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Executive Summary
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NuRadioOpt will improve both key factors that impact the science output

detection rate of UHE neutrinos

precision to determine the 
neutrino’s direction and energy

→ objective 1: Deep-Learning-Based Trigger

→ objective 2: End-to-End Optimization + 
               Deep Learning Reconstruction 

How:
Using Deep Learning and 
Differential Programming
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In-Ice Radio Detection of Ultra-High-Energy Neutrinos
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500km2

In-Ice Radio Detection of Ultra-High-Energy Neutrinos
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500km2

In-Ice Radio Detection of Ultra-High-Energy Neutrinos
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RNO-G site, Summit Station Greenland, summer 2024
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500km2

▪ Autonomous detector stations
▪ limited data bandwidth and power budget

▪ Construction lasts 7 years limited by logistics!
▪ detector size can’t be increased

→ Only option to accelerate the research field: 
     better detector

In-Ice Radio Detection of Ultra-High-Energy Neutrinos
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Deep-Learning-Based Trigger

8

▪ Data can’t be stored continuously 

▪ Current state of the art: Threshold-based 
trigger

▪ Unavoidable thermal noise fluctuations 
dominate trigger

▪ Thresholds need to be high enough to limit 
trigger rate on thermal noise

neutrino signal
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▪ Huge potential of improvement:
▪ offline analysis: thermal noise can be 

rejected with high efficiency

▪ Neural networks are very good at 
classification tasks

▪ Proof-of-concept study
ARIANNA collab. (… C. Glaser, …) , JINST 2022



Christian Glaser

Option 1: Second Stage Filter
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Suitable network: Single CNN layer

Fits easily on an “old” Cyclone V FPGA

CNN rejects 99.99% of noise at ~90% signal efficiency



Christian Glaser

Option 1: Second Stage Filter - Performance
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Option 1: Second Stage Filter - Performance
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Option 2: Continuous analysis of data stream 

▪ Simplest option: 
▪ Run CNN on overlapping chunks of data

▪ Trigger on CNN output

12
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Option 2: Continuous analysis of data stream 

▪ Simplest option: 
▪ Run CNN on overlapping chunks of data

▪ Trigger on CNN output

▪ Challenge: threshold set to trigger at 1Hz on 
thermal noise

→1 trigger every 109 samples

→1 trigger every 3.9M data chunks

▪ Solution:
▪ No sigmoid activation

▪ Hinge loss (penalize wrong predictions)

13
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Option 2: Continuous analysis of data stream 

▪ Simplest option: 
▪ Run CNN on overlapping chunks of data

▪ Trigger on CNN output

▪ Better: Translation invariant network

14

Input (NS, 4, 1)

(N’S, 4, Nf1)

1D CNN: Nf1 x kernel (5,1)
encoding of time series
pattern recognition

2D CNN: Nf2 x kernel (7,4)

(N’’S, Nf2)

time coincidences 
between antennas

Output (1)

global maximum

continuous 
output (N’’S)

max pooling

trigger on continuous 
scaler output
reduced sampling rate 
due to striding
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Option 2: Continuous analysis of data stream
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work in progress
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Option 2: Continuous analysis of data stream
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▪ Future improvements: 
More computing for same power budget 
→ Neuromorphic Computing
(collaboration with Tommaso Dorigo and 
Fredrik Sandin)

work in progress
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End-To-End Optimization 
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End-To-End Optimization 
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▪ Deep learning and differential programming can build an 
end-to-end optimization pipeline

▪ Direct optimization of science objective

MC simulation reconstruction analysis

science output, e.g.,
- neutrino-nucleon cross-section
- source discovery
- flux measurement

x x

detector parameters, e.g., 
- antenna positions
- antenna orientation

Θ f(Θ)

automatic differentiation

costs,
engineering 
constraints

→ Expected improvements: up to three times more precise 
measurement of neutrino direction and energy 
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Likelihood Reconstruction

▪ Likelihood for Radio Neutrino Detectors:

▪ Key ingredient: Bandwidth-limited noise can be modeled as 
multi-variate Gaussian

▪ Minimize to get best-fit parameters and uncertainties

19

Likelihood

previous χ2 method 

Martin Ravn et al., ARENA conf. 2024, arXiv:2409.11888
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▪ Fisher Information Matrix can be calculated directly from signal model
▪  

