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Introduction: CMS

CMS detector

• “ Compact Muon Solenoid “

• Cylindrical structure composed of:

➢ Silicon tracker:                                
to track charge particles and 
measure their momentum

➢ Electromagnetic calorimeter

➢ Hadronic calorimeter

➢ Superconducting magnet

▪ 𝐵 = 3.8 𝑇 Ƹ𝑧

➢ Muon chambers
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Introduction: CMS

Phase2 tracker
• Silicon detectors                                          
→ excellent spatial resolution 𝑂(𝜇𝑚)

• Passage of a charged particle:

→ local charge accumulation (cluster)        

→ 3D position (hit)
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Photo: strip detector (Run 1, 2 e 3)

Sketch: Phase2 tracker layoutE. Coradin, 4th MODE workshop, Valencia, 23 September 2024



Tracking in dense environments

Transverse plane vision

Proton-proton collision event revealed by CMS

Hit on the detectors

5

The density will increase even further during the 
High Luminosity LHC!

Reconstructed track

3D vision of an event in the CMS tracker
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Goal

Identifying and reconstructing
tracks is computationally
complex problem

Innovative use of        
Spiking Neural Networks                                 
to complement
pattern recognition

Spiking Neural Network architecture
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Afferents

L0 layer

L1 layer

3D vision of an event in the CMS tracker
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Spiking neural network

• Spiking neural networks: biologically plausible modelling of the behaviour of natural 
neural networks

• Implementing neurons and synapses in specialized hardware

What’s neuromorphic computing

Distinctive features
• Energy efficiency: Operates with minimal power 

• Different computing paradigm: 

• Both processing and memory are governed by the neurons and the synapses

• Event-driven computation

• Natural encoding of temporal information

• But usually harder to train
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Leaky integrate-and-fire neuron (LIF)

• The neuron is modelled with an 
RC circuit 

➢ R → ion dispersion
➢ C →membrane capacitance

• Information encoded in the arrival
time of electrical impulses (Spikes)

T. Masquelier et al., “Competitive STDP-based spike pattern learning”, Neural Computation, may 2009
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LIF neuron

Output spikes

Input spikes
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• Input spike→ Increasing membrane potential

• Membrane potential 𝑉𝑚𝑒𝑚 exceeds threshold T→ Neuron activation 

• Inhibition of neurons belonging to the same layer
→ Competition between neurons→ Specialization

𝒕

𝑻

𝑽𝒎𝒆𝒎

𝒕𝟏 𝒕𝟐 𝒕𝟑
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Input spikes
LIF neuron

Output spikes

Leaky integrate-and-fire neuron (LIF)



Learning algorithm: STDP
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• Arrival time of input spikes (𝒕𝒊𝒏) and activation time of a neuron 𝒕𝒂𝒄𝒕

• If 𝑡𝑖𝑛 < 𝑡𝑎𝑐𝑡→ causal effect → potentiation of the synaptic weight

• If 𝑡𝑖𝑛 > 𝑡𝑎𝑐𝑡→ anti-causal effect → depression of the synaptic weight

Spike timing-dependent plasticity 

• Completely unsupervised learning

• Synaptic weights are adjusted just 
according to the relative time 
between the neuron activation
and the arrival of input spikes

E. Coradin, 4th MODE workshop, Valencia, 23 
September 2024



• Afferents: Fibres that carry 
electrical signals from the 
detector layers to the neural 
network

• Two layers of neurons L0, L1 :

➢ Possibility to eliminate 
connectons

• 20 hyperparameters to be 
optimize!

Network architecture
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Afferents

L0 layer

L1 layer

Inhibition

Inhibition
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• Detection layer→ Afferent

• Reading frequency: 𝑓 = 40 𝑀𝐻𝑧

• Angular reading speed: 𝜔 = 2𝜋 + 𝛿 ∙ 𝑓

12

Simulated event, muon with 𝑝𝑇 = 1 𝐺𝑒𝑉

Information encoding

Sketch of the Phase2 tracker in the transverse plane

• Encoding time: 𝒕 =
𝝋

𝝎

• 𝛿 = 0.7 𝑟𝑎𝑑 re-reading window 
to handle border effects

Signal

Noise
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Simulated event, muon with 𝑝𝑇 = 1 𝐺𝑒𝑉

Information encoding

Signal

Noise

E. Coradin, 4th MODE workshop, Valencia, 23 September 2024

Signal and neuronal response

neurons



3D information encoding

• Restriction to the central area (Barrel)

• r sections: 𝑁𝑟 = 50

• z sections: 𝑁𝑧 = 50
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Sketch: layout of the tracker Barrel for Phase2

