Search for pair production of higgsinos in events with two Higgs bosons and missing transverse momentum in $\sqrt{s} = 13$ TeV pp collisions at the ATLAS experiment

Michael Hank

University of Pennsylvania

February 13, 2024

Search for higgsinos

- 1 Introduction and Theory
- 2 Low-mass Channel
- 3 High-mass Channel
- 4 Results

The Triumph of the Standard Model

- The Standard Model (SM) provides an excellent description of many phenomena
 - 17 particles (+anti-particles)
 - 3 fundamental forces (excluding gravity)
- Withstood numerous tests
- Astonishing accuracy

Image credit: Symmetry Magazine.

Breaking the Standard Model

- However, the SM suffers from several problems
 - Requires **fine-tuning** to explain the Higgs boson mass (hierarchy problem)
 - Does not account for dark matter nor dark energy
 - Does **not** explain dominance of matter over antimatter (baryon asymmetry)
 - Does not explain neutrino masses

Image credit: NASA/WMAP Science Team.

The Hierarchy Problem

- $\bullet~{\rm Observed}~{\rm Higgs}~{\rm mass}~{\rm is}~125~{\rm GeV}=m_{\rm h}\approx m_{\rm bare}+m_{\rm correc}$
- Fermions (in particular top quark) contribute to m_{correc}
- $\Delta m_{\rm fromtop} = O(\Lambda_{\rm cutoff}) \approx 10^{19} {\rm GeV}$
- To get observed 125 GeV, need suspiciously neat cancellation
 - In principle, m_{bare} should be free parameter

Higgs self-energy top quark loop.

Supersymmetry

- Theory of supersymmetry (SUSY) can solve this
- Introduce a bosonic partner for every fermion (and vice versa)
- Corrections similar in magnitude but opposite sign
- $\Delta m_{\text{toploop}} + \Delta m_{\text{stoploop}} \approx 0$

Higgs self-energy stop quark loop.

- Similar considerations require other SUSY particles
- Bonus: Lightest supersymmetric particle (LSP) could be dark matter!

- SUSY requires separate Higgs doublets for up-type, down-type quarks
- 3 degrees of freedom provide masses for W^{\pm} , Z
 - 5 Higgs bosons: h, H, A, H^+ , and H^-
 - Superpartners of Higgs called "higgsinos"
- Higgsinos mix with binos and winos
 - 4 neutralinos: $\tilde{\chi}^0_1$, $\tilde{\chi}^0_2$, $\tilde{\chi}^0_3$, $\tilde{\chi}^0_4$
 - 2 charginos: $\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2^{\pm}$

• To obtain the correct Higgs vacuum expectation values, need

$${m_{\rm Z}^2\over 2}pprox -\mu^2 - m_{H_u}^2 - {
m loop~corrections}$$

where μ is the higgsino mass term and m_{H_u} is SUSY-breaking term

- $m_{\rm Z} = 91.2 \,\,{\rm GeV}$
- For this cancellation to be natural, terms must be of the order of $m_{\rm Z}$
 - Higgsinos predicted to be relatively light

The Large Hadron Collider

- The Large Hadron Colldier (LHC) is currently the largest particle accelerator
 - 27 km circumference
 - 1 billion proton-proton collisions/second
 - 13 TeV collision energy

Image credit: Maximilien Brice, CERN

The ATLAS Detector

- General purpose particle detector
- Has a series of layers to measure different particles

- Look for gauge-mediated supersymmetry breaking (GMSB) model
 - LSP is nearly massless gravitino
- Target higgsino-dominated neutralino as NLSP
- Most common predicted decays are $\tilde{\chi}_1^0 \to h \tilde{G}$ and $\tilde{\chi}_1^0 \to Z \tilde{G}$
 - Target the Higgs decay channel
- $\mathcal{B}(h \rightarrow b\bar{b}) \approx 58\%$
 - Look for $hh \to b \bar{b} b \bar{b} + E_{\rm T}^{\rm miss}$

Prior Results

- Previous results use 2015-2016 data
 - Small excess at 275 GeV
- Split into two channels
 - Low-mass and high-mass
- We made many improvements, including:
 - Roughly 5 times the stats (2015-2018)
 - Improved jet reconstruction and *b*-tagging
 - Implementing a BDT for the high-mass channel
 - Significant reoptimization

Exclusion limits on higgsino pair production using 2015-2016 data. Figure from [2].