▪ Inverse gives uncertainty estimate through Cramer-Rao bound

▪ -> Fast uncertainty estimate for any detector configuration

▪ Remaining steps to achieve differentiability: 

▪ Differentiable signal model

▪ Electric field generation from particle showers
  → see Phillips's talk

▪ Signal propagation through ice (ongoing)

Uncertainty Estimation using Fisher Information

20

Martin Ravn et al., ARENA conf. 2024, arXiv:2409.11888
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Impact of NuRadioOpt
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based on V. Valera, M. Bustamante, C. Glaser, JHEP 06 (2022) 105

Neutrino-Nucleon 
Cross Section

Diffuse Flux

Point Sources

Main science objectives 
of UHE neutrino astronomy:

→ 3x more precise measurement
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Impact of NuRadioOpt
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Neutrino-Nucleon 
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Diffuse Flux

Point Sources

Main science objectives 
of UHE neutrino astronomy:

→ 3x more precise measurement

→ expedite the detection of UHE neutrino fluxes
     by up to a factor of five

→ identify sources from deeper in our Universe, 
     increasing the observable volume by a factor of three

V. Valera, M. Bustamante, C. Glaser, JHEP 06 105 (2022)

V. Valera, M. Bustamante, C. Glaser, PRD 107, 043019 (2023)

D. F. G. Fiorillo, V. Valera, M. Bustamante, JCAP03(2023)026
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Impact of NuRadioOpt
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Neutrino-Nucleon 
Cross Section

Diffuse Flux

Point Sources

Main science objectives 
of UHE neutrino astronomy:

→ 3x more precise measurement

→ expedite the detection of UHE neutrino fluxes
     by up to a factor of five

→ identify sources from deeper in our Universe, 
     increasing the observable volume by a factor of three

V. Valera, M. Bustamante, C. Glaser, JHEP 06 105 (2022)

V. Valera, M. Bustamante, C. Glaser, PRD 107, 043019 (2023)

D. F. G. Fiorillo, V. Valera, M. Bustamante, JCAP03(2023)026

▪ Improvements equivalent to building a more than three times larger detector 
at essentially no additional costs

▪ because we are already at the limit of logistical resources at the South Pole, 
NuRadioOpt is the only option to accelerate UHE neutrino science in the next decade
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Bonus slides
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Option 1: Second Stage Filter - Performance
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CNN substantially better than 
template-matching for same runtime

ARIANNA collaboration, JINST 17 P03007 (2022)*

*earlier study on a different/simpler data set. Therefore, signal 
efficiencies are different than the previously shown result
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Hinge Loss

▪ No sigmoid activation

▪ Penalize (only) wrong predictions

26
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New DAQ Development

▪ New ADC generation (JESD204B interface)
▪ High speed and low power (~1GHz, 12bit at 0.5W/channel)
▪ Simpler compared to custom ASICS of previous hardware
▪ Better data quality and opportunities for advanced triggers

▪ Also looking into Neuromorphic Computing
(with Tommaso Dorigo + Fredrik Sandin)

27

Testbench in Uppsala

Neutrino 
signal generator
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Deep-Learning Reconstruction 
using Normaling Flows

(Simulation-Based Inference)
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raw traces reconstruction 
algorithm 

Single Event Reconstruction
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Model architecture
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Model Shallow:
1 x 5 x 512

Model Deep:
1 x 16 x 2046

Nils Heyer, ARENA 2024
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Model architecture
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Model Shallow:
1 x 5 x 512

CNN1 
4x 1d-conv
64 filter
kernel (1 x 16),
average pooling

CNN2 
4x 1d-conv
kernel (1 x 16),
256 filter

CNN1 4x 1d-conv, 32 filter, kernel (1 x 16), average pooling

CNN4 4x 1d-conv, 256 filter, kernel (1 x 16)

CNN3 4x 1d-conv, 128 filte, kernel (1 x 16), average pooling

CNN2 4x 1d-conv, 64 filter, kernel (1 x 16), average pooling

Model Deep:
1 x 16 x 2046

Nils Heyer, ARENA 2024
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Model architecture
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Model Shallow:
1 x 5 x 512

CNN1 
4x 1d-conv
64 filter
kernel (1 x 16),
average pooling

ResNet-1
1x conv, 64 filter
Stride 2 
kernel (7 x 7)

