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Particle - Quantum Interface

O Particle physics was always herently quantum, Duh.

O A new freld of Quantum physics s rapidly emerging, QIS.

O The tnuterface ts still (foo) small - east) —
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Overview
O Af SQMS and tn the new quantum sensing area we are bridging the divide!

As 11 wntro to this day of quantum seunsing for fundamental physics:
0 Talk about quantum devices tn HEP (anguage.

O Talk about BSM models tn a QIS (anguage.



HEP - Quantum Fields in a Big Universe

O The tustant recipe for particle physics:
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HEP - Quantum Fields in a Big Universe

O The tustant recipe for particle physics:
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HEP - Quantum Fields in a Big Universe

O The nstant recipe for particle physics:

QFT tn a big Universe.

A continuum of nteracting oscillators. All Freguencies.
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Quantum Fields

O At the heart of QFT is a mode expansion. We get to pick the modes.
Something (ke -

d°k 1 . |
o(a) = | 25 7o orue(@)e + afag @) ()

Just a Fourier decomposition of a function i an tnfinite space-time.

BUT, the coefficients of every mode are creation/annthilation operators.

Particle wave duality, [a,af].—_'l, and all that.

(This (s sometimes called “second quantization)
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Quantum Fields in Small Devices

O Cousider the low energy EFT of the discrefum. Often n ferms of a, af

1
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O [n these EFTs, modes separate from the conttuuum, Quantum Mechanics shines:

Optical
waveguide

Artificial Atoms
(particle (v trap)

Superconducting Electromagunetic
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New phases

O As an aside: nteresting quanfum effects sometimes happen even without boundary
conditions

O New phases, gaps, = :

O Superconductors

O Superfluids

Dirac semimetal Weyl semimetal

O Semiconductors

Por0
. —
breaking

O Semi-metals

] ...



Cavities & Circuits
O Cavities: Light n a box. A discretum of states.

O Separation from the confinuum is parametrized by Q.

Q ~ 7070 l'S now )’OM{‘I.M-Q. (Tl/\awk you accderal‘or:.’)

O LC Circutts: periodic current/quantized fFlux.

O Control frequency with L & C.

Both are harmonic. Equally spaced [evels. Huode = bo(afa + 5)



Nonlinear Devices

O Like any EFT, tn a quanfum device there 1s a UV cutoff.

0 We can add higher dim operators, ¢.9. making L a function of ata.

H = tw(afa + ¥4) + k(afa)?

/

O Level spacing s nonuniform.

O This allows for control of tndividual
[evels of a given mode!
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Si0, /SiON Si core
ovefcladding 460 x 200 nm

(n~15) (N 7 3.48)

Optical Devices

O Optics 15 the low energy EFT of light tn matter. Si0, cladding

(n=1.44)

0 We can control the dispersion relation: k = nw.
Useful for localization.

O A waveguide admits a 1D EFT w/ modes quantized

l.M fransverse O(I.Y-QC/'I.OM.

O Transverse wave function affects longitudinal
dispersion relation (a la KK modes!)

Linear Optics: H=E2+B2=Y t\w(afa + %)

“lntegrated photonics



Nonlinear devices
O Like any EFT, tn a quantum device there 1s a UV cutoff.

0 We can add higher dim operators. For example, in optics

Dim-b: Hsppc :/ t ldgq(Xﬁ)zE EkEZ)
crysta

Dl.i’v\-gi Hy vove = / t ldg_) (ngli)lE Byl by, )
crysta
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elc

Many tnteresting device EFTs :
Phonons
Magunouns
Atoms (Frapped or free)
lons
Mechanical modes
Modes of electron/iom tn a trap

Cooper pairs



Quantum Sensing

O The tsolation of modes, and the ability fo confrol them enables feeble
effects to [ead to dramatic consequences:

O Appearance of mode occupation (Haloscope, light shining Fhough wall, phonon detection)

0 Removal of mode occupation (2.9. TES, Nanowires: SC to normal)

O Tume evolution of ultra seusitive states (Atomic clocks, squeezed states, spin precession, photon
counting, entangled qubit states, etc)
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Quibits: Distributed squeezing:

Chen et al, 2311.10413, Ito et al 2311.11632 Brady et al, PRX Quantum 3 (2022) 3, 030333



BSM - for Quantum Mechanics



New Physics — New Fields
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Ok. For concreteness,

(and because QIS is often about controlling light)

[efs assume the new freld couples to photouns.