- Jets are streams of particles from hadronization of quarks and gluons
- *b*-jets are jets tagged as containing bottom quarks
 - Optimal working point for this analysis has 77% efficiency
- $E_{\rm T}^{\rm miss}$ is the negative vector sum of all objects' $p_{\rm T}$
 - "Missing energy" of the event
- $m_{\rm eff}$ is the $E_{\rm T}^{\rm miss}$ plus the sum of $p_{\rm T}$ of jets from Higgs boson decays

Low-mass Channel

Run: 350923 Event: 357202011 2018-05-23 01:23:14 CEST

- \bullet For low higgsino masses, gravitinos not energetic enough for $E_{\rm T}^{\rm miss}$ trigger
- Instead, we use a combination of triggers targeting 2 b-jets plus
 - High $p_{\rm T}$ jet for initial state radiation (ISR)
 - High H_T ($\sum_{\text{jets}} p_T$)
 - 2 other jets
- Different triggers require each year to be treated separately

Higgs Boson Reconstruction

- Each Higgs boson decays to 2 b-jets
 - Select 4 b-jets with highest p_{T}
 - If fewer than 4 exist, select remainder randomly
- 3 ways to pair 4 jets
 - Pair such that $\max(\Delta R_{jj}(h1), \Delta R_{jj}(h2))$ is minimized

- Want to reduce background from $t\bar{t}$
- **1** Veto events with leptons

2 Top consistency
$$X_{Wt} = \sqrt{\left(\frac{m_{jj}-m_W}{0.1 \cdot m_{jj}}\right)^2 + \left(\frac{m_{jjb}-m_t}{0.1 \cdot m_{jjb}}\right)^2}$$

- Construct ${\it W}$ candidate using two jets
- Construct top candidate using two W jets plus one other jet
- Events with $X_{Wt} < 1.8$ for any combination vetoed

• Regions defined using the masses of the reconstructed Higgs bosons

• Signal:
$$\sqrt{(rac{m_{h1}-120}{0.1m_{h1}})^2 + (rac{m_{h2}-110}{0.1m_{h2}})^2} < 1.6$$

• Regions defined using the masses of the reconstructed Higgs bosons

• Signal:
$$\sqrt{(\frac{m_{h1}-120}{0.1m_{h1}})^2 + (\frac{m_{h2}-110}{0.1m_{h2}})^2} < 1.6$$

• Validation: $\sqrt{(m_{h1} - 120 * 1.03)^2 + (m_{h2} - 110 * 1.03)^2} < 30 \text{ GeV}$

• Regions defined using the masses of the reconstructed Higgs bosons

• Signal:
$$\sqrt{(\frac{m_{h1}-120}{0.1m_{h1}})^2 + (\frac{m_{h2}-110}{0.1m_{h2}})^2} < 1.6$$

- Validation: $\sqrt{(m_{h1} 120 * 1.03)^2 + (m_{h2} 110 * 1.03)^2} < 30 \text{ GeV}$
- Control: $\sqrt{(m_{h1} 120 * 1.05)^2 + (m_{h2} 110 * 1.05)^2} < 55 \text{ GeV}$

Michael Hank (University of Pennsylvania)

- Regions defined using the masses of the reconstructed Higgs bosons
- Signal: $\sqrt{(\frac{m_{h1}-120}{0.1m_{h1}})^2 + (\frac{m_{h2}-110}{0.1m_{h2}})^2} < 1.6$
- Validation: $\sqrt{(m_{h1} 120 * 1.03)^2 + (m_{h2} 110 * 1.03)^2} < 30 \text{ GeV}$
- Control: $\sqrt{(m_{h1} 120 * 1.05)^2 + (m_{h2} 110 * 1.05)^2} < 55 \text{ GeV}$
- Each is split into a 2b sample (=2 *b*-jets) and a 4b (\geq 4 *b*-jets) sample

Background Estimation

- Background mainly QCD multijet
 - Large cross section
 - Large cross section theory uncertainty
- Avoid these problems by using a **purely data-driven** method called the ABCD method

Selected fundamental QCD multijet processes.