E. Coradin, 4th MODE workshop, Valencia, 23 September 2024

3D vision of an event in the CMS tracker

• Afferents:  𝑁𝑎 = 𝑁𝑟 ∙ 𝑁𝑧 = 2500

• Encoding all the information



• 1 particle per event:

➢ Muons: q = −1,  𝑝𝑇 ∈ 1, 3, 10 𝐺𝑒𝑉

➢ Antimuons: q = +1,  𝑝𝑇 ∈ 1, 3, 10 𝐺𝑒𝑉

• Contains some interactions with the tracker
material
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Detail of an event in which the impact 
with the tracker material caused the 
emission of an electron

Datasets

Monte Carlo simulations

Signal

Noise
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• We superimpose a 
Poissonian backround

• Background hits randomly
extracted from the signal
hits

• ഥ𝑁ℎ𝑖𝑡 = 50, 100, 200

• 𝑁ℎ𝑖𝑡
𝑠𝑖𝑔𝑛𝑎𝑙

~10
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Transverse plane projection of an event containing an 
antimuon, 𝑝𝑇 = 1 𝐺𝑒𝑉 with ഥ𝑁ℎ𝑖𝑡 = 200

Datasets

Background 

Signal

Noise
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ഥ𝑁ℎ𝑖𝑡 𝑨−𝟏 𝑨+𝟏 𝑨−𝟑 𝑨+𝟑 𝑨−𝟏𝟎 𝑨+𝟏𝟎 E

50 86.0% 75.7% 98.6% 99.9% 93.5% 96.4% 2.2%

100 70.1% 60.7% 98.4% 98.9% 97.0% 97.6% 2.1%

200 63.9% 49.4% 93.5% 91.6% 97.5% 97.4% 3.9%

• Acceptance 𝐴𝑞,𝑝𝑇 =
#𝐸𝑣𝑒𝑛𝑡𝑠 𝑞,𝑝𝑇 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝐿1 𝑤𝑎𝑠 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑

#𝑇𝑜𝑡𝑎𝑙 𝑒𝑣𝑒𝑛𝑡𝑠 𝑞,𝑝𝑇

• Fake rate 𝐸 =
#𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑒𝑣𝑒𝑛𝑡𝑠 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝐿1 𝑤𝑎𝑠 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑

#𝑇𝑜𝑡𝑎𝑙 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑒𝑣𝑒𝑛𝑡𝑠

✓ Better results in high 𝑝𝑇 patterns

✓ Low fake rate < 5%

х Poor specialization of the 
neurons
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3D model results

Neuron 1 Neuron 7

Particle class Particle class

Neuron acceptance

Neuron fake rate

Layer acceptance

ഥ𝑁ℎ𝑖𝑡
𝑛𝑜𝑖𝑠𝑒 50

ഥ𝑁ℎ𝑖𝑡
𝑛𝑜𝑖𝑠𝑒 100

ഥ𝑁ℎ𝑖𝑡
𝑛𝑜𝑖𝑠𝑒 200
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х Poor neuron specialization

х Multi-track event
management

х Difficult optimization of 
hyperparameters

х Better management of 3D 
information

Successes

✓ The network learns autonomously
to recognize tracks from noise

✓ Acceptance > 90%                                 
for particles with 𝑝𝑇 ≥ 3 𝐺𝑒𝑉

✓ Low false positive rate (<5%)

18

First implementation and proof of work of a Spiking Neural Network 
for the identification of particle trajectories produced in high-energy collisions

Achievements and challenges

Limitations and 
future challenges

E. Coradin, 4th MODE workshop, Valencia, 23 September 2024
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Active fields

Unsupervised delay learning

I. Hammouamri  et al., “Learning Delays in Spiking Neural Networks using 
Dilated Convolutions with Learnable Spacings”, arXiv preprint, 2023

• Synaptic delays are another degree of freedom that we could exploit

• Delay adaptation to different signals→ improve the specialization

E. Coradin, 4th MODE workshop, Valencia, 23 September 2024
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Active fields

Genetic Algorithm

• Genetic algorithms are inspired by natural
selection

• Application for hyperparameters tuning:

➢ Can handle large spaces effectively.

➢ Works well with non-differentiable,
discontinuous, and noisy search 
spaces.

➢ Can avoid getting stuck in local minima, 
unlike some traditional methods. 

E. Coradin, 4th MODE workshop, Valencia, 23 September 2024
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Spiking neural network
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Reference model: Masquelier et al.

