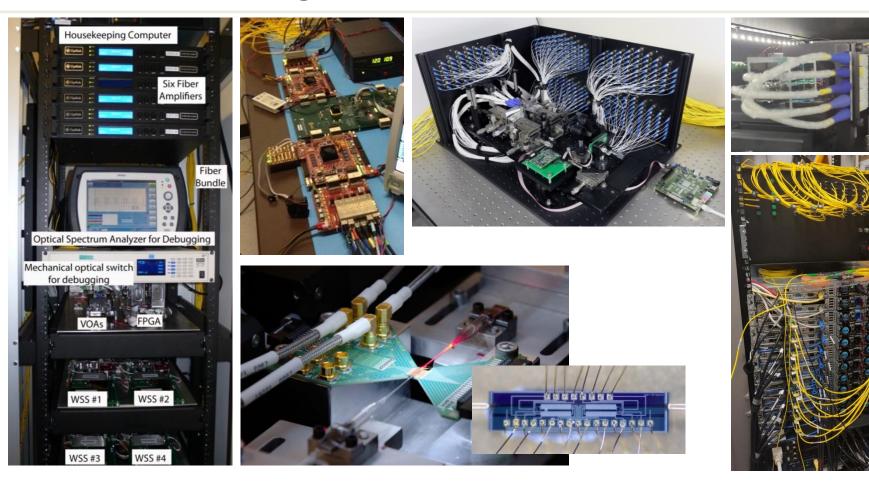
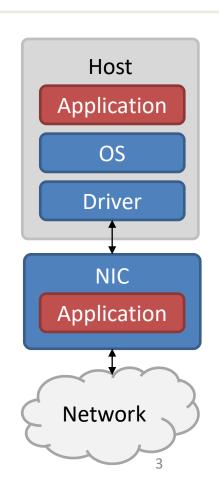
Corundum + White Rabbit

Alex Forencich 3/22/2024



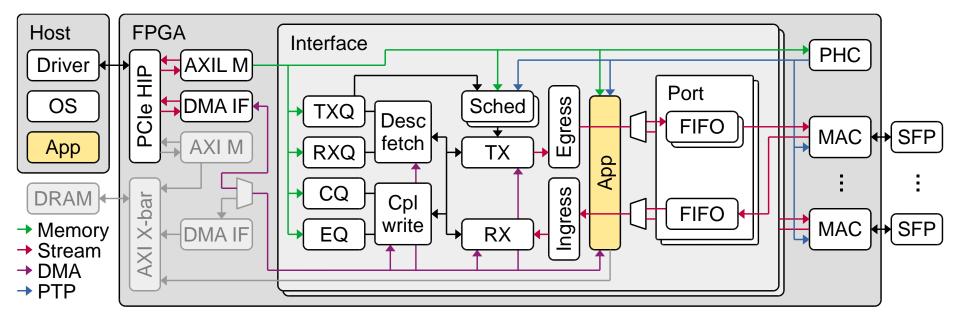

Circuit-Switching Research at UCSD

Introduction

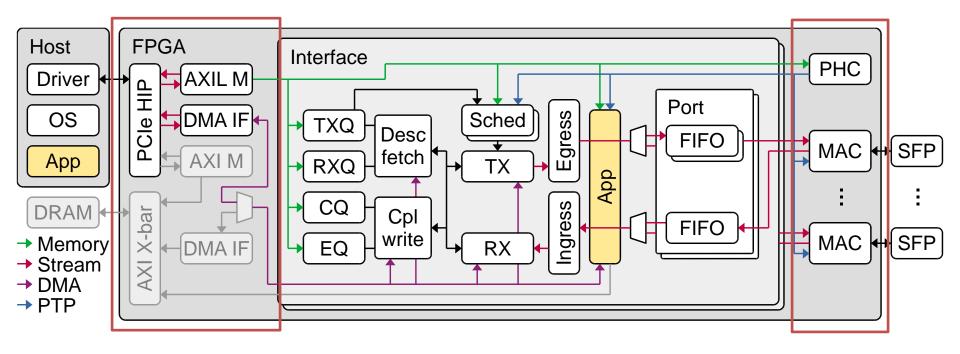
- Network Interface Controller (NIC) connects software to the network
- NIC functionality is evolving
 - Line rate increases
 - Offload networking functions from CPU to NIC
- More general: in-network compute
 - Offload compute to programmable NICs, switches, etc.
 - Not limited to network stack