 We want to estimate background in ≥4b signal region "D"

- We want to estimate background in ≥4b signal region "D"
- In each region, make 2b and ≥4b sample
 - 2b has low signal contamination
 - Similar backgrounds to 4b

- We want to estimate background in ≥4b signal region "D"
- In each region, make 2b and ≥4b sample
 - 2b has low signal contamination
 - Similar backgrounds to 4b

• Transfer factor
$$\mu_{CR} = \frac{N_{4b}^{CR}}{N_{2b}^{CR}} (=B/A)$$

•
$$N_{4b,bkg}^{SR} = \mu_{CR} N_{2b}^{SR}$$
 (D=CB/A)

- Baseline ABCD method only gives us event counts, not distributions
- We bin our data in $E_{\rm T}^{\rm miss}$ and $m_{\rm eff}$
- Train a Boosted Decision Tree (BDT) to reweight kinematics
 - Train using 2b/4b CRs
 - Apply to 2b SR
- At each node, BDT splits events into 2 bins
 - Maximize 2b/4b difference
 - End up with many bins
 - Instead of using to discriminate, calculate weight to make 2b match 4b
- Use large set of 51 variables

Reweighting Validation

- CR-derived weights applied in VR
- Excellent agreement

Comparison of 2017 data in the VR.

- Discovery: Single-bins
 - Optimized for 150 GeV higgsinos: $\mathit{E}_{\mathrm{T}}^{\mathrm{miss}}$ >20, $\mathit{m}_{\mathrm{eff}}$ >560 GeV
 - Optimized for 300 GeV higgsinos: $E_{\rm T}^{\rm miss}$ ${>}150,~m_{\rm eff}$ ${>}340$ GeV
- Exclusions: 2-dimensional fit
 - $E_{\rm T}^{\rm miss}$: {0,20,40,60,80,100,120,140,160,180,200,13000} GeV
 - $m_{\rm eff}$: {160,200,260,340,440,560,700,860,13000} GeV

Systematic Uncertainties

- Three systematic uncertainties on the background estimate
 - 1 Non-closure uncertainty
 - Reweighting in CR is imperfect
 - Set bin-by-bin fractional difference between 4b CR and reweighted 2b CR as shape systematic
 - 2 Transfer shape uncertainty
 - $\bullet~$ Validity of weight extrapolation from CR ${\rightarrow} SR$
 - Re-train BDT in VR, take difference between predictions
 - 3 Transfer normalization uncertainty
 - $\bullet~$ Change in 2b/4b ratio from CR $\!\!\!\!\rightarrow \!\!\!\!SR$

Michael Hank (University of Pennsylvania)

Search for higgsinos

Signal Region Yields

- Largest deviation in final ($E_{\rm T}^{\rm miss}>200$ GeV, $m_{\rm eff}>860$ GeV) 2017 bin
 - 6 observed vs. 1.51 ± 0.35 predicted events (2.6 σ local)
- Large number of bins means deviations expected; VR modeling shows good agreement

High-mass Channel

- High-mass higgsino decays leave significant E^{miss}_T in the detector → Use the E^{miss}_T trigger!
- $\bullet~{\rm Trigger}$ fully efficient for $E_{\rm T}^{\rm miss}>200$ GeV
 - Derive scale factors to correct MC for 150 GeV < E^{miss}_T <200 GeV

Higgsino decay vertex

Object Definitions

- Need to select *b*-jets and pair into Higgs bosons
 - Allow 3b events by treating untagged jet as b-jet
 - Pair same way as low-mass
- $\Delta \phi^{4j}_{\min}$ is the minimum angle between $E_{\rm T}^{\rm miss}$ and any of the 4 leading jets
 - Useful for rejecting fake $E_{\mathsf{T}}^{\mathsf{miss}}$ from jet mismeasurement
- m^{b-jets}_{T,min} is the minimum transverse mass of E^{miss}_T and the 3 leading b-jets
- M_J^Σ is the scalar sum of large-radius jet masses

