

Lancasteı University Quantum Enhanced Superfluid Technologies for Dark Matter and Cosmology, QUEST – DMC

- Phase transitions in extreme matter
- Detection of sub-GeV dark matter with a quantumamplified superfluid ³He calorimeter

Linked through an experimental approach of combining quantum sensors with ³He at ultralow temperatures and theoretically through beyond-standard model physics.

'FRPOOI

University of Sussex

Science and Technology Facilities Council

Quantum Enhanced Superfluid Technologies for Dark Matter and Cosmology, QUEST – DMC

QUEST-DMC superfluid ³He detector for sub-GeV dark matter.

S. Autti¹, A. Casey², N. Eng², N. Darvishi², P. Franchini¹,², R. P. Haley¹, P. J. Heikkinen², A. Jennings³, A. Kemp², E. Leason², L. V. Levitin², J. Monroe², J. March-Russel⁴, M. T. Noble¹, J. R. Prance¹, X. Rojas², T. Salmon¹, J. Saunders², R. Smith², M. D. Thompson¹, V. Tsepelin¹, S. M. West², L. Whitehead¹, V. V. Zavjalov¹, D. E. Zmeev¹, Eur. Phys. J. C 84, 248 (2024).

Nanofluidic platform for studying the first-order phase transitions in superfluid helium-3, Petri J Heikkinen, Nathan Eng, Lev V Levitin, Xavier Rojas, Angadjit Singh, Samuli Autti, Richard P Haley, Mark Hindmarsh, Dmitry E Zmeev, Jeevak M Parpia, Andrew Casey, John Saunders, arXiv:2401.06079 (2023)

A-B transition in superfluid ³He and cosmological phase transitions,

Mark Hindmarsh, J.A. Sauls, Kuang Zhang, S.Autti, Richard P. Haley, Petri J. Heikkinen, Stephan J. Huber, Lev V. Levitin, Asier Lopez-Eiguren, Adam J. Mayer, Kari Rummukainen, John Saunders, Dmitry Zmeev, *arXiv:2401.07878 (2023)*

Quantum sensors operated in ultralow temperatures regime, 100 μ K

Lucas, M., Danilov, A.V., Levitin, L.V. *et al.* Quantum bath suppression in a superconducting circuit by immersion cooling. *Nat Commun* **14**, 3522 (2023)

Andrew Casey, SQMS Quantum for Science, 22/03/24

ROYAL HOLLOWA'

QUEST DMC

Quantum sensors operated in ultralow temperatures regime, 100 µK

Nanofabrication Facilities

Nanofabrication Facilities

Physikalisch-Technische Bundesanstalt Braunschweig und Berlin

Superfluid Helium, ³He

- Cooper pairs with L = S = 1
- 18-component order parameter
 - L_z = -1, 0, 1
 S_z = -1, 0, 1
- Multiple superfluid phases
 - A-phase: Anderson-Brinkman-Morel
 - B-phase: Balian-Werthamer
- Broken Cooper pairs = thermal excitations with energy $\Delta \sim 10^{-7} \text{ eV}$

How did the early universe evolve?

Gravitational waves ESA mission LISA (2037)

Phase transitions in extreme matter

Precise control of Quantum analogue system, Superfluid ³He & dynamics of phase transitions open gravitational wave window to physics beyond the Standard Model in the early universe

QUEST DMC

Models for the AB phase transition

Intrinsic and extrinsic factors controlling nucleation

Intrinsic

Homogeneous nucleation via thermal fluctuations.

- Due to large critical size of B-phase bubble, $R_c = 2\sigma_{AB}/\Delta F_{AB} \sim 1 \mu m$, predicts lifetime of metastable supercooled A phase larger than the age of the Universe. [A. J. Leggett, JLTP 87, 571 (1992)]
- Macroscopic quantum tunnelling with or without resonant effects.
 - Theory suggests extremely slow nucleation rate for pure tunnelling. [D. Bailin and A. Love, J. Phys. A 13, 271 (1980)]
 - Nucleation probability could have 'resonances' at certain combinations of temperature, pressure, and magnetic field. Possibly tunnelling via intermediate phases between ³He-A and ³He-B. [S.-H. Henry Tye and D. Wohns, PRB 84, 184518 (2011)]

Models for the AB phase transition

Extrinsic

- Nucleation by radiation.
 - Experimentally shown that γ-rays and neutrons have a clear effect. Role of cosmic rays as background effect less clear. [P. Schiffer and D. D. Osheroff, Rev. Mod. Phys. 67, 491 (1995)]
 - Various theoretical scenarios:

Baked Alaska: [A. J. Leggett, PRL 53, 1096 (1984)]; "Cosmological" scenario: [Yu. M. Bunkov and O. D. Timofeevskaya, PRL 80, 4927 (1998)]

- Stochastic process.
- Rough surfaces / textural singularities.
 - Flow of superfluid around sharp edges/corners due to thermal gradients or vibrations can nucleate B phase. [M. O'Keefe, B. Barker, D. D. Osheroff, Czech. J. Phys. 46, 163 (1996)]
 - In a cell with non-polished surfaces nucleation predominantly occurs at certain locations. [G. W. Swift and D. S. Buchanan, Jpn. J. Appl. Phys. 26, 1828 (1987)]
 - Likely to have a cooling-rate dependence.
- Seeds or pockets of B phase. Heterogeneous nucleation. 'Lobster pot'.
 - Extremely rough surfaces (such as sintered heat exchangers) can house isolated volumes of distorted order parameter, connected to rest of the sample by narrow channels. [Y. Tian et al., Nat. Commun. 14, 148 (2023)]
 - Catastrophe line. History dependence. [Kleinberg, Paulson, Webb, Wheatley, JLTP 17, 521 (1974) and 23, 725 (1976)]

Engineer phase landscape through confinement

- Engineer phase transitions between superfluid ³He phases of distinct symmetry.
- Control the free energy landscape with tuning parameters. (Temperature, pressure, surface specularity, magnetic field)

Levitin LV, Bennett RG, Casey A, Cowan B, Saunders J, Drung D, Schurig T, Parpia JM. *Phase diagram of the topological superfluid* ³*He confined in a nanoscale slab geometry.* Science. **340**, 6134,841-444 (2013). doi:10.1126/science.1233621

Engineer phase landscape through confinement

QUEST DMC

Nanofluidic sample containers and SQUID NMR

Andrew Casey, SQMS Quantum for Science, 22/03/24

QUEST DMC

Observations of AB transition from supercooled A phase

QUEST DMC

Collection of statistics: lifetime scales with volume

QUEST DMC

Temperature dependence of the lifetime at 5.5 bar

QUEST DMC

"Cosmological" simulations of 3He

Geant4 modelling of ND2

ND2 in Geant4

- Modelled as 42 separate active volumes
- Github repo for ND2: <u>https://github.com/QUEST-DMC/QUEST-ND2-Si</u> <u>mulation.git</u> (feel free to use/ask for help getting set up)
- One singular volume of helium 3 10mmx10mmx0.007mm

9

Boulby Radioassays

Res	ults		Acti	vity [mBq/kg]				
	Mass [g]	Upper ²³⁸ U	Lower ²³⁸ U	²¹⁰ Pb	Upper ²³² Th	Lower ²³² Th	⁴⁰ K	
Stainless	544.2	16 ±8	2.5 ± 0.9	82.2 ± 27.2	3.1 ± 1.2	39.4 ± 0.9	<6.2	
Brass	107.0	< 7.6	4 ± 1	14985.8 ± 354.7	< 1	< 1.1	< 7.3	
Silver sinters	37.1	< 90	< 36	430 ± 320	< 27	< 28	< 385	
Stycast	131.5	< <mark>1</mark> 0.5	<9.5	<14.9	<12.9	<6.2	<122.2	
GRP	106.9	5684.2 ± 1029.8	7464 ± 116	x	7844.5 ± 155.9	7353.6 ± 100.8	4904.7 ± 565.3	
Macor	43.2	x	955.3 ± 30.3	x	386.1 ± 60.4	503.5 ± 23.8	2333058.8 ± 4132.4	
		Lower ²³	³⁸ U	Lower ²³²	⁻ Th ⁴⁰	K		
Boulby		955.3 ± 30.3		503.5 ± 23.8 2		333058.8 ± 4132.4		
EXO-200		1459 ± 171		6519 ± 5		<2105		

Boulby Radioassays

Simulation of decays, radiopurity screening (Boulby, database)