Linear or vounlinear?



Dark Photons - a Linear Extension

O (£ something mixes linearly with the phofon, 1t must
have the same Guanfum numbers:

Higgs Boson

0 The dark Photon effective Hamiltountan:

H DO Hup + ¢ EE + BB VAV S
(and dark photon also has a mass, and a longitudinal polarization!)

O A dark photoun, f it exists, would teach us profound [essons.
New force of nature. Grand Unification, efc.
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Pecci and Quinn (77)
Axions - A nonlinear extension of QED

O A vonlinear nteraction, naively, would nvolve 2 photons & 1 new freld.
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O Axton mixtng w/ photous polarized along background B field.

[Berlin et al (2019)]

O Axion can be absorbed by photon -> up conversion. [(Gao, RH (2020)]
: \ \ \ [PVLAS]
O Axion exchange -> photon nonlineartty 1 vacuum. ‘e.. Bogorad, Hook, Kahn, Soreq (2020)

O Of course, the discovery of an axton will be a profound tnsight.

[Talks by Sebastian and Bianca]



Gravity Waves - A nonlinear extension

O A gravity wave also tnteracts w/ two photons
L > FF L~ h(BB + EE)+ .. ..

O But often more important:

H = tw(afa + ¥2)  with  w~ (T+h)LT

O Axion-[ike Plxxewow\ewo(ogy:
U GW i’V\l.Xl.MQ W/ PlflOILOMS l.M backgroumo( B 751.-2{0(. [Talks by Sebastian and Biancal]

O GW can be absorbed by photon -> up conversion.



Interaction with Matter

O New particles may tnteract with electrons on nucler.

O Linear:
O Spin precision (@.9. CASPER, spin qubits, [Talk by Josh] )
O Forces (accelerometers, 2.9. [Talk by Tim] )

O Nown-[iner:

O Scattering (direct defection, <.9. [Talk by Andrew] )

-
e —————— - — -




Signal Frequency

0 What (s the Frequency of signal?

0 Narrowband: Light Shining through wall: A dark matter search:

Emitter Receiver

Receiver

Looking for a new particle Looking for a new particle that s DM,
Kuown frequency Unknown frequency (Scan!)
[Talk by Bianca] [Talks by Raphael and Ed]

0 Boradband - * impulse” O Noune of the above (e.g9. LIGO)



Signal Frequency

0 What (s the Frequency of signal?

0 Narrowband: Light Shining through wall: A dark matter search:

| Emitter Receiver _
L Receiver

High Quality

detectors needed.

Looking for a new particle Looking for a new particle that s DM,
Kuown frequency Unknown frequency (Scan!)
[Talk by Bianca] [Talks by Raphael and Ed]

0 Boradband - * impulse” O Noune of the above (e.g9. LIGO)



Examples

Today’s schedule!

SRF Cavities
L3He
Atom Interferometry



Electron magnetic moment (g-2)e: b g
The quantum state of a single electron in a 2
trap is monitored via a QND measurement.

Single Particle Qubit

= The most precise theory-experiment comparison in physics:
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Phys. Rev. Lett. 130, 071801 (2023)
Editors choice!

» SQMS joined the effort, contributed to understanding loss sources.
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= SQMS bonus: We also found that a single-
electron qubit is a sensitive DM search in a
challenging frequency range!

= Theory + proof-of-concept!

Phys.Rev.Lett. 129 (2022) 26, 261801
(a new NU-Stanford-Fermilab collaboration) ""”S @ M S ]
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https://link.aps.org/doi/10.1103/PhysRevLett.130.071801

Estrada et al. PRX Quantum 2 (2021) 3, 030340

Nonlinear Optics with Dark States

0 SPDC: a workhorse tn quantum optics.

pump signal
_\/\/\./
/\/\/\/\
\ : 7 7, TINL N N\
O Pump -> signal + dler (a “decay’ ) idler
SPDC

O Presence of tdler 15 inferred. Might as well be wvisible!