Corundum

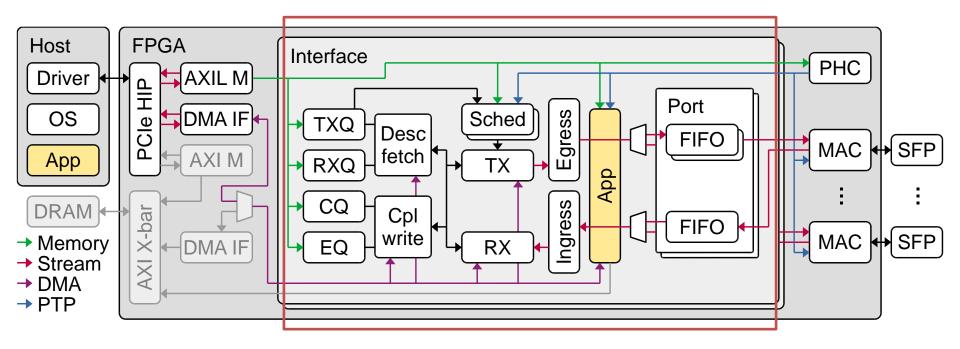
- Open-source, FPGA-based NIC and platform for in-network compute
 - A high performance "reference" NIC
 - Extensible: application block for implementation of custom features
 - Key applications: hardware prototyping of experimental networks/protocols, custom compute offload

