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1. MOTIVATION



PROBLEM: Non-Destructive Testing of Built 
Infrastructure

• It has been widely established that there is a 
growing amount of aged, concrete infrastructure 
coming to end of life.

• However, current NDT techniques are limited in 
establishing high quality reconstructions of concrete 
interiors.

• A 2019 [1] study tested and compared NDT 
techniques:

- X-Ray laminography

- Ground penetrating radar (GPR)

- Ultrasound

- Muography
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What is Muography?

• Muons are produced from the interaction of high 
energy cosmic rays and atomic nuclei in the 
upper atmosphere.

• They are highly penetrating (~4GeV/c).

• However, a relatively low flux (1𝐜𝐦−𝟐𝐦𝐢𝐧−𝟏).

• Primary interaction is Coulomb scattering – 
common detectors are Emulsion Plates, gas 
detectors or scintillators.
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Limitations of Muography

1. Muon imaging time

- Relies on a low natural muon flux.

- Multiple scattering makes it hard to model the muon path.

- Thus, requires high statistics - so images can take days to 
months to give reliable results.

2. Z-plane smearing

- Objects ‘smear’ in the direction perpendicular to the detector 
plane, creating shadows or artefacts.

- Limited angular acceptance (±30°) and inverse imaging 
problem greatly reduce z resolution.
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We will be utilising muon scattering tomography, as opposed to 

absorption radiography.



2. WHY USE MACHINE LEARNING?



Why Use Machine Learning? 

• Interpretability: Humans are limited visually and cognitively for pattern interpretation, when 
compared to an ML model.

• To what confidence can you correctly label these five noisy MNIST images (digits 0-9)?
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Why Use Machine Learning?

• Interpretability: Humans are limited visually and cognitively for pattern interpretation, 
when compared to an ML model.

• This is how a simple model (U-Net) performed at a denoising task:
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Why Use Machine Learning?
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97.6 % 99.9 % 99.8 % 52.3 % 98.7 %
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Confidence

• Interpretability: Humans are limited visually and cognitively for pattern interpretation, when 
compared to an ML model.

• This is how a Bayesian classifier (ensemble of models) interpreted the denoised 
output:
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Why Use Machine Learning?

• Interpretability: Humans are limited visually and cognitively for pattern interpretation, 
when compared to an ML model.

• And the Ground truth:

Confidence 97.6 % 99.9 % 99.8 % 52.3 % 98.7 %

0 1 2 8 3Label
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• We are choosing to focus on ML for image post-processing.

• This allows for abstract feature learning, improving the perception and visualisation of 
images (as with MNIST example).

• We can use ML to perform:

• Up-sampling: reducing long imaging times. 

• Segmentation: reducing smearing effects.

Detector Hits
Track 

Reconstruction

Scattering point 
estimation

Image
Post-processing

Why Use Machine Learning? 
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3. CURRENT WORK



• For a supervised task, we need inputs matched with ground truth 
labels.

• Due to the long sampling times, and volume of data required, we 
cannot rely on real data.

• We instead use muography data from physics simulations for ML 
model training. 

Creating a Dataset

Simulation Specs:

- Framework: Geant4 with Ecomug.

- Detector: Lynkeos Muon Imaging System (MIS).

- Block Dimensions: 1m x 1m x 0.2m.

- Sampling time: 100 days (14.4 × 106 muons/day).

- Image reconstruction using point of closest approach 

(PoCA).
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Creating a Dataset
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• Dataset Diversity:

• Randomise number of objects

• Randomise placement.

• Randomise geometric characteristics of objects.

• Muon hits are gathered, scattering angles 

calculated, then volume is voxelised. 

Geometry Contents:

▪ 500 unique geometry 

configurations.

▪ Rebar Grids: 1-4 per volume, 

placed in XY plane.

▪ Tendon Ducts: 0-3 per 

volume, spanning along XZ or 

YZ planes.

▪ Air voids: 0-3 per volume, 

spherical.

▪ ‘Unknowns’: 0-2 per volume, 

random shape and density.
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Creating a Dataset

• 2D Image resolution (XY plane): 500x500 pixels, 2mm

• Model Inputs:

- 100 image slices from each geometry.

- Each slice has 100 different versions with a different sampling 
rate (increments of 1 day).

- Input sampling rates are randomly sampled at each epoch for 
model generalisation.

• Image Up-Sampling Ground Truths:

- Use the highest available sampling rate: 100 days

• Segmentation Ground Truths:

- Produced directly from the Geant4 geometries, sliced up to 
produce a ground truth for each geometry slice.