- Preselections:
 - $E_{\rm T}^{\rm miss}>150~{\rm GeV}$
 - \geq 3 *b*-jets, 4-7 total jets
 - $\Delta \phi_{\min}^{4j} > 0.4$
 - Veto leptons
- Train a BDT to distinguish signal from background
 - Inputs: N_{jets} , $N_{b\text{-jets}}$, H_{T} , E_{T}^{miss} , E_{T}^{miss} significance, $m_{T,\min}^{b\text{-jets}}$, M_{J}^{Σ} , $m(h_{1})$, $m(h_{2})$, $\Delta R(h_{1})$, $\Delta R(h_{2})$, ΔR_{\min}^{bb}
 - Parameterize with truth higgsino mass

- Define SRs, VRs, and CRs iteratively using BDT scores
 - Define up to 4 SRs by maximizing significance
 - VRs require \geq 25 events, S/B<20%
 - CRs require ${\geq}100$ events, S/B{<}10\%
 - Nb: Separate for each mass point
 - SR_1_M means SR_1 for M GeV higgsino
- Separate VRs/CRs for $t\overline{t}$ and high $m_{\rm T,min}^{b\text{-jets}}$
- Split $t\bar{t}$ CR to measure $t\bar{t}+\geq 1b, t\bar{t}+\geq 1c$

Diagram of high-mass regions.

Background Estimation

- Main backgrounds are $t\bar{t}$, single top, Z+jets, and QCD multijet
- $t\bar{t}$, single top, and Z+ jets are estimated with MC + CRs and SRs
- Z+jets CRs and VRs use 2μ events to model $Z \rightarrow \nu \nu$
 - Treat μ as invisible
- Data-driven estimate for QCD multijet
 - Reweight $\Delta\phi^{4j}_{\rm min} < 0.2$ to $\Delta\phi^{4j}_{\rm min} > 0.4$ using a Neural Network

Uncertainties

- Experimental and modeling uncertainties on signal and background MC
 - Jet energy scale and resolution, jet mass scale, soft $E_{\rm T}^{\rm miss}$ terms, flavor-tagging, pile-up, trigger, luminosity
 - Also on low-mass signals

Michael Hank (University of Pennsylvania)

Search for higgsinos

Signal Region Yields

- Largest excess is 1.9σ (local) in SR_1_1000
 - Excesses in SR_1_900, SR_1_1000, and SR_1_1100 highly correlated

Yields in the signal regions for the high-mass channel

Results

Discovery Regions

- Create model-independent regions to search for excesses
 - Low-mass:
 - SR_LM_150: $E_{\rm T}^{\rm miss} > 20$, $m_{\rm eff} > 560~{\rm GeV}$
 - SR_LM_300: $E_{\rm T}^{\rm miss} > 150$, $m_{\rm eff} > 340~{\rm GeV}$
 - High-mass: Using SR_1 from 250, 500, and 1000 GeV
- Excellent precision on low-mass backgrounds
- Mild excesses (< 2σ local)

Signal channel	Nobs	N _{pred}	$\langle \epsilon \sigma \rangle_{\rm obs}^{95}$ [fb]	$S_{\rm obs}^{95}$	$S_{\rm exp}^{95}$	p(s=0)
SR_1_250	2	1.8 ± 1.0	0.04	6.2	$5.9^{+1.7}_{-0.9}$	0.48 (0.05)
SR_1_500	2	0.58 ± 0.30	0.04	5.5	$4.0^{+1.7}_{-0.6}$	0.18 (0.92)
SR_1_1000	3	0.60 ± 0.31	0.05	6.7	$4.3^{+0.9}_{-0.9}$	0.03 (1.9)
SR_LM_150	1790	1860 ± 50	0.73	92	127^{+48}_{-34}	0.5 (0.00)
SR_LM_300	97	77.0 ± 5.3	0.31	39	22^{+9}_{-6}	0.03 (1.8)

Exclusion Limits

- Use low-mass channel below 250 GeV, high-mass above
- Exclude up to 940 GeV (≈ 1040 GeV expected)
 - Most sensitive analysis to-date
 - Most stringent constraints from 130-800 GeV

Branching Ratio Limits

Combination Results

- Highly complementary with leptonic and all-hadronic analyses
- Combine with other analyses to achieve strong exclusion across the BR plane

- Presented a search for higgsinos decaying to Higgs bosons and gravitinos
- Used two complementary channels to target low and high higgsino masses
- Improved significantly over previous analyses, placing strong constraints on GMSB SUSY models

Thank you for listening!

