LMBXFP1 D1-prototype cold mass – test at CERN MTF: HCLMBXF004-KJ000001

Test results – Final Report 28 February 2024

Reporting to WP3 meeting, https://indico.cern.ch/event/1379959/

MBXFP1 At KEK - vertical

MBXFP1 in D1proto cold mass At CERN - horizontal

Gerard Willering Gaëlle Ninet, Raphaël Bouvier, Franco Mangiarotti, Piotr Rogacki, Lucio Fiscarelli

D1-prototype on the SM18 test bench

References: Test report KEK tests: EDMS 2747573 and Indico 1077539 Test plan CERN tests: EDMS 2952771 Test report CERN tests: EDMS 3015584 Acceptance criteria: EDMS 2045899

Test overview

Powering – first cool down

D1-Prototype test at CERN - G. Willering

4

Powering – second cool down

23 – 26 January

- 4 training quenches ٠
- 8 hour ultimate current OK.
- 30 A/s to ultimate
- Nominal current cycle. ٠

Magnetic Measurements Measurements Magnetic 14000 Protection stut Protection stude 30 January to 3 February 2024 Current (A) studies 12000 Protection studies 10000 8000 6000 4000 2000 0 12 12 12 18 0 12 18 0 6 12 18 0 6 18 0 6 12 18 0 18 6 29/Jan 30/Jan 31/Jan 1/Feb 2/Feb 3/Feb Time of day/date

29 January to 2 February

- Magnetic measurement cycles ٠
- Nominal QH protection studies.
- Worst case 2 out of 4 QH protection • studies up to nominal current.

Powering – second cool down

28/02/2023

5 to 12 February

- · Two trips during setup of fast cycles.
- 500 cycles done between 1 kA and 12.11 kA at 50 A/s – continuous cycling for in total ~ 70 hours.
- Verification test ramp to nominal + provoked QH firing.
- Nominal current SPA test
- Ultimate current verification with ramp down.
- Powering tests completed
- Nominal HV tests performed in nominal 1.9 K conditions.

After the 4 training quenches, the magnet powering was stable and reliable.

Training

Magnet training

Event	Temperature	rate		Current		Longitudinal
number	(K)	(A/s)	Туре	(A)	Coil	location
1	1.9	20	Training	11589	U	CS
2	1.9	20	Training	11934	U	CS
3	1.9	20	Training	12042	L	CS
4	1.9	20	Training	12209	U	CS
5	1.9	20	Reached	12310		
6	1.9	20	Training	11466	U	CS
7	1.9	20	Training	11634	L	CS
8	1.9	20	Training	12052	U	CS
9	1.9	20	Training	12132	L	CS
10	1.9	20	Training	12169	U	CS
11	1.9	20	Reached	12310		
12	1.9	20	Training	12436	L	CS
13	1.9	20	Training	12866	L	CS
14	1.9	20	Reached	12716		
15	1.9	12	Training	11010	L	CS
16	1.9	12	Training	11300	L	CS
17	1.9	12	Training	12525	L	CS
18	1.9	12	Training	12220	L	CS
19	1.9	12	Training	12741	L	NCS
20	1.9	12	Training	12680	U	CS
21	1.9	12	Training	13160	L	CS
22	1.9	12	Reached	12110		
23	1.9	12	Training	11267	U	CS
24	1.9	12	Training	11392	L	CS
25	1.9	12	Training	11816	L	CS
26	1.9	12	Training	13120	U	NCS
27	1.9	12	Reached	13231		

Ramn

All training done at 1.9 K, no powering at 4.5 K.

- 3 quenches were needed in the second horizontal cool down to reach nominal current.
- In both the first and second horizontal test, the first two quenches were lower than recorded in the vertical test.
- The training slope up to ultimate current increases throughout the 4 cool downs, but with limited memory.
- The training quenches are mostly in the connection side of the magnet (20 out of 22), distributed over the upper (9) and lower coil (13). There is no sign of a specific weak spot.

28/02/2023

Quench location – CD2

Reconstructed positions

CD2 - Q1 at 11.26 kA Upper coil, connection side 2723 mm from magnetic center

Courtesy Piotr Rogacki

CD2 - Q2 at 11.39 kA Lower coil, connection side 2779 mm from magnetic center

CD2 - Q3 at 11.82 kA Lower coil, connection side 2846 mm from magnetic center

HCLMBXF004-KJ000001_2_QA__Q202401240908_a003(0).tdms

CD2 - Q4 at 13.12 kA Upper coil, non-connection side No longitudinal position possible

28/02/2023

D1-Prototype test at CERN - G.

Voltage during quench

Differential voltage (V_{upper}-V_{lower}) for all 11 quenches in horizontal tests at CERN. Positive voltages are quenches in the upper coil, negative in the lower coil.

Time from quench start to reach the detection threshold of 100 mV for all 11 quenches in horizontal tests at CERN.

