

Characterisation of a 3D aluminium cavity for the QSHS experiments

Joshoua Condicion Esmenda¹, Sam Furness¹, Edward Laird¹, Paul Smith², Ed Daw² and Yuri A. Pashkin¹

¹ Lancaster University

² The University of Sheffield

Al cylindrical cavity drawing

Material: Al grade 6061 Chemical composition (%): Mg 0.8 – 1.2; Si 0.4 – 0.8; Cu 0.15 – 0.4

Al cylindrical cavity with HTS coating

Courtesy of Dahno Ahn, CAPP IBS, Korea

Cylindrical cavity resonant modes

 X_{mn} and X'_{mn} are the zeroes of the Bessel functions of the first and second kind ε is the relative permittivity of the cavity filling μ is the relative permeability of the cavity filling

Nodal indices:

m – the number of nodal diameters in the circular degree of freedom

n – the number of nodal circles in the circular degree of freedom

p- the number of nodal planes along the length of the cavity

Resonant modes

Equilibration time of superconducting aluminium

The heat equation: $\frac{\partial T}{\partial t} = \alpha \quad T$ $\alpha = \frac{\kappa}{\rho C_p}$ is the thermal diffusivity coefficient κ is the thermal conductivity ρ is the mass density C_p is the specific heat capacity

The solution to the above differential equation has a term $e^{-\frac{\tau}{t}}$, where $\tau \sim \frac{L^2}{t}$

Assume $L = 10^{-1}$ m

Just at *T*c (Pobell's book) $C_p = 2 \times 10^{-1} \text{ J/kg K}$ $\kappa = 5 \times 10^2 \text{ W/Km}$ ρ = 2700 kgm⁻³ $\rightarrow \tau \sim 10^{-2}$ s

Plausible combination at 100 mK $C_p = 10^{-6} \text{ J/kg K}$ (Sahling, Abens 2001) $\kappa = 10^{-3}$ W/Km (Pobell's book) $\rho = 2700 \text{ kgm}^{-3}$ $\rightarrow \tau \sim 3 \times 10^{-2} \text{ s}$

Cavity holders

Eight 1 cm thick clamps consisting of two brackets each 1 mm gap in between the top and bottom brackets

Al cavity attached to the MXC plate

All measurements performed with minimal antenna insertion

Al cavity attached to the MXC plate

All measurements performed with the minimal antenna insertion

Copper plate to fix the coax lines

Collet mechanisms to hold the ends of coax lines

Wideband scan at room T

Resonance frequencies obtained from COMSOL modelling

Before and after pumping at room T

Note: Baselines for each curve were adjusted to be equal for presentation

Lowest three modes at base T

Splitting of higher deg. modes

6th mode: *Q* = 3,739,055 at -15 dBm

7th mode: *Q* = 560,843 at -15 dBm

Q vs T

 Δf vs T

Summary

 \checkmark Al cavity characterised in a wide temperature range, $Q \sim 20$ million

 \checkmark Sharp changes of in Q and ω_0 observed at about T_c

 $\checkmark Q$ vs T dependence dominated by BSC and TLS losses

✓ Frequency shift caused by changes of the total inductance of the cavity