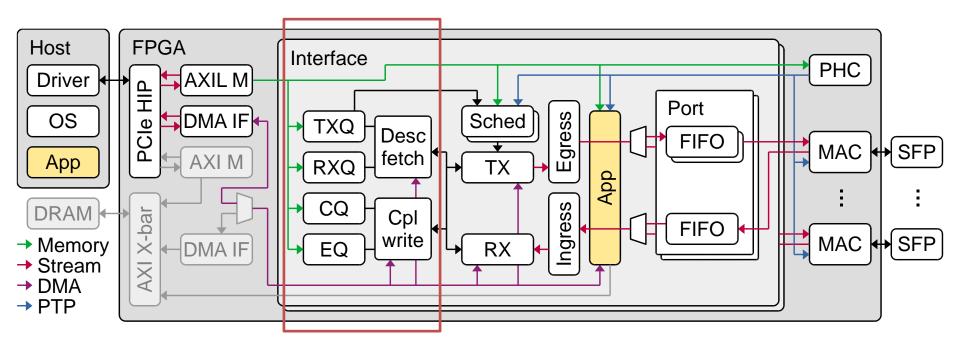


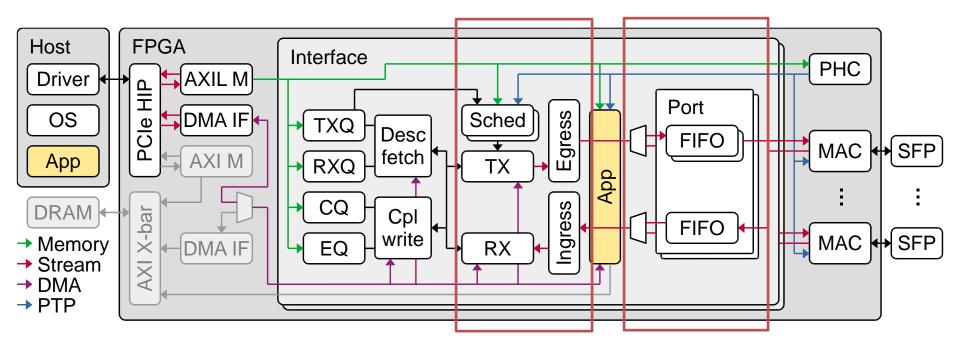
High-Level Features of Corundum

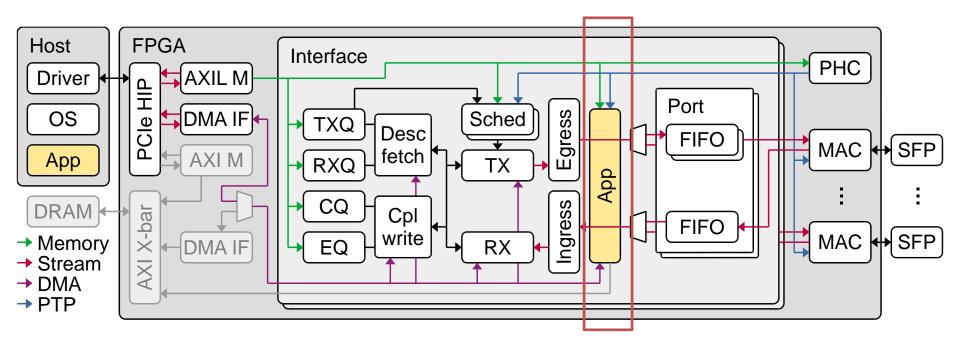


- Open-source, high-performance, FPGA-based NIC
 - PCle gen 3 x16, multiple 10G/25G/100G Ethernet ports
 - Fully custom, high-performance DMA engine; Linux driver
- Application block for custom logic
 - Access to network traffic, DMA engine, on-card RAM, PTP time
- Fine-grained traffic control
 - 10,000+ hardware queues, customizable schedulers
- PTP timestamping and time synchronization
- Management features (FW update, etc.)
- Wide device support (AMD/Xilinx and Intel/Altera, PCIe and SoC)
- Source code: <u>https://github.com/corundum/corundum</u>



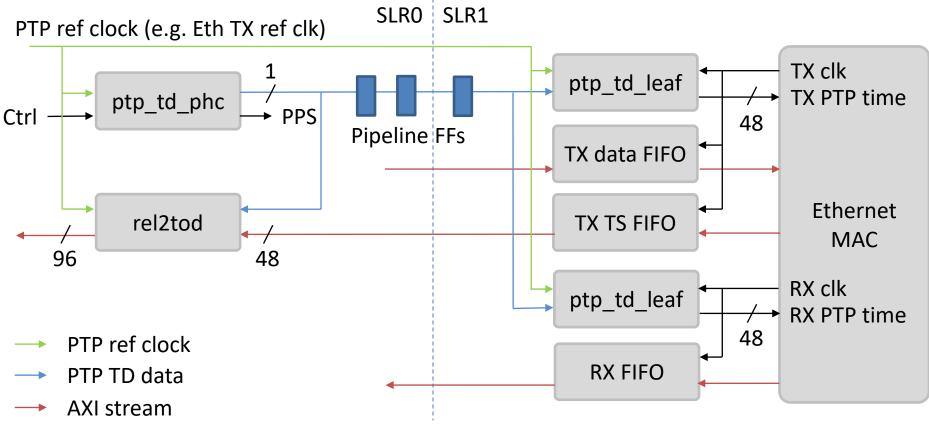






Fine-grained traffic control

- 10,000+ transmit queues
 - Each queue is an independent channel between SW and HW
 - Classify in SW, control in HW
 - Fine-grained, per-flow or per-destination control
 - 128 bits/queue -> 4096 queues in 2 URAM on US+
- Transmit scheduler
 - Determines which queue to transmit from
 - Default scheduler is round robin, but it can be replaced
 - Can be used to implement traffic shaping, rate limiting, etc.


PTP Time Distribution Subsystem

- Packet timestamping requires PTP time reference
 - Timestamping logic located near serdes and uses separate clock domains
 - Time from single PHC must be distributed across device to leaf clocks
- Serial protocol to distribute time from PHC
 - Single wire to reduce congestion
 - Protocol supports use of pipeline registers to cover long distances
- ToD timestamp derived from relative timestamp
 - Reduce logic resources by using truncated 32.16 relative timestamps

PTP Time Distribution Subsystem

Corundum and White Rabbit

- Integrate WR functionality directly into Corundum core logic
 - Likely will need to rework some of the PTP TD, MAC, and PCS logic
 - Also need some sort of timing I/O subsystem
- Should be able to "easily" add support for quite a few boards
 - Corundum currently supports ~30 boards spanning multiple board vendors and device families

WR device support

- UC San Diego
- Serdes, PHY, and MAC configuration is specific to device family
- WR requires deterministic latency and precision timestamping
 - Mitigate latency variance in serdes and gearbox/PCS/MAC/EMIB
 - Hard MAC timestamping must be correct (CMAC, E/F tiles, etc.)
- AMD/Xilinx GTX/GTH/GTY should work well
 - Used by current WR switch and other WR hardware
- Other hardware will require characterization

- FPGA is part of the picture, board-level clocking is the rest
- White rabbit requires tunable Ethernet reference clock and "helper" clock with small offset for DDMTD
 - Original WR hardware uses two VCOs + DACs
- Helper clock can potentially be generated by (ab)using internal PLLs
- Ethernet reference clock can be provided by VCO, DCO, or Fractional-N PLL
 - DCOs and Frac-N PLLs are actually rather common (Si570, Si5341, etc.)