Protection studies

MBXFP1 – nominal protection

- Protection studies redone up to ultimate current.
- Data at CERN consistent with data from KEK (thanks to Kento Suzuki for the data)
- The dump at KEK reduces the QI_{from trigger} by about 2 MA²s.
- At CERN the time to reach threshold at ultimate current is ~ 10 ms with 10 ms validation time. This gives a difference between QI_{from quench} vs QI_{from trigger} ~ 2.5 MA²s.

MBXFP1 - protection

Data including 2 out of 4 quench heaters

Data from KEK: Courtesy Kento Suzuki

- Data with 2 out of 4 QH at CERN consistent with that of KEK.
- At nominal current, QI from trigger is 2.8 MA²s higher when only using 2 out of 4 QH, compared to nominal case
- Maximum QI recorded is 30.7 MA²s from trigger. In case of quench, the QI would be about 33.2 MA²s with the used quench detection settings.

Fig. 1. Calculated hot spot temperature as a function of M11Ts for the cable in the D1 magnet.
K. Suzuki, et al. "Quench Protection Heater Study With the 2-m Model Magnet of Beam Separation Dipole for the

HL-LHC Upgrade " IEEE Trans. Appl. Supercond., Vol. 28, No. 3, April 2018

Other tests

MBXF - splice

One inter-coil splice between Vtaps EE123 and EE122. Its resistance is $0.29 \text{ n}\Omega$ and shows linear behavior up to nominal current. (measured in CD 1)

VIEW FROM LE

HV insulation test

Test status

Warm initial: **OK** At 1.9 K, CD1, before powering: **OK** At 1.9 K, CD1, after powering: **OK** At 1.9 K, CD2, before powering: **OK** At 1.9 K, CD2, after powering: **OK** Warm final: **OK**

Test result

Test	(MBXF+QH) to ground at 1300 V R (GΩ)	QH to (MBXF+ground) at 2300 V R (GΩ)
CD1 at 1.9 K, before powering	>32*	>750*
CD1 at 1.9 K, after powering	>21	>450
CD2 at 1.9 K, before powering	> 34	> 310
CD2 at 1.9 K, after powering	>31	>790

*Part of the leakage current is related to the test bench, measurements vary due to varying humidity in the hall.

Table with testlevels from test plan.

Polarity +	Polarity -	Warm initial	1.9 K LHe	Warm Final	lmax [uA]
MBXF, QH	Ground	260	260/800/ 1300	370	10
QH	MBXF, Ground	460	460/1300/ 2300	460	10
Cryogenic Heater	MBXF, QH, Ground		675		70
Π821	Ground		25		2

Resistance at transition SC-NC

Coil resistance measurement during warm up.

Coil	R _{293K} (mΩ)	R _{10K} (mΩ)	RRR
Lower	772.8	3.86	200
Upper	773.2	3.37	229

Magnetic measurements

Powering cycles for MM

- Measurements performed during CD2:
 - Machine cycles
 - Ramp-rate cycles
 - Stretched wire
- Stair-step cycle was performed during CD1

By Lucio Fiscarelli and Piotr Rogacki See also https://indico.cern.ch/event/1360284/

MM: Integral transfer function

Normal TF (Integral)

With stretched wire:

Integral field is **35.188 Tm** at **12.110 A**, +53 units wrt specifications

(the measurement with rotating coils is confirmed by the stretched wire)

By Lucio Fiscarelli and Piotr Rogacki See also <u>https://indico.cern.ch/event/1360284/</u>

MM: Field at injection and nominal

	Current: 790 A		Current: 12110 A	
Quantity	Unit	Value	Unit	Value
I.	А	790	А	12110
Int. field	Tm	2.5562	Tm	35.188
Int. TF	Tm/kA	3.2357	Tm/kA	2.9057

	Current	: 790 A	Current:	12110 A
n	bn	an	bn	an
2	0.45	-1.05	0.27	0.88
3	-22.35	2.09	-5.44	1.95
4	0.16	-0.33	0.05	0.12
5	2.04	-0.12	6.68	-0.19
6	-0.01	0.05	0.05	0.00
7	0.24	0.19	0.35	0.20
8	0.06	0.22	0.04	0.15
9	0.35	0.02	0.76	0.00
10	0.03	0.10	0.04	0.10
11	-0.15	0.05	-0.13	0.07
12	0.01	0.05	0.03	0.03
13	-0.69	0.05	-0.73	0.05
14	0.00	0.00	0.00	0.00
15	-1.11	0.02	-1.18	0.03

By Lucio Fiscarelli and Piotr Rogacki See also <u>https://indico.cern.ch/event/1360284/</u>

Integral b2

Conclusion

MBXFP1 – D1 prototype horizontal test

- First and second cool down completed.
- Training and holding current tests done.
- 500 powering cycles performed, no issues.
- Behavior as demonstrated by KEK tests confirmed for:
 - Instrumentation, Quench Heater, Quench Integral, Splice, Insulation, Magnetic field

Magnet is being shipped to SMI-2 for preparation for the IT-String: it is the first magnet ready for the IT-String.