• A simple SNN learns to recognize
complex patterns in a noisy
environment

• Poisson noise with embedded
patterns

• Patterns repeat randomly in a 
continuous regime

• Spike-timing-dependent plasticity

• Leaky integrate-and-fire neurons

• Single layer network

Technical features

Achievements

T. Masquelier et al., “Competitive STDP-based spike 
pattern learning”, Neural Computation, may 2009
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• Input pulse at the synapse → Excitatory postsynaptic potential (EPSP)

• 𝜀 𝑡 − 𝑡𝑗 = 𝐾 ∙ 𝑒𝑥𝑝 −
𝑡−𝑡𝑗

𝜏𝑚
− exp −

𝑡−𝑡𝑗

𝜏𝑠
∙ 𝜃 𝑡 − 𝑡𝑗

• 𝝉𝒎: Membrane characteristic time

• 𝝉𝒔: Synapse characteristic time

• K multiplicative constant

• 𝑡𝑗 pulse arrival time
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Excitatory postsynaptic potential
𝑽 (𝒂𝒖)

𝒕 (𝒔)

Leaky integrate-and-fire neuron (LIF)
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• Potential exceeds threshold T→ Neuron activation → output pulse

• 𝜂 𝑡 − 𝑡𝑖 = 𝑇 ∙ 𝐾1 ∙ 𝑒𝑥𝑝 −
𝑡−𝑡𝑖

𝜏𝑚
−𝐾2 ∙ 𝑒𝑥𝑝 −

𝑡−𝑡𝑖

𝜏𝑚
− 𝑒𝑥𝑝 −

𝑡−𝑡𝑖

𝜏𝑠
∙ 𝜃(𝑡 − 𝑡𝑖)

• 𝝉𝒎: Membrane characteristic time

• 𝝉𝒔: Synapse characteristic time

• 𝑲𝟏,𝑲𝟐 multiplicative shape constants

• 𝑡𝑖 activation time
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𝒕 (𝒔)
𝒕 (𝒔)

Membrane potential after the activation
𝑽 (𝒂𝒖)

Leaky integrate-and-fire neuron (LIF)
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• Neuron activates → It inhibits neurons in its layer 
→ Inhibitory postsynaptic potential (IPSP)

• 𝜇 𝑡 − 𝑡𝑘 = −𝛼 ∙ 𝑇 ∙ 𝜀 𝑡 − 𝑡𝑘

• 𝜶 multiplicative intensity constant

Competition among neurons
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Leaky integrate-and-fire neuron (LIF)
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Learning algorithm: STDP

• Completely unsupervised learning

𝒕𝒂𝒄𝒕 − 𝒕𝒊𝒏 (au)
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∆ω =
𝒂+ ∙ 𝑒𝑥𝑝

𝑡𝑎𝑐𝑡 − 𝑡𝑖𝑛
𝝉+

𝑖𝑓 𝑡𝑎𝑐𝑡 ≤ 𝑡𝑖𝑛

−𝒂− ∙ 𝑒𝑥𝑝 −
𝑡𝑎𝑐𝑡 − 𝑡𝑖𝑛

𝝉−
𝑖𝑓 𝑡𝑎𝑐𝑡 > 𝑡𝑖𝑛

• Spike timing-dependent plasticity (STDP):

• Synaptic weights are adjusted only according to 
the arrival time of input spikes (𝒕𝒊𝒏) and the activation time of a neuron 𝒕𝒂𝒄𝒕

• If 𝑡𝑖𝑛 < 𝑡𝑎𝑐𝑡→ casual effect → potentiation of the synaptic weight

• If 𝑡𝑖𝑛 > 𝑡𝑎𝑐𝑡→ anti-causal effect → depression of the synaptic weight

• Parameters:

• 𝜏+, 𝜏− Characteristic times

• 𝑎+, 𝑎− Learning constants

E. Coradin, 4th MODE workshop, Valencia, 23 
September 2024



• Discontinuous signal encoding

• Increase in learning difficulties

• Continuous signal encoding

• Better performance

• Presence of duplicates
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Border effects

E. Coradin, 4th MODE workshop, Valencia, 23 September 2024

With correctionWithout correction

Signal

Noise



• Activation of neurons at signal pulses
• Inactive neurons at noise pulses

The network has learnt 
autonomously to recognize tracks 
from noise
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L0

L1

muon 𝑝𝑇 = 1 𝐺𝑒𝑉antimuon 𝑝𝑇 = 1 𝐺𝑒𝑉

3D model results
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Signal

Noise

Signal and neuronal response



• Possible problems:
➢ Activation during noise events → False positive
➢ Falure to recognize signal track
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L0

L1

3D model results
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