Cheetah – A High-speed Differentiable Beam Dynamics Simulation for Machine Learning Applications

4th MODE Workshop on Differentiable Programming for Experiment Design

Jan Kaiser on behalf of all contributors Valencia, 23 September 2024

What is Cheetah?

Cheetah

Linear Beam Dynamics Simulation Python Package

- <u>Python package for beam dynamics simulations based on</u> <u>PyTorch for use with machine learning applications.</u>
- Two main features in support of ML applications:
 - **Ultra-fast compute**: (at the cost of fidelity) Cheetah can run order of magnitude faster than some other codes.
 - **Differentiability**: Based on PyTorch, Cheetah supports automatic differentiation for all its computations.
- Incidentally, Cheetah provides full GPU support and integrates seamlessly with ML models built in PyTorch.
- Designed to be easy to use and easy to extend.
 - We generally aim for high code quality!
 - Black / isort code formatting + flake8 conformity enforced.
 - Encourage proper procedures in GitHub repository (automatic tests / PR templates, good documentation etc.)

https://github.com/desy-ml/cheetah

•••

pip install cheetah-accelerator

•••

Load initial beam distribution from ASTRA tracking beam_in = ParticleBeam.from_astra("beam_in.ini")

```
# Create a FOD0 lattice
segment = Segment(
        [
            Drift(length=torch.tensor(0.2)),
            Quadrupole(length=torch.tensor(0.2), name="Q1"),
            Drift(length=torch.tensor(0.4)),
            Quadrupole(length=torch.tensor(0.2), name="Q2"),
            Drift(length=torch.tensor(0.2)),
        ]
)
# Change the magnet strengths
segment.Q1.k1 = torch.tensor(10.0)
segment.Q2.k1 = torch.tensor(-9.0)
# Tracking through the segment
beam_out = segment.track(beam_in)
```

Results

Does Cheetah work?

Phase space through the ARES Experimental Area

Step compute times through the ARES Experimental Area

Code	Comment	Laptop	HPC node
ASTRA	space charge	264000.00	3605000.00
	no space charge	109000.00	183000.00
Parallel ASTRA	space charge	39000.00	17300.00
	no space charge	16900.00	12600.00
Ocelot	space charge	22100.00	21700.00
	no space charge	182.00	119.00
Bmad-X		40.50	74.30
Xsuite	CPU	0.81	2.82
	GPU	-	0.57
Cheetah	ParticleBeam	1.60	2.95
	ParticleBeam + optimisation	0.79	0.72
	ParticleBeam + GPU	-	4.63
	ParticleBeam + optimisation + GPU	-	0.09
	ParameterBeam	0.76	1.29
	${\tt ParameterBeam} + {\rm optimisation}$	0.02	0.04

What can you do with it?

Making Use of Cheetah's Differentiability

Gradient-based tuning, system identification and BO prior

- Taking advantage of the gradient of the beam dynamics model computed through automatic differentiation, seamless integration with PyTorch tools.
- Becomes very useful for high-dimensional optimisation tasks (see neural network training).
- Use for example for accelerator tuning, system identification (e.g. misalignments) and even as a physics-informed prior mean for Bayesian optimisation.

Bayesian optimisation prior

Misalignment identification

Transverse beam tuning

DESY. Cheetah | 4th MODE Workshop | Jan Kaiser

Making Use of Cheetah's Speed

Fast reinforcement learning and collective effects

- Proof-of-concept for reinforcement learning (RL) at ARES.
- Would require 3 years of beam time one the real machine, training would take 11 days with Ocelot, takes ca. 1 hour with Cheetah.
- Deploy a RL-trained optimisation algorithm to the **real-world** with **zero-shot learning** thanks to **domain randomisation**.
- The trained policy outperforms other optimisation algorithms and expert human operators.

- AI/ML coupling with modular neural network surrogates.
- Neural networks implemented in PyTorch are effectively native to Cheetah. Differentiability is preserved. Integration is easy.
- Example: Tracking with space charge through quadrupole 3 orders of magnitude faster than Ocelot (370 microseconds).

Ongoing Work

Ongoing Projects Involving Cheetah

Generative Phase Space Reconstruction and Fast Coupled FEL Modelling

- **Generative machine learning** method for phase space reconstruction using differentiable simulations.
 - Generative Phase Space Reconstruction (GPSR)
- **Previously developed at SLAC** using **Bmad-X** differentiable simulator.
 - Ported to Cheetah for faster reconstruction using vectorised computations and GPU acceleration.
 - Bmad-X features have been integrated into Cheetah.

Courtesy of Ryan Roussel and J. P. Gonzalez-Aguilera R. Roussel et. al. PRL 2023 + R. Roussel et al. PRAB 2024

- Coupled neural network surrogate model for predicting FEL output trained from GENESIS simulations.
 - Much faster FEL simulation.
- Prototype predicting FEL output from Twiss and taper.

Test case: Linear taper

Courtesy of Jenny Morgan

Reinforcement Learning for FELs

Projects at EuXFEL and LCLS

140

120

100

40 20

500

400

ε³⁰⁰ ε₂₀₀

100

βy

European XFEL

(E) 80 θ 60

- 45x faster RL training for FEL intensity tuning at LCLS
- TLD dump line feedback at EuXFEL with RL / MPC-like controllers

Cheetah Development

What we are currently working on!

- Vectorised Cheetah \rightarrow near-final version available on master branch, soon v0.7
 - **Concurrent simulation** of different actuator settings and beams
 - About 50x faster on CPU, expected to be even faster on GPU
 - Automatic PyTorch broadcasting

- Merge features of Bmad-X \rightarrow On master, SOON v0.7
 - Higher order effects in quadrupoles, dipoles, drift and transverse deflecting cavities

By J. P. Gonzalez-Aguilera

- Space charge \rightarrow available on master branch, soon v0.7
 - First of its kind differentiable space charge
 - Investigate automatic differentiation memory
 requirements

- By Remi Lehe and Axel Huebl
- Lynx \rightarrow Cheetah with a JAX backend
 - Expected to be faster thanks to JIT compilation
 - Support for forward mode autodiff
 - Possibly suited for scientific computing?

People Involved

Very successful collaboration!

Jan Kaiser

Annika Eichler

Chenran Xu

Axel Huebl

Grégoire Charleux

Remi Lehe

CHICAGO SLAC

J. P. Gonzalez-Aguilera

Auralee Edelen

Jenny Morgan

DESY. Cheetah | 4th MODE Workshop | Jan Kaiser

A. Santamaría García

Use Cheetah!

Where to find it and how to get started

• Checkout the GitHub repository and try v0.7 pre-release

• ... or directly install the more stable v0.6.3

• Read the paper:

Jan Kaiser, Chenran Xu, Annika Eichler and Andrea Santamaria Garcia. Bridging the Gap Between Machine Learning and Particle Accelerator Physics with High-Speed, Differentiable Simulations. In *Physical Review Accelerators and Beams*, 2024.

Contact

DESY. Deutsches Elektronen-Synchrotron

Jan Kaiser Machine Beam Controls (MSK) jan.kaiser@desy.de

www.desy.de