ResNet-2
3x ResNet Block
64 filter
kernel (3 x 3)
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CNN1 4x 1d-conv, 32 filter, kernel (1 x 16), average pooling

CNN4 4x 1d-conv, 256 filter, kernel (1 x 16)

CNN3 4x 1d-conv, 128 filte, kernel (1 x 16), average pooling

CNN2 4x 1d-conv, 64 filter, kernel (1 x 16), average pooling

ResNet Block

ResNet-3
4x ResNet Block
128 filter
kernel (3 x 3) ResNet-4

6x ResNet Block
256 filter
kernel (3 x 3)

ResNet-5
3x ResNet Block
512 filter
kernel (3 x 3)

Model Deep:
1 x 16 x 2046

He et. al, 2015
Nousi et. Al, 2023 

Nils Heyer, ARENA 2024

https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://arxiv.org/abs/2211.01520
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Model architecture
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Model Shallow:
1 x 5 x 512

CNN1 
4x 1d-conv
64 filter
kernel (1 x 16),
average pooling

ResNet-1
1x conv, 64 filter
Stride 2 
kernel (7 x 7)

ResNet-2
3x ResNet Block
64 filter
kernel (3 x 3)
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CNN1 4x 1d-conv, 32 filter, kernel (1 x 16), average pooling

CNN4 4x 1d-conv, 256 filter, kernel (1 x 16)

CNN3 4x 1d-conv, 128 filte, kernel (1 x 16), average pooling

CNN2 4x 1d-conv, 64 filter, kernel (1 x 16), average pooling

ResNet Block

ResNet-3
4x ResNet Block
128 filter
kernel (3 x 3) ResNet-4

6x ResNet Block
256 filter
kernel (3 x 3)

ResNet-5
3x ResNet Block
512 filter
kernel (3 x 3)

Model Deep:
1 x 16 x 2046

Sigmoid 
activation

He et. al, 2015
Nousi et. Al, 2023 

https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://arxiv.org/abs/2211.01520
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Model architecture
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Model Shallow:
1 x 5 x 512

CNN1 
4x 1d-conv
64 filter
kernel (1 x 16),
average pooling

ResNet-1
1x conv, 64 filter
Stride 2 
kernel (7 x 7)

ResNet-2
3x ResNet Block
64 filter
kernel (3 x 3)
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kernel (1 x 16),
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CNN1 4x 1d-conv, 32 filter, kernel (1 x 16), average pooling

CNN4 4x 1d-conv, 256 filter, kernel (1 x 16)

CNN3 4x 1d-conv, 128 filte, kernel (1 x 16), average pooling

CNN2 4x 1d-conv, 64 filter, kernel (1 x 16), average pooling

ResNet Block

ResNet-3
4x ResNet Block
128 filter
kernel (3 x 3) ResNet-4

6x ResNet Block
256 filter
kernel (3 x 3)

ResNet-5
3x ResNet Block
512 filter
kernel (3 x 3)

Model Deep:
1 x 16 x 2046

Sigmoid 
activation

He et. al, 2015
Nousi et. Al, 2023 

Normalizing Flows
github.com/thoglu/jammy_flows

https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://arxiv.org/abs/2211.01520
https://github.com/thoglu/jammy_flows
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Model Shallow:
1 x 5 x 512

CNN1 
4x 1d-conv
64 filter
kernel (1 x 16),
average pooling

ResNet-1
1x conv, 64 filter
Stride 2 
kernel (7 x 7)

ResNet-2
3x ResNet Block
64 filter
kernel (3 x 3)
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CNN1 4x 1d-conv, 32 filter, kernel (1 x 16), average pooling

CNN4 4x 1d-conv, 256 filter, kernel (1 x 16)

CNN3 4x 1d-conv, 128 filte, kernel (1 x 16), average pooling

CNN2 4x 1d-conv, 64 filter, kernel (1 x 16), average pooling

ResNet Block

ResNet-3
4x ResNet Block
128 filter
kernel (3 x 3) ResNet-4

6x ResNet Block
256 filter
kernel (3 x 3)

ResNet-5
3x ResNet Block
512 filter
kernel (3 x 3)