- One-hot encoded for model training.
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The Conditional GAN (cGAN)
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Generator
(U-net)

Input 
Image

Target 
Image

Generated 
Image

Task-Specific Loss

Total Generator Loss

• cGANs are the supervised version of the GAN (conditioned on an input).

• Contain two parts: generator and discriminator.

• Adversarial process: compete until Nash equilibrium is reached.

• The model used is heavily based on the pix2pix architecture [2].
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The Conditional GAN (cGAN)

Generator
(U-net)

Discriminator
(PatchGAN)

Input 
Image

Target 
Image

Generated 
Image

Discriminator LossTask-Specific Loss

Total Generator Loss Adversarial Loss
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• cGANs are the supervised version of the GAN (conditioned on an input).

• Contain two parts: generator and discriminator.

• Adversarial process: compete until Nash equilibrium is reached.

• The model used is heavily based on the pix2pix architecture [2].



Task 1: Image to Image Up-Sampling
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Model:

- pix2pix cGAN architecture: U-Net generator, PatchGAN discriminator.

- Based on the open-source pix2pix [2] architecture. 

- Optimiser: ADAM

- Loss functions: MAE (generator), MSE (discriminator).

Reference Truth:
100 Day Sampling

Input:
1 Day Sampling

Output:
Up-Sampled Image
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Preliminary Results: Up-Sampling

• Up-sampling works well up to a ~60-day sampling rate, after which the input images 

perform better.

• Up-sampled images should ideally perform no worse than input images.

• However, these metrics don’t capture the full picture.

• Image segmentation can help better understand feature representation.
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Structural Similarity Index 
Measure (SSIM) assesses:
• Luminance
• Contrast
• Structure



Task 2: Image Segmentation

• Performed on the highest sampling (100-day data), for development.

• Utilises the ground truth geometries from our simulation setup.

• X-Y plane segmentation – no z-information.

• Labels: concrete, rebar, ducts, voids, unknowns.

• Model: Same as up-sampling model, using DICE and cross-entropy losses.
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Input: 100 Day
Muon Image
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Output:
Segmentation Map

Reference:
Ground Truth
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Preliminary Results: Segmentation
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XZ Muon Slices XZ Output Segmentation Maps XZ Truth Segmentation Maps

• Let's look at z-plane discrimination by stacking our XY slices to create a volume, then looking side-on 
(500x100 pixels).

Segmentation Key: Blue = Rebar Grid, Green = Tendon Duct, Yellow = Air Void, Purple = Unknown (Lead Block)
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Preliminary Results: Segmentation
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Rebar Grid 1:

▪ 12 mm Diameter

▪ z = 160mm

Rebar Grid 2:

▪ 25 mm Diameter

▪ z = 85 mmRebar Grid 3:

▪ 16 mm Diameter

▪ z =  54 mm

Lead Block

▪ z = 145 mm

Outlining the Problem Identifying a Solution Preliminary Results Future Work/Conclusions

Thinner rebar is patchy

Rebar near 

edges is 

patchy

Downward-smearing of 

dense objectVery good z-resolution, 
despite no z-context
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Preliminary Results: Segmentation

Introduction/Motivation Machine Learning Theory Current Research Future WorkOutlining the Problem Identifying a Solution Preliminary Results Future Work/Conclusions

Rebar Grid 1:

▪ 25 mm Diameter

▪ z = 107 mm

Rebar Grid 2:

▪ 10 mm Diameter

▪ z = 152 mm Air Voids (diameter):

▪ 84 mm

▪ 47 mm

▪ 26 mm 

Duct 2:

▪ 100 mm Diameter

▪ z = 75mm

Duct 1:

▪ 80 mm Diameter

▪ z = 53 mm

Thin bottom rebar 

is almost non-

existent

Smallest void non-

existent

Patchy voids and 

artefacts Thick Rebar is almost perfectly 
reconstructed

Duct 2 has almost perfect 
reconstruction

Duct 1 is smeared 

downwards slightly
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Preliminary Results: Up-sampling and Segmentation

• Performs well when classes are unbalanced.
• Dice coefficient ranges from 0 (bad) to 1 (good).
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4. FUTURE WORK/CONCLUSIONS



Future Work
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2. Defect Segmentation Task

     Primary goal is to perform defect segmentation. Defects include:

➢ Rebar corrosion.

➢ Voids, honeycombing and cracks in concrete.

➢ Tendon duct: strand placement/corrosion, air spaces.

1. Model Optimisation

• Model is in early stages and requires development for reliable reconstruction of all materials.

• Move towards models that increase context size: global context, 3D context.

