-1.5-2.72.04.34.7CNMP (Panama)-0.2-2.712.52.30.35.55.5DFM (Horsholm)-6.2-7.0-7.6-8.8-9.5-10.5-10.70.33.0	BY		-0.6	0.3	0.3	-0.7	-1.1	-2.2	-2.4	1.5	3.1	3.4
CNES (Toulouse)-2.4-1.50.6-0.5-4.2-5.5-2.60.33.03.0CNM (Queretaro)-1.9-1.71.41.81.0-1.5-2.72.04.34.7CNMP (Panama)-0.2-2.712.52.30.35.55.5DFM (Horsholm)-6.2-7.0-7.6-8.8-9.5-10.5-10.70.33.03.0	CAO	(Cagliari)	-10622.4	-10737.1	-10853.8	-10968.6	-11090.9	-11210.0	-11317.1	1.5	20.0	20.1
CNES (Toulouse)-2.4-1.50.6-0.5-4.2-5.5-2.60.33.03.0CNM (Queretaro)-1.9-1.71.41.81.0-1.5-2.72.04.34.7CNMP (Panama)-0.2-2.712.52.30.35.55.5DFM (Horsholm)-6.2-7.0-7.6-8.8-9.5-10.5-10.70.33.03.0	CH	(Pern Habern)		2.2	2.2	2.2	2.4	0.7		0 E	1.0	1.0
CNM (Queretaro)-1.9-1.71.41.81.0-1.5-2.72.04.34.7CNMP (Panama)-0.2-2.712.52.30.35.55.5DFM (Horsholm)-6.2-7.0-7.6-8.8-9.5-10.5-10.70.33.03.0												
CNMP (Panama) -0.2 -2.7 - - - -12.5 2.3 0.3 5.5 5.5 DFM (Horsholm) -6.2 -7.0 -7.6 -8.8 -9.5 -10.5 -10.7 0.3 3.0 3.0		•										
DFM (Horsholm) -6.2 -7.0 -7.6 -8.8 -9.5 -10.5 -10.7 0.3 3.0 3.0		. –			1.4	1.8	1.0					
DENT (Tunis) -740 9 -840 1 -948 3 -1054 6 -1131 6 -1214 7 -1312 1 0 7 20 0 20 0		· · · · · · · · · · · · · · · · · · ·	-6.2	-7.0	-7.6					0.3	3.0	3.0
	DFNT	(Tunis)	-740.9	-840.1	-948.3	-1054.6	-1131.6	-1214.7	-1312.1	0.7	20.0	20.0
DLR (Oberpfaffenhofen)	DLR	(Oberpfaffenhofen)	-	-	-	-	-	-	-			
DMDM (Belgrade) 14.4 9.7 11.3 13.3 25.4 6.4 -7.7 0.3 3.9 3.9	DMDM	(Belgrade)	14.4	9.7	11.3	13.3	25.4	6.4	-7.7	0.3	3.9	3.9
DTAG (Frankfurt/M) 17.4 22.5 24.2 24.6 26.7 30.0 30.9 0.3 3.3 3.3	DTAG	(Frankfurt/M)	17.4	22.5	24.2	24.6	26.7	30.0	30.9	0.3	3.3	3.3
ESA (Noordwijk) -1.1 -1.5 -1.5 -2.0 -1.4 -0.8 -1.1 0.3 2.9 3.0					-1.5	-2.0			-1.1	0.3	2.9	3.0

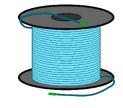
TMETAS

BONUS

- WR may also be used in METAS to disseminate Time (1-PPS) and Frequency (10 MHz) signals
- Comparison between actual distribution (blue) and WR (Orange)



D METAS


State of the art

- Satellite techniques (GNSS, TWSTFT)
 - Based on RF (1-12 GHz) frequencies
 - Actual limit $\sim 10^{-16}$, reached after days
 - Actual limit ~1 ns level

BUT with optical fiber networks we can push those limits

- Optical fiber networks
 - Based on optical telecom (190 THz) frequencies
 - Limit $\sim 10^{-19}$, reached after hours
 - Limit ~1 ps level
 - Redundancy to satellite techniques
 - New method/protocol (White Protocol (White Protoc

В.

20.03.2024

METAS

Time and frequency networks: Situation in Europe

- Past and current international projects
 - EMRP NEAT-FT
 - EMPIR OFTEN
 - EMPIR TiFOON
 - Horizon 2020 CLONETS (-DS)
 - EMPIR ROCIT

H. Schnatz: Towards a European fiber network, ESA ACES Workshop, Zürich, June 2017

Very long WR links in Italy

 In Germany and Poland: ELSTAB timing (for 5G)

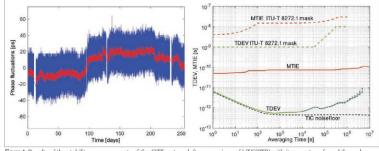


Figure 4. Results of the stability measurements of the OTT system: left: comparison of UTC(PTB) with its copy transferred through three concatenated links; right: calculated TDEV and MTIE compared to relevant ITU masks.

Sliwczynski, et al., IEEE Communications Magazine, 2020 METAS 20.03.2024

D METAS

Time and frequency networks: Situation worldwide

Clock comparison

Measuring the frequency of a Sr optical lattice clock using a

120 km coherent optical transfer

F.-L. Hong, M. Musha, M. Takamoto, H. Inaba, S. Yanagimachi, A. Takamizawa, K. Watabe, T. Ikegami, M. Imae, Y. Fujii, M. Amemiya, K. Nakagawa, K. Ueda, and H. Katori

Time transfert

Stabilized Time Transfer via a 1000-km Optical Fiber Link Using High-Precision Delay Compensation System

by 😤 Bo Liu ^{1,2,3} 🖾 🧟 Xinxing Guo ^{1,2,3} 🖾 🙆, 🤮 Weicheng Kong ^{1,2,3} 🖄 🧟 Tao Liu ^{1,2,3,*} 🖓 😵 Ruifang Dong ^{1,2,3} 🖾 🎯 and 😵 Shougang Zhang ^{1,2,3} 🖄

- ¹ National Time Service Center (NTSC), Chinese Academy of Sciences, Xi'an 710600, China
- ² University of Chinese Academy of Sciences, Beijing 100039, China
- ³ Key Laboratory of Time and Frequency Standards, Chinese Academy of Sciences, Xi'an 710600, China
- * Author to whom correspondence should be addressed.

Photonics 2022, 9(8), 522; https://doi.org/10.3390/photonics9080522

METAS

Very long WR links in USA

White Rabbit makes leap for time over fiber

September 13, 2021 - By Tracy Cozzens

Est. reading time: 5 minutes

Seven Solutions sets new record for long-distance White Rabbit high-accuracy time-over-fiber link The White Rabbit link has an approximate distance of 1,350 km (840 miles) and was deployed in collaboration with Optiver U.S., a financial company, to connect Chicago and New Jersey trading locations. This link is formed by six long-distance White Rabbit hops using WR-Z16 and WR-ZEN TP devices connected by a combination of DWDM and SyncE-compliant transponders over a public telecommunication fiber network.

Sub-ns accuracy on loop-back

zu.u3.z024

Figure 8. Route of the 988.52-km field optical fiber link.