- 1 ATLAS Collaboration, "Search for pair production of higgsinos in events with two Higgs bosons and missing transverse momentum in $\sqrt{s} = 13$ TeV pp collisions at the ATLAS experiment," submitted to PRD, [arXiv:2401.14922 [hep-ex]].
- **2** ATLAS Collaboration, "Search for pair production of higgsinos in final states with at least three *b*-tagged jets in $\sqrt{s} = 13$ TeV *pp* collisions using the ATLAS detector," Phys. Rev. D **98**, no.9, 092002 (2018) doi:10.1103/PhysRevD.98.092002 [arXiv:1806.04030 [hep-ex]].
- 3 ATLAS Collaboration, "Run 2 results of searches for charginos and neutralinos at the ATLAS experiment using statistical combination," ATLAS-CONF-2023-046 (2023). (preliminary)
- **4** CMS Collaboration, "Search for higgsinos decaying to two Higgs bosons and missing transverse momentum in proton-proton collisions at $\sqrt{s} = 13$ TeV," JHEP **05** 014 (2022) doi:10.1007/JHEP05(2022)014 [arxiv:2201.04206 [hep-ex]].

Backup

- Need to decorrelate scale factors for each trigger
- Create orthogonal offline selections:
 - If leading jet *p*[⊤] above threshold, use 2b1j trigger
 - 2 Else, if H_T above threshold, use $2bH_T$ trigger
 - 3 Else, use 2b2j trigger

Category	Year	Online selections	Offline selections			
Low-mass channel						
2 <i>b</i> 1j	2016	1 jet ($p_T > 100 \text{ GeV}$), 2 <i>b</i> -jets (60% <i>b</i> -jet efficiency, $p_T > 55 \text{ GeV}$)	$p_{T,j1} > 150 \text{GeV}$			
	2017	$1 \text{ jet } (p_T > 150 \text{ GeV}),$	$p_{T,j1} > 350 \text{ GeV}$			
	2018	2 b-jets (70% b-jet efficiency, p _T > 55 GeV)	$p_{T,j1} > 500 \text{ GeV}$			
2017	$H_{\rm T} > 300 {\rm GeV},$	$p_{T,j1} < 350 \text{ GeV}, H_T > 850 \text{ GeV}$				
$20H_{\rm T}$	20H _T 2018	2 b-jets (50% b-jet efficiency, p _T > 55 GeV)	$p_{T, j1} < 500 \text{ GeV}, H_T > 700 \text{ GeV}$			
2 <i>b</i> 2j 20 2 <i>b</i> 2j 20	2016	2 jets ($p_T > 35 \text{ GeV}$),	nm u < 150 GeV			
	2010	2 b-jets (60% b-jet efficiency, pT > 35 GeV)	<i>p</i> _{1,<i>j</i>1} < 150 dev			
	2017	2 jets $(p_T > 35 \text{ GeV})$,	$p_{\mathrm{T},j1} < 350\mathrm{GeV}, H_{\mathrm{T}} < 850\mathrm{GeV}$			
	2017	2 b-jets (40% b-jet efficiency, p _T > 35 GeV)				
	2018	2 jets ($p_T > 35 \text{ GeV}$),				
	2018	2 <i>b</i> -jets (60% <i>b</i> -jet efficiency, $p_T > 35 \text{ GeV}$)	$p_{T,j1} < 500 \text{ GeV}, H_T < 700 \text{ GeV}$			
High-mass channel						
$E_{\mathrm{T}}^{\mathrm{miss}}$	2015	$E_T^{\text{miss}}(\mu \text{ inv.}) > 70 \text{ GeV}$	$E_{\rm T}^{\rm miss} > 150 {\rm GeV}$			
	2016	$E_{T}^{\text{miss}}(\mu \text{ inv.}) > 90 \text{ GeV}$				
	2017	$E_T^{\text{miss}}(\mu \text{ inv.}) > 100 \text{ GeV}$				
	2018	$E_{\rm T}^{\rm miss}(\mu \text{ inv.}) > 110 {\rm GeV}$				

