Simulating interactions between a qubit and a resonant two-level system bath

Yaniv J. Rosen, Yujin Cho, Dipti Jasrasaria, Keith G. Ray, Daniel M. Tennant, Vincenzo Lordi, and Jonathan L DuBois

LLNL-PRES-2000031 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Testbed activities interface with a broad range of facilities and expertise at the lab

HPC & Computational Materials Science

Photon Science & Systems Engineering

Design, fabrication, characterization and control of superconducting quantum systems

Sensing & Detection

Advanced Manufacturing Lab

Center for Micro- and Nanotechnology

Quantum Design and Integration Testbed

- Provides whitebox access to
 - Quantum processing platforms with state-of-the-art performance
 - Quantum device and materials characterization
- Supports ~15 teams and ~80 collaborators
 - DOE-SC, and NNSA sponsored projects including
 - NISQ Algorithm research and hardware codesign
 - Identification & amelioration of materials source of decoherence.
 - Quantum / classical control integration
 - Quantum optimal control and characterization

Measurement stack at LLNL

- Co-design at LLNL
 - Algorithm requirements
 - Hardware capabilities
 - Algorithm informed hardware

Measurement stack at LLNL

- Co-design at LLNL
 - Algorithm requirements
 - Hardware capabilities
 - Algorithm informed hardware

Hardware expertise for unique quantum application requirements

- On-chip topological-based nonreciprocal devices meet scalability requirements
- Increasing readout fidelity while decrease calibration time using Hidden Markov Models
- Developing RF photonic control interface
- Quantum sensing to enable large dynamic range computing gates

Digital-to-analog

Algorithms

Signal chain

Quantum Classical

Interface

LLNL-PRES-2000031 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Beck et al. In Prep (2024)

Whitebox access is a minimum requirement for codesign

		T1 (µsec)		
Computer	Qubit Count	Min	Max	Ave
IBM Q System One	20	38.2	132.9	73.9
Rigetti 19Q Acorn	19	8.2	31	20.3

8

Large scatter in relaxation times

9

Google: PRL 121, 090502 (2018)

- Unknown e-field coupling
- Unknown strain-field coupling
- Random fluctuations cause dropouts ٠

TLS Hamiltonian:

$$H = \frac{1}{2} \begin{bmatrix} \Delta & \Delta_0 \\ \Delta_0 & -\Delta \end{bmatrix} \qquad \qquad \mathcal{E}_{TLS} = \sqrt{\Delta'^2 + {\Delta_0}^2}$$

W. A. Phillips, Reports on Progress in Physics 50, 1657 (1999) P. W. Anderson et. al, *Philosophical Magazine*, *25*, 1 (1972)

LLNL-PRES-2000031

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DEAC52-07NA27344. Lawrence Livermore National Security, LLC

TLS Hamiltonian:

$$H = \frac{1}{2} \begin{bmatrix} \Delta & \Delta_0 \\ \Delta_0 & -\Delta \end{bmatrix} + H_{int} \qquad \mathcal{E}_{TLS} = \sqrt{\Delta'^2 + \Delta_0^2}$$
$$H_{int} = \left| \frac{\Delta}{E} \sigma_z + \frac{\Delta_0}{E} \sigma_x \right| \vec{p} \cdot \vec{F} + \left| \frac{\Delta}{E} \sigma_z + \frac{\Delta_0}{E} \sigma_x \right| \gamma e$$

W. A. Phillips, Reports on Progress in Physics 50, 1657 (1999) P. W. Anderson et. al, *Philosophical Magazine*, *25*, 1 (1972)

LLNL-PRES-2000031

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

TLS Potential Energy

TLS Hamiltonian:

$$H = \frac{1}{2} \begin{bmatrix} \Delta & \Delta_{0} \\ \Delta_{0} & -L \end{bmatrix} \begin{bmatrix} \text{Electric field} \\ \text{coupling} \end{bmatrix}_{LS} = \sqrt{\begin{array}{c} \text{Strain field} \\ \text{coupling} \end{bmatrix}}$$
$$H_{int} = \left| \frac{\Delta}{E} \sigma_{z} + \frac{\Delta_{0}}{E} \sigma_{x} \right| \vec{p} \cdot \vec{F} + \left| \frac{\Delta}{E} \sigma_{z} + \frac{\Delta_{0}}{E} \sigma_{x} \right| \gamma e$$

W. A. Phillips, Reports on Progress in Physics 50, 1657 (1999) P. W. Anderson et. al, *Philosophical Magazine*, *25*, 1 (1972)

LLNL-PRES-2000031

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC T_1 relaxation:

- TLS excited by a qubit photon
- TLS relaxes by emitting a phonon.