Appendix

Figure 14: Summary of the quench location analyzed by signals of the quench antennas.

Extract on quench location from KEK test report: EDMS 2747573 and Indico 1077539

D1 nominal position				
	segment	segment		
РСВ	start	end		
13	-5261	-4461	mm	
1	-3920	-3310	mm	
2	-3300	-2690	mm	
3	-2598	-1988	mm	
4	-1978	-1368	mm	
5	-1276	-666	mm	
6	-656	-46	mm	
7	46	656	mm	
8	666	1276	mm	
9	1368	1978	mm	
10	1988	2598	mm	
11	2690	3300	mm	
12	3310	3920	mm	

Position with respect to magnetic center.

Quench 3 to 6: QA shifted by 1866 mm to have prototype antenna QA13 covering the head of the magnet.

D1 position with 1866 mm shift					
	segment	segment			
PCB	start	end			
13	-3395	-2595	mm		
1	-2054	-1444	mm		
2	-1434	-824	mm		
3	-732	-122	mm		
4	-112	498	mm		
5	590	1200	mm		
6	1210	1820	mm		
7	1912	2522	mm		
8	2532	3142	mm		
9	3234	3844	mm		
10	3854	4464	mm		
11	4556	5166	mm		
12	5176	5786	mm		

Position with respect to magnetic center.

Same Quench Antenna system as for MQXF magnets.

28/02/2023

- G.

More precise localization: Work in progress and focus for next cool down.

Exa Mai Quen

m	ple fo	or q	uen	ch 15 (4th quench this cool down)	
n 1	focus	s on	the	pole turn and layer exit.	
ch	I (kA)	Coil	Side		
	11.59	U	CS		
	11.93	U	CS	Azimuthal quench start	
	12.04	L	CS		-50
	12.21	U	CS		
	11.47	U	CS		
	11.63	L	CS		
	12.05	U	CS	Longitudinal quench location as	-100
	12.13	L	CS	identified using the prototype	
	12.17	U	CS	quench antenna within a few	
	12.43	L	CS	em procision Location is	X (mm)
	12.87	L	CS	cili precision. Location is	
	11.01	L	CS	around the red line.	
	11.30	L	CS	Not easy due to a lot of signal	
	12.53		US NOC	from vibrations.	
	12.22	L 	NCS		
	12.74	U	CS CS		2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400
	12.00	L	05		Z (mm) Z loc : 2865 mm
	13.10	L		Thanks to Piotr Rogacki and Vincenzo	di Capua HCLMBXF004-KJ000001_QA_Q202312121607_a005(0).tdms

Reconstructed positions

Quench	l (kA)	Coil	Side
1	11.59	U	CS
2	11.93	U	CS
3	12.04	L	CS
4	12.21	U	CS
5	11.47	U	CS
6	11.63	L	CS
7	12.05	U	CS
8	12.13	L	CS
9	12.17	U	CS
10	12.43	L	CS
11	12.87	L	CS
12	11.01	L	CS
13	11.30	L	CS
14	12.53	L	CS
15	12.22	L	NCS
16	12.74	U	CS
17	12.68	L	CS
18	13.16	L	

Quench	l (kA)	Coil	Side
1	11.59	U	CS
2	11.93	U	CS
3	12.04	L	CS
4	12.21	U	CS
5	11.47	U	CS
6	11.63	L	CS
7	12.05	U	CS
8	12.13	L	CS
9	12.17	U	CS
10	12.43	L	CS
11	12.87	L	CS
12	11.01	L	CS
13	11.30	L	CS
14	12.53	L	CS
15	12.22	L	NCS
16	12.74	U	CS
17	12.68	L	CS
18	13.16	L	

CERN

Quench	l (kA)	Coil	Side
1	11.59	U	CS
2	11.93	U	CS
3	12.04	L	CS
4	12.21	U	CS
5	11.47	U	CS
6	11.63	L	CS
7	12.05	U	CS
8	12.13	L	CS
9	12.17	U	CS
10	12.43	L	CS
11	12.87	L	CS
12	11.01	L	CS
13	11.30	L	CS
14	12.53	L	CS
15	12.22	L	NCS
16	12.74	U	CS
17	12.68	L	CS
18	13.16	L	

Quench	I (kA)	Coil	Side
1	11.59	U	CS
2	11.93	U	CS
3	12.04	L	CS
4	12.21	U	CS
5	11.47	U	CS
6	11.63	L	CS
7	12.05	U	CS
8	12.13	L	CS
9	12.17	U	CS
10	12.43	L	CS
11	12.87	L	CS
12	11.01	L	CS
13	11.30	L	CS
14	12.53	L	CS
15	12.22	L	NCS
16	12.74	U	CS
17	12.68	L	CS
18	13.16	L	