Material	Up 238 U	Lower ²³⁸ U	$^{210}\mathrm{Pb}$	Upper 232 Th	Lower 232 Th	$^{235}\mathrm{U}$	^{137}Cs	$^{40}\mathrm{K}$	⁶⁰ Co	$^{54}\mathrm{Mn}$
Concrete	1.6E + 05	1.5E + 04	1.0E + 07	7.6E + 03	7.6E + 03	7.2E + 03	8.0E + 02	4.2E + 04	7.0E + 02	0.0E + 00
Aluminium	8.3E + 03	1.5E + 01	7.1E + 01	3.6E + 02	3.3E + 02	6.0E + 01	9.4E-01	3.1E + 00	$1.1E{+}00$	0.0E + 00
Superinsulation	6.8E + 02	2.0E + 02	3.9E + 03	2.0E + 02	2.0E + 02	$4.9E{+}00$	0.0E + 00	3.5E + 03	4.0E + 02	0.0E + 00
Stainless Steel	1.6E + 01	2.5E + 00	8.2E + 01	3.1E + 00	3.9E + 00	1.2E-01	2.0E + 00	6.2E + 00	5.2E + 00	1.7E + 00
Steel	1.2E + 01	1.2E + 01	1.2E + 04	4.9E + 00	4.9E + 00	3.0E + 00	2.0E + 00	3.4E + 01	$3.0E{+}01$	1.0E + 00
Araldite	3.60E + 00	4.80E + 00	1.45E + 01	3.40E + 00	2.20E + 00	2.60E-02	2.00E + 00	2.55E + 01	8.00E + 00	0.00E + 00
Stycast	1.05E+01	9.50E + 00	1.49E + 01	1.28E + 01	6.20E + 00	7.62E-02	2.00E+00	1.22E+02	$1.00\mathrm{E}{+}01$	0.00E + 00

QUEST DMC

Dark Matter search ULANC cryostat modelling

Background	Events/cell/day [all energies]
Cosmic rays	162.4
Radiogenic	32.8
PP neutrino	0.01
CN neutrino	0.0003

Cosmic ray detector around the target (90% veto efficiency).

Even better – go underground! UKRI preliminary infrastructure bid

Superfluid ³He as a Dark Matter target

- Collision WIMP ³He atom (mass 3 versus argon 39.948, xenon -131.293) – Heat as quasiparticle excitations
- Light from de-excitation, threshold for ionization is ~ 20 eV

QUEST DMC

ULTIMA: D.I. Bradley, et al., Nucl. Instrum. Methods A 370, 141 (1996); C.B. Winkelmann, et al., Nucl. Instrum. Methods A 559, 384 (2006); C.B. Winkelmann, et al., Nucl. Instrum. Methods A 574, 264 (2007).

⁴He target HeRald: S. A. Hertel, A. Biekert, J. Lin, V. Velan, and D. N. McKinsey Phys. Rev. D **100**, 092007 (2019)

Ionisation energy channel

- Superconducting devices:
- TES, Nanowires, mKIDs
- SiPMs (developed for Darkside) normally operated at LN2 consists of matrix of single photon avalanche diodes. High gain and single photo-electron resolution.
- In the first instance use as Veto rather than measure energy partition fraction.

QUEST

Test of SiPMs at 4K

Bolometer for quasiparticle detection

What mass range are we searching for?

Andrew Casey, SQMS Quantum for Science, 22/03/24

Optimising beam/wire geometry for and both He and SQUID response

Long nanomechanical resonators with circular cross-section, D. Zmeev et al. arXiv:2311.02452 (2023)

Quantum Enhanced Superfluid Technologies for Dark Matter and Cosmology

QUEST DMC

SQUID readout of nanowire

2-stage SQUID amplifier (PTB) IEEE Trans. Appl. Supercond. 17 (2007)

Vacuum characterisation of SQUID nanowire readout. 315 nm wire, 8.5 mT, 4.2 K

QUEST DMC

Optimising beam/wire geometry for and both He and SQUID response

Spin dependent sensitivity projection for:

• 5 x 0.3 cm³ cells

QUEST DMC

• 6 month run with 50% duty cycle

Systematics: background rate, energy scale and galactic escape velocity.

Future Prospects: ULT Underground

UltraDark: Sub mK Cryo-free, low radiogenic background, shielded low vibration underground laboratory for high coherence quantum phenomena and rare event searches

Quantum Enhanced Superfluid Technologies for Dark Matter and Cosmology

QUEST

Andreev Scattering

- P wave superfluid, Retroreflection, reverses velocity but not momentum (Fermi Momentum)
- When the superfluid is in motion (around beam), canting of the dispersion curve results in a strong damping term.