- Corundum currently supports ~30 different FPGA boards
- Board clocking configurations fall into 3 general categories

ADM-PCIE-9V3	K35-S	K3P-S	K3P-Q	fb2CG@KU15P
fb4CGg3	SUME	250-SoC	XUPP3R	XUSP3S
520N-MX	IA-420F	S10MX DK	S10DX DK	Agilex F DK
Agilex I DK	DE10-Agilex	Alveo U45N	Alveo U50	Alveo U55C
Alveo U55N	Alveo U200	Alveo U250	Alveo U280	KR260
VCU108	VCU118	VCU1525	ZCU102	ZCU106

- Boards with insufficiently tunable oscillator
 - Fixed osc, integer-N PLL, etc.

ADM-PCIE-9V3	K35-S	K3P-S	K3P-Q	fb2CG@KU15P
fb4CGg3	SUME	250-SoC	XUPP3R	XUSP3S
520N-MX	IA-420F	S10MX DK	S10DX DK	Agilex F DK
Agilex I DK	DE10-Agilex	Alveo U45N	Alveo U50	Alveo U55C
Alveo U55N	Alveo U200	Alveo U250	Alveo U280	KR260
VCU108	VCU118	VCU1525	ZCU102	ZCU106

- Boards with tunable oscillator behind BMC
 - May need to modify BMC firmware to support tuning

ADM-PCIE-9V3	K35-S	K3P-S	K3P-Q	fb2CG@KU15P
fb4CGg3	SUME	250-SoC	XUPP3R	XUSP3S
520N-MX	IA-420F	S10MX DK	S10DX DK	Agilex F DK
Agilex I DK	DE10-Agilex	Alveo U45N	Alveo U50	Alveo U55C
Alveo U55N	Alveo U200	Alveo U250	Alveo U280	KR260
VCU108	VCU118	VCU1525	ZCU102	ZCU106

- Boards with directly-connected tunable oscillator
 - Clocking network ready for white rabbit

ADM-PCIE-9V3	K35-S	K3P-S	K3P-Q	fb2CG@KU15P
fb4CGg3	SUME	250-SoC	XUPP3R	XUSP3S
520N-MX	IA-420F	S10MX DK	S10DX DK	Agilex F DK
Agilex I DK	DE10-Agilex	Alveo U45N	Alveo U50	Alveo U55C
Alveo U55N	Alveo U200	Alveo U250	Alveo U280	KR260
VCU108	VCU118	VCU1525	ZCU102	ZCU106

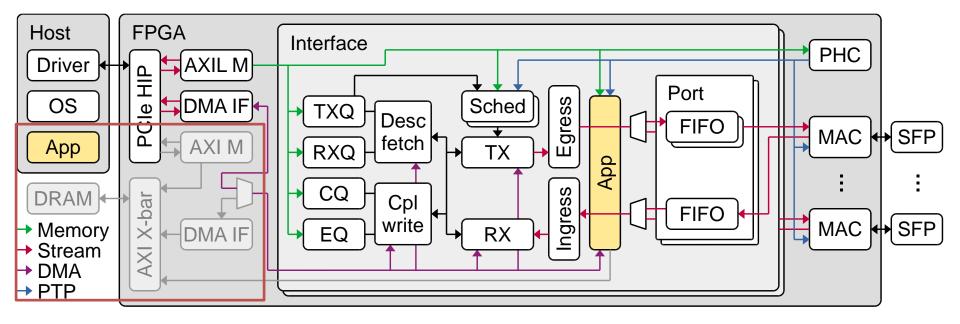
Corundum + WR Status

- Working on high-level architecture
 - Need to handle multiple PCS clock frequencies
 - Likely need to significantly rework PTP CDC logic and MAC+PCS logic
- OCP Time Appliances Project White Rabbit NIC
 - Goal is to build a relatively low-cost open-source white rabbit NIC
 - Custom PCIe form-factor carrier board for Xilinx Kria K26 SoM
 - Renesas/IDT 8A34002 PLL
 - "Stock" corundum operating on initial hardware
 - Eventual goal is to support WR + PTM