O Dark SPDC:  Pump -> signal + axion or dark photon. Rate o< €2 (vs € for LSW)

colinear dSPDC Non-colinear dSPDC SO 7

pump signal T
.> Pump phot
axion or N2 VaVaVYa
dark SPDC dark photon

Note: the axion or dark photon have tndex of refraction of 1 (and a mass).
dSPDC has significantly different phase matching conditions.



Summary

O The tnterface of HEP and QIS (s growing!
0 Quantum simulation of HEP (exciting, but wot today's topic)

0 Quanfum sensing
0 Quantum Field theory extends tnto Foday s quantum devices!

O Quantum seustors can Probe new hypotheses i HEP

\/\/\ SUPERCONDUCTING QUANTUM
MATERIALS & SYSTEMS CENTER
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Examples

Cavity based Searches @ =S Q MS-n

SUPERCONDUCTING QUANTUM
MATERIALS & SYSTEMS CENTER

Optics based searches @ our imagination so far



Estrada et al. PRX Quantum 2 (2021) 3, 030340

Nonlinear Optics with Dark States

0 SPDC: a workhorse tn quantum optics.
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O Pump -> signal + dler (a “decay’ ) idler
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Dark SRF: cavity-based search for the Dark Photon

A light-shining-through-wall experiment.

Phase 1: Pathfinder run in LHe. Phase 2: in DR,
Demonstrated enormous potential receiver at ~mk,
for SRF based searches. in quantum

o o g regime. Improved

frequency
stability. Phase
sensitive readout.

1077

Will increase the
search reach.

= Dark SRF

B Pathfinder Run

10—9 IIIII| | | |I|II|| | | |||II||
1077 1076 107°

1078

my (eV)
Romanenko et al., Phys.Rev.Lett. 130 (2023) 26, 261801 S Q M S i areras & svemems cenren



Ultrahigh Q for Dark Matter

107
1010 Cervantes et al.,
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c 107" "= : .
= review in Phys. Rev. Lett.
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Bogorad, et al., PRL, DOI:10.1103/PhysRevLett.123.021801
Berlin, et al., JHEP, DOI:10.1007/JHEPO7 (2020) 088

M U Iti mOde Séad rChes Gao & Harnik, JHEP, DOI:10.1007/JHEPO7 (2021) 053

Berlin, et al., arXiv:2203.12714, Snowmass WP (2022)

= Axion DM search based on the heterodyne

iw 1 @ 1 Sauls, PTEP, DOI:10.1093/ptep/ptac034 (2022)
m{ T 4 Giaccone, et al., arXiv:2207.11346 (2022)
T == S— AN - Vacuum =\ \
Ly gl | 0 flange ‘ | . ) . . . . .
é\?ﬂh Pa Q- detection scheme: cavity design is finalized,
. contract for cavity fabrication placed (cavity

Experimntal arrival: Fall 2023)

Axion DM desionfor MMz In preparation for search:
search concep! « Working on RF experimental set up and

0] ] nrate read out system

e 24 GHaresonant. = Addressing experimental challenges such

A e—t as passive dampening of vibrations in LHe

B facility
= Multimode feasibility study

* s awiw im0 cts: Asher Berlin, Bianca Giacone ESEQIM S s s arens o



Berlin, et al., JHEP, DOI:10.1007/JHEPO7 (2020) 088
Berlin, et al., arXiv:2203.12714, Snowmass WP (2022)
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Contacts: Asher Berlin, Bianca Giacone

M u Iti mOd e sea rChes Giaccone, et al., arXiv:2207.11346 (2022)

Snowmass name:
SRF-m3
Asher’s proposal:
SuperRAD
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34

Gravitational waves

= Photon up-conversion due to GW.

= Current axion experiments have sensitivity
to GHz Gravity waves [1].

= A dedicated cavity experiment, e.g. MAGO,

has significant reach at MHz [2].

« MAGO traveled from INFN to DESY to
Fermilab for testing

= A Fermilab KEK collaboration to design
new dedicated broadband cavity.

scanning (thermal)

S
up (&) rad jaI] -

I IIIII| I
103 104

[1] Phys.Rev.D 105 (2022) 11, 116011
[2] Phys.Rev.D 108 (2023) 8, 084058

MAGO (INFN)
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Electron magnetic moment (g-2)e: b g
The quantum state of a single electron in a 2
trap is monitored via a QND measurement.

Single Particle Qubit
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= SQMS bonus: We also found that a single-
electron qubit is a sensitive DM search in a
challenging frequency range!