Spectroscopically imaging TLS using low capacitor-volume resonators

LLNL-PRES-2000031 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-ACS2-07NA27341. Lawrence Livermore National Security, LLC

$|L\rangle$

TLS Potential Energy

TLS Hamiltonian:

$$H = \frac{1}{2} \begin{bmatrix} \Delta & \Delta_{0} \\ \Delta_{0} & -\Delta_{0} \end{bmatrix}$$
 Electric field
coupling $LS = \sqrt{1}$ Strain field
coupling $H_{int} = \left| \frac{\Delta}{E} \sigma_{z} + \frac{\Delta_{0}}{E} \sigma_{x} \right| \vec{p} \cdot \vec{F} + \left| \frac{\Delta}{E} \sigma_{z} + \frac{\Delta_{0}}{E} \sigma_{x} \right| \gamma e$

W. A. Phillips, Reports on Progress in Physics 50, 1657 (1999) P. W. Anderson et. al, *Philosophical Magazine*, *25*, 1 (1972)

LLNL-PRES-2000031

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC T_1 relaxation:

- TLS excited by a qubit photon
- TLS relaxes by emitting a phonon.

TLS locations

Chemical Residues And Particles Couple to E-Fields

Rep. Prog. Phys. 82, 124501 (2019).

Imperfect Dielectrics:

microstrips, capacitors, and crossovers

a-Al₂O₃ Josephson Junction Barrier: possibly OH⁻ defects

Surface Oxides:

e.g., native oxide on the surfaces of SCs and substrates

Step 1: Model electric fields of a device

Step 2: Place one million TLS

Step 2: Place one million TLS -> select 200 with highest couple

Full Lindblad Simulation

- Discard Hilbert space with > 1 photon
 - initialized qubit with 1 photon
 - Only include loss due to TLS-phonon coupling
- Simulation uses 200 TLSs

$$- \Omega_{TLSi} = \frac{\vec{p} \cdot \vec{F}_i}{\hbar} \frac{\Delta_0^i}{\hbar \omega}, \text{ where } |\vec{p}| \text{ is adjustable} \\ - T_{1,TLSi} = \frac{T_{1,min}}{(\Delta_0^i)^2}, \text{ where } T_{1,min} \text{ is adjustable}$$

 $|g\rangle$ $|q\rangle$ $|TLS1\rangle$ $|TLS2\rangle$ $|TLSN\rangle$

$$\widehat{H} = \hbar \begin{pmatrix} 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & \omega_q & \Omega_{TLS1} & \Omega_{TLS2} & \dots & \Omega_{TLSN} \\ 0 & \Omega_{TLS1} & \omega_{TLS1} & 0 & \dots & 0 \\ 0 & \Omega_{TLS2} & 0 & \omega_{TLS2} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \Omega_{TLSN} & 0 & 0 & \dots & \omega_{TLSN} \end{pmatrix}$$

$$L_{i} = \begin{pmatrix} 0 & 0 & \dots & 1/\sqrt{T_{1,TLSi}} & \dots & 0 \\ 0 & 0 & \dots & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & \dots & 0 \end{pmatrix}$$

arXiv:2211.08535

~

High T₁ with occasional dropouts for different TLS configurations

Qubit dynamics dominated by between 1 and 150 TLS

Dropouts dominated by high E-field, not coupling strength

LLNL-PRES-2000031
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Simulating the standard TLS model:

- Reproduced T₁ dropouts
- Dropout indicator is E-Field, not coupling strength
- Put bounds on dipole moment and T_{1,min}

Quantum Sci. Technol. 8 045023 (2023)

Supplemental