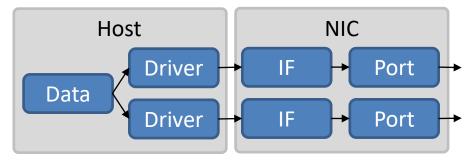
Corundum source code available on GitHub:

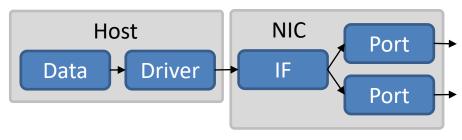
https://github.com/corundum/corundum

Contact me at: jforenci@ucsd.edu



Backup slides

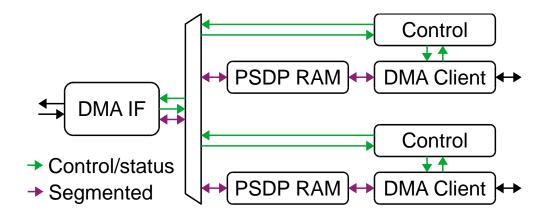




Ports and Interfaces

- Hardware support for multiple uplinks
- Multiple physical ports can appear as single OS-level interface
- Ports have separate schedulers
- Migrate or stripe flows across ports by changing scheduler settings

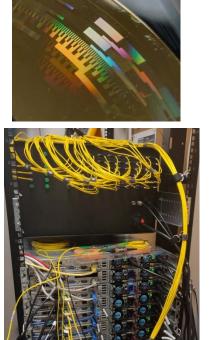
Traditional NIC: assignment in software



Corundum NIC: assignment in hardware

Modular DMA engine

- DMA engine split between interface and client modules
 - Interface connects to host PCIe, AXI, etc.
 - Client modules form internal ports AXI stream, memory-mapped AXI
- Clients connected to interface with dual port RAMs
- Support both servers (PCIe) and SoCs (AXI) with same core logic

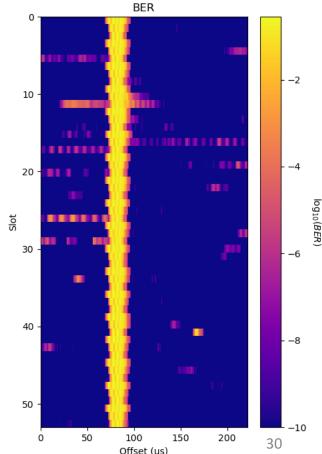


Applications

- Offload application-specific processing
- Datapath for novel transmit schedulers
- Instrument Corundum for performance measurements
- Direct transceiver access permits physical-layer measurements and development of new wire protocols
- Use core logic as a packet DMA engine in a larger system
- Discuss two applications:
 - TDMA for microsecond circuit switching
 - PHY layer BER measurement for link characterization

Application: TDMA

- Scheduler can control queues based on PTP time
 - Enables sub-microsecond-resolution TDMA
- TDMA off
 - 94 Gbps
- 200 us period, 50% duty cycle TDMA schedule
 - Guard time 2 us
- Using TDMA schedule, can run iperf through pinwheel switch
 - Initial test with old FW: 3 Gbps on 10 Gbps link with low packet loss



Application: link-level characterization

UC San Diego

- BER measurement capability integrated
 into NIC
- Measure link-level performance from vantage point of every NIC in datacenter
- Supports time-domain BER
 - Synchronized over network via PTP
 - Measure every path through switch
- Heat map represents signal at one receiver through pinwheel switch

Industry support and adoption

- Axbryd
 - Hardware eBPF offloading (hXDP) built on top of Corundum
- Missing Link Electronics
 - Building a product using Corundum
 - Ported Corundum to Zynq MPSoC
 - Working on Stratix 10 GX port
 - Developing DPDK driver

Long-term goals

- Core features
 - RDMA support in core datapath
 - Variable-length descriptor support
 - Unified DMA address space (on-card DRAM/HBM)
 - Embedded packet switch, SR-IOV, white rabbit
- Device and board support
 - Improve Intel device support
 - Move board-dependent code from driver to soft core
 - Simplify porting process
- Software
 - Improved interface to application logic
 - DPDK driver