Model Deep:
1 x 16 x 2046

Sigmoid 
activation

He et. al, 2015
Nousi et. Al, 2023 

Normalizing Flows
github.com/thoglu/jammy_flows

base targetf1 fnf2 f3 …

Normalizing Flow

• A function that maps a gaussian 
PDF to a non-gaussian target PDF

• Parameters of the flow can be 
learned by a neural network

• Can model complex PDF shapes

https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://arxiv.org/abs/2211.01520
https://github.com/thoglu/jammy_flows
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Model Shallow:
1 x 5 x 512

CNN1 
4x 1d-conv
64 filter
kernel (1 x 16),
average pooling

ResNet-1
1x conv, 64 filter
Stride 2 
kernel (7 x 7)

ResNet-2
3x ResNet Block
64 filter
kernel (3 x 3)
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Spherical 
Spline 
Flow
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kernel (1 x 16),
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CNN1 4x 1d-conv, 32 filter, kernel (1 x 16), average pooling

CNN4 4x 1d-conv, 256 filter, kernel (1 x 16)

CNN3 4x 1d-conv, 128 filte, kernel (1 x 16), average pooling

CNN2 4x 1d-conv, 64 filter, kernel (1 x 16), average pooling

ResNet Block

ResNet-3
4x ResNet Block
128 filter
kernel (3 x 3) ResNet-4

6x ResNet Block
256 filter
kernel (3 x 3)

ResNet-5
3x ResNet Block
512 filter
kernel (3 x 3)

Posterior PDF 
over the energy 

distribution

Posterior PDF over the 
direction distribution

Gaussian- 
ization 
Flow

Model Deep:
1 x 16 x 2046

He et. al, 2015
Nousi et. Al, 2023 

Glüsenkamp, 2020

Sigmoid 
activation

Normalizing Flows
github.com/thoglu/jammy_flows

https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://arxiv.org/abs/2211.01520
https://arxiv.org/abs/2008.05825
https://github.com/thoglu/jammy_flows
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Model Shallow:
1 x 5 x 512

CNN1 
4x 1d-conv
64 filter
kernel (1 x 16),
average pooling

ResNet-1
1x conv, 64 filter
Stride 2 
kernel (7 x 7)

ResNet-2
3x ResNet Block
64 filter
kernel (3 x 3)
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CNN1 4x 1d-conv, 32 filter, kernel (1 x 16), average pooling

CNN4 4x 1d-conv, 256 filter, kernel (1 x 16)

CNN3 4x 1d-conv, 128 filte, kernel (1 x 16), average pooling

CNN2 4x 1d-conv, 64 filter, kernel (1 x 16), average pooling

ResNet Block

ResNet-3
4x ResNet Block
128 filter
kernel (3 x 3) ResNet-4

6x ResNet Block
256 filter
kernel (3 x 3)

ResNet-5
3x ResNet Block
512 filter
kernel (3 x 3)

Posterior PDF 
over the energy 

distribution

Posterior PDF over the 
direction distribution

Gaussian- 
ization 
Flow

Model Deep:
1 x 16 x 2046

He et. al, 2015
Nousi et. Al, 2023 

Glüsenkamp, 2020

Sigmoid 
activation

Normalizing Flows
github.com/thoglu/jammy_flows

Improvements to previous reconstructions:

1. Normalizing flows return full posterior PDFs allowing for event-
by-event uncertainties (Glüsenkamp, EPJ-C, 2024)

2. Factor 10x improvement in angular resolution 
(compared to previous best reconstruction of deep stations)

3. No analysis cuts are needed – all neutrino events can be used

4. One model (per station type) to predict all parameters

https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://arxiv.org/abs/2211.01520
https://arxiv.org/abs/2008.05825
https://github.com/thoglu/jammy_flows
https://link.springer.com/article/10.1140/epjc/s10052-024-12473-7
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Science Overview: Cross Section
▪ Sensitivity comes from Earth attenuation

▪ Angular resolution important

▪ Horizontal events important

37

V. B. Valera, M. Bustamante and C. Glaser, JHEP 06 (2022) 105
also I. Esteban, S. Prohira, J. Beacom, Phys. Rev. D 106, 023021
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Current Trigger

43

▪ Shallow: 
▪ high/low threshold crossing trigger for each 

LPDA

▪ additional 2/4 time coincidence required

▪ effective threshold ~4x Vrms

▪ Deep: Phased array
▪ coherently summed waveforms to increase 

SNR by sqrt(n_antennas)

▪ power integration trigger

▪ effective threshold ~2-3* x Vrms

*: not a useful metric because dependent on bandwidth and group delay
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