• Optimisation of method (do we up-sample, then segment – or do we make one model for end-to-

end).

3.   Model Generalisation

• Assessing models on real datasets.

• Non-ideal object placement.

• Handling of different detector orientations.

• Handling of a variety of detector spacings.
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Conclusion
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Problem:

• A new technique is urgently required for high resolution NDT of built infrastructure.

• Muography can be used to do this but suffers from long imaging times and z-plane smearing.

Solution:

• We can use ML techniques to limit imaging times through up-sampling and reducing 

smearing effects with segmentation.

• Preliminary results show that these techniques can be successfully applied to muon scans.

Moving Forward:

• Further model optimisation and experimentation will aim to improve the reliability of current 
ML outputs.

• We ultimately aim to be able to identify the minimum time required to scan a given volume, 
whilst maintaining accuracy in defect classification.



Thanks for Listening

Additional thanks to my supervisors D. Mahon, G. Yang 
and S. Gardner, as well as E. Niederleithinger from BAM 
for their guidance and support.
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Preliminary Results – Up-sampling and Segmentation
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What is Muography?

• Absorption Radiography:  
▪ Uses muon attenuation (stopping).
▪ Two detector planes behind the object are 

required.

• Scattering Tomography: 
▪ Uses reconstructed scattering angles of 

muons.
▪ Two detector planes in front and behind the 

object are required.

• This has been successfully applied to:
• Nuclear waste characterization,
• Border control,
• Mining,
• (and others).
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CNN: Encoder-Decoder Architecture

ENHANCED
OUTPUT
IMAGE

INPUT
IMAGE

(64x64x1)

(64x64x16)

(32x32x16)

(32x32x32)

(16x16x32)

(16x16x64)

(8x8x64) (8x8x128) (4x4x128) (8x8x128) (8x8x64)

(16x16x64)

(16x16x32)

(32x32x32) (64x64x16)

(32x32x16) (64x64x1)

ENCODER DECODER

Convolution and activation 
function

Pooling Layer (2x2 window) Up-sampling Layer
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• Standard encoder-decoder CNNs are 
lossy – lose information.

• Introduce ‘skip connections’ between 
layers in the encoder and decoder.

• Allows for uncaptured, minor details to 
be preserved while keeping model 
complexity low.

• U-Nets are widely used for I2I translation 
tasks, especially in medical imaging.

U-Nets
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Encoder-Decoder Architecture

• For image translation, we need to extract features from the input image and build them back 
into an output image.

• There are two main techniques for feature extraction in machine learning:

• Convolutional layers – Convolutional Neural Networks (CNNs)

• Attention blocks – Vision Transformers (ViTs)

• We will explore using the older, but well established CNNs.

Feature Extraction Feature Implementation
Input Image Output Image

dcba hgfe

DECODERENCODER
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• Convolution operations have been used 
for image processing for a long time.

• The feature extracted from an input 
image depends on the kernel.

• Convolution of the input with a kernel 
produces a feature map.

• Many different kernels can be performed, 
each looking for different features and 
each producing a feature map.

Convolutional Feature Extraction

= σ𝑖=1
3 σ𝑗=1

3
0 ∗ 1 0 ∗ 0 0 ∗ 1
0 ∗ 0 1 ∗ 1 2 ∗ 0
0 ∗ 1 2 ∗ 0 0 ∗ 1

 = 
0 0 0
0 1 0
0 0 0

 = 1
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• CNNs however learn the kernels they use – allowing for complex task-
specific learning.

• The learnable parameters in a CNN are the components of these kernels 
– each containing a set of weights (𝑤𝑖,𝑗) and a single bias term (𝑏):

 

 𝑂𝑖,𝑗 =  𝑤𝑖,𝑗 ×  𝐼𝑖,𝑗 + 𝑏 

Convolution in CNNs

𝑤0,0 𝑤1,0 𝑤2,0

𝑤0,1 𝑤1,1 𝑤2,1

𝑤0,2 𝑤1,2 𝑤2,2

+ 𝑏

9 params for one 3x3 kernel

• 𝐼𝑖,𝑗  is the input (3x3 window of input)

• 𝑤𝑖,𝑗  are the weights of the 3x3 kernel

• 𝑏 is the bias term
• 𝑂𝑖,𝑗  is the 3x3 output of the element-wise product with bias.
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• As well as task-specific learning, CNNs also allow for complex hierarchical feature 
extraction using multiple layers.

– Top layers extract simple features such as edges.

– Deeper layers can extract complex features, combining information of the 
feature maps from the previous layer (e.g. boxes).

Convolution in CNNs 
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