= Theory + proof-of-concept!
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https://link.aps.org/doi/10.1103/PhysRevLett.130.071801

To Summarize

0 QIS relies on extending the QFT formalism to devices that tmpose boundary
condifions onto quantum fields.

O The low energy EFT of devices. For me, ifs 15 particle physics on small scales.

0O BSM exteunsions of optics are simple well motivated targets, both linear and

nonlinear.

O Several ongoing and proposed efforts at SQMS and Fermilab.
It s greaf to see the complementarity!

pump signal

axion or

dark SPDC dark photon
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Si0, /SiON Si core
ovefcladding 460 x 200 nm

(n~15) (N 7 3.48)

Optical Devices

O Optics 15 the low energy EFT of light tn matter. Si0, cladding

(n=1.44)

0 We can control the dispersion relation: k = nw.
Useful for localization.

O A waveguide admits a 1D EFT w/ modes quantized

l.M fransverse O(I.Y-QC/'I.OM.

O Transverse wave function affects longitudinal
dispersion relation (a la KK modes!)

Linear Optics: H=E2+B2=Y t\w(afa + %)

“lntegrated photonics



Nonlinear devices
O Like any EFT, tn a quantum device there 1s a UV cutoff.

0 We can add higher dim operators. For example, in optics

Dim-b: Hsppc :/ t ldgq(Xﬁ)zE EkEZ)
crysta

Dl.i’v\-gi Hy vove = / t ldg_) (ngli)lE Byl by, )
crysta




Nonlinear devices
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Dim-bL: Hgsppc = / t 1al?’"’ (Xﬁ)lE EkEl)
crysta

Dl.h/\-gi Hy vove = / t ldg_) (XE:]S{;)ZE Byl by, )
crysta

. / . . . . .
Estimate ¥ s tn naive dimensional analysis:
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Pecci and Quinn (77)
Axions - A nonlinear extension of QED

lutroduce a field: L D —a‘G””GNW =

/ 'é)GngG Ca) = 0 dymnamically.

a

f

O Naturally, one would also expect: £ > F}Av{.’:’;v _ —}?@’

O Axion phenomenology w/ background B field ts similar to dark photon. Mixing:

—> —

N FNEC
Photons polarized

along a B field caw
mix with axions.



Optics

Naz‘oms ~ 7023 ”

O The EFT of light traveling through a medium, made of atoms
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Optics

O The EFT of light fraveling through a medium, made of atoms
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Optics

The hierarchy of scales, &Xators < Might, has several implications:

O Collective (coherent) back reaction:
o Amplitude For Forward scattering off an atom may be small, O(x).
o Amplitude For fForward scattering off of the medivm can be O(T).

O The effect of the medium can be described as mean field(s) (v a derivative
-QXPCMSI.OMZ
Polarization and maguetization densities P and M.,
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Polarization and magnetization densities P and M.

dipoles tn medium react

lnterference tn the

TN N\ . .
NN 1 1 forward direction

ncoming (ight 1 I I induces emission

— ndex of refraction!




Avologies, wn this talk c=1
Indices of Refraction

O [udex of refraction s a correction fo dispersion relation
(V2= u? 32 E=0 — K=nuw
O 1 can depend on frequency, propagation direction, and polarization!

O For example: [n the EFT of a birefringent medium, two polarizations of the photon
are [iterally fwo different Flavors  of particles!

Analogy: 1n the SM EFT, @ and pm are fwo degrees of freedom
with different dispersion relations (different mass).
(Important tn kinematics, u — e+v+vbar, etc)

O ludeed, v (nonlinear) optics a photon can decay to photons! (and what else?!)



Apologies, 1n Hus talk c=1

Indices of Refraction
O ludex of refraction appears at the ~renormaliable [(evel of the EFT.

O As 1 any EFT, we can wnclude higher order ferms, surpassed by the cutoff
Dim-b: Hsppc = / d°7 (Xﬁ)zE EkEl)
crystal

Dl.l’\/\—gl Hy vove = / t ldg_) (Xﬁ)zE Byl by, )
crysta
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. / . . . . .
Estimate ¥ s tn naive dimensional analysis:

When the field s set to that (n an atom, we sef (Dim-4 ~ Dim-6 ~ Dim-8):
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