- $\bullet~{\rm Train}$ to reweight from $2b~{\rm CR}{\rightarrow}~4b~{\rm CR}$
- 51 input variables
 - Mass, energy, $p_{\rm T},\,\eta,\,\phi$ of each Higgs boson candidate and Higgs boson candidate jet
 - $\bullet\,$ Mass and $p_{\rm T}$ of the di-Higgs system
 - $N_{\rm jets}$, $E_{\rm T}^{\rm miss}$, a modified X_{Wt}
 - Number of track-jets associated to each Higgs candidate
 - 14 angular variables
- Hyperparameters:
 - Learning rate: 0.3
 - Maximum number of layers: 5
 - Minimum number of events per node: 250
 - Sampling fraction: 0.4
 - Number of trees: 50/75/100 for 2016/2017/2018

- Need statistical uncertainty of BDT-reweighted background
- Use a bootstrap method:
 - **1** Apply random Poisson weights $(\mu = 1)$ to each input event
 - **2** Retrain BDT using weighted events
 - **3** Repeat 100 times (+1 unweighted)
 - 4 Set nominal estimate to median of 100+1 variations
 - 5 Set uncertainty using percentiles of variations, (84%-16%)/2

Low-mass Channel 2016 Systematics

2016 fractional background systematics

Low-mass Channel 2017 Systematics

2017 fractional background systematics

Low-mass Channel 2018 Systematics

2018 fractional background systematics

Low-mass Channel 2016 VR Yields

• Modeling looks good in validation regions

Yields in the 2016 validation region for the low-mass channel.

Low-mass Channel 2017 VR Yields

• Modeling looks good in validation regions

Yields in the 2017 validation region for the low-mass channel.

Low-mass Channel 2018 VR Yields

• Modeling looks good in validation regions

Yields in the 2018 validation region for the low-mass channel.

Low-mass Channel 2016 SR Yields

- Good agreement between observations and background
- Some small excesses (and deficits)

Yields in the 2016 signal region for the low-mass channel.

Low-mass Channel 2017 SR Yields

- Largest deviation in final ($E_{\rm T}^{\rm miss}>200$ GeV, $m_{\rm eff}>860$ GeV) bin
- 6 observed vs. 1.51 \pm 0.35 predicted events (2.6 σ local)

Yields in the 2017 signal region for the low-mass channel.

Low-mass Channel 2018 SR Yields

- Good agreement between observations and background
- Some small excesses (and deficits)

Yields in the 2018 signal region for the low-mass channel.

- Uses $E_{\rm T}^{\rm miss}$ trigger down to 150 GeV
- Only fully efficient for $E_{\rm T}^{\rm miss} > 200~{\rm GeV}$
- Derive SF by comparing data, $t\bar{t}$ with muon trigger
 - ≥ 4 jets, $\geq 2~b\text{-jets}$, $=1~\mu$
 - 6 H_T bins: [0, 250, 300, 400, 600, 800, 999999] GeV
 - Smooth turn-on curves by fitting data and MC each to

$$f(x) = \frac{p_2}{\left[1 + (2^{p_3} - 1)e^{-p_0(x-p_1)}\right]^{\frac{1}{p_3}}}$$

•
$$SF=f_{data}(x)/f_{mc}(x)$$

- Estimated with data-driven technique
- $\bullet~{\rm Replace}~\Delta\phi^{4j}_{\rm min}>0.4$ with $\Delta\phi^{4j}_{\rm min}<0.2$ to get QCD-dominated region
- Subtract non-QCD MC backgrounds from data to get QCD estimate
- \bullet Generate a fake $\Delta\phi^{4j}_{\rm min}$ distribution for use in the BDT using information from dijet MC samples
- Reweight the template with a Neural Network to reproduce correct correlations and normalization

High-mass Channel VR Yields

Modeling looks good in validation regions

Yields in the validation regions for the high-mass channel.

Acceptances for the low-mass (left) and high-mass (right) channels.

Efficiencies for the low-mass (left) and high-mass (right) channels.

Individual Channel Results

• Low-mass more sensitive from 130-200 GeV, high-mass 250 GeV+

Results for the low-mass (left) and high-mass (right) channels.

CMS Results

• Exclude up to 1025 GeV (≈ 950 GeV expected)

CMS results [4]