

Muographic Image Up-Sampling with Machine Learning for Built Infrastructure Applications

Mode 2024 – Valencia William O'Donnell, David Mahon, Guangliang Yang, Simon Gardner

GOOD UNIVERSITY

GUIDE

SCOTTISH UNIVERSITY OF THE YEAR

1. MOTIVATION

PROBLEM: Non-Destructive Testing of Built Infrastructure

- It has been widely established that there is a growing amount of aged, concrete infrastructure coming to end of life.
- However, current NDT techniques are limited in establishing high quality reconstructions of concrete interiors.
- A 2019 [1] study tested and compared NDT techniques:
 - X-Ray laminography
 - Ground penetrating radar (GPR)
 - Ultrasound
 - Muography

[1] Journal of Nondestructive Evaluation (2021) 40:65 https://doi.org/10.1007/s10921-021-00797-3

Preliminary Results

PROBLEM: Non-Destructive Testing of Built Infrastructure

Reference, z = 17cm

[1] Journal of Nondestructive Evaluation (2021) 40:65 https://doi.org/10.1007/s10921-021-00797-3

Outlining the Problem

Identifying a Solution

Preliminary Results

Future Work/Conclusions

100

Outlining the Problem

Identifying a Solution

Preliminary Results

Future Work/Conclusions

Future Work/Conclusions

2

PROBLEM: Non-Destructive Testing of Built Infrastructure

Reference, z = 17cm

[1] Journal of Nondestructive Evaluation (2021) 40:65 https://doi.org/10.1007/s10921-021-00797-3

Outlining the Problem

What is Muography?

- Muons are produced from the interaction of high energy cosmic rays and atomic nuclei in the upper atmosphere.
- They are highly penetrating (~4GeV/c).
- However, a relatively low flux $(1 \text{ cm}^{-2} \text{ min}^{-1})$.
- Primary interaction is Coulomb scattering common detectors are Emulsion Plates, gas detectors or scintillators.

Limitations of Muography

We will be utilising muon scattering tomography, as opposed to absorption radiography.

1. Muon imaging time

- Relies on a low **natural** muon flux.
- Multiple scattering makes it hard to model the muon path.
- Thus, requires high statistics so images can take **days to months** to give reliable results.

2. Z-plane smearing

- Objects '**smear**' in the direction perpendicular to the detector plane, creating **shadows or artefacts**.
- Limited angular acceptance $(\pm 30^\circ)$ and inverse imaging problem greatly reduce z resolution.

2. WHY USE MACHINE LEARNING?

- Interpretability: Humans are limited visually and cognitively for pattern interpretation, when compared to an ML model.
- To what confidence can you correctly label these five noisy MNIST images (digits 0-9)?

- Interpretability: Humans are limited visually and cognitively for pattern interpretation, when compared to an ML model.
- This is how a simple model (U-Net) performed at a denoising task:

- Interpretability: Humans are limited visually and cognitively for pattern interpretation, when compared to an ML model.
- This is how a Bayesian classifier (ensemble of models) interpreted the denoised output:

- Interpretability: Humans are limited visually and cognitively for pattern interpretation, when compared to an ML model.
- And the Ground truth:

- We are choosing to focus on ML for image post-processing.
- This allows for **abstract feature learning**, improving the **perception** and **visualisation** of images (as with MNIST example).
- We can use ML to perform:
 - Up-sampling: reducing long imaging times.
 - Segmentation: reducing smearing effects.

3. CURRENT WORK

Creating a Dataset

- For a **supervised** task, we need inputs matched with ground truth labels.
- Due to the long sampling times, and volume of data required, we cannot rely on real data.
- We instead use muography data from physics simulations for ML model training.

Simulation Specs:

- Framework: Geant4 with Ecomug.
- **Detector:** Lynkeos Muon Imaging System (MIS).
- Block Dimensions: 1m x 1m x 0.2m.
- Sampling time: 100 days $(14.4 \times 10^6 \text{ muons/day})$.
- Image reconstruction using point of closest approach (PoCA).

7

Creating a Dataset

Geometry Contents:

- 500 unique geometry configurations.
- Rebar Grids: 1-4 per volume, placed in XY plane.
- Tendon Ducts: 0-3 per volume, spanning along XZ or YZ planes.
- Air voids: 0-3 per volume, spherical.
- **'Unknowns':** 0-2 per volume, random shape and density.

- Dataset Diversity:
 - Randomise number of objects
 - Randomise placement.
 - Randomise geometric characteristics of objects.
- Muon hits are gathered, scattering angles calculated, then volume is voxelised.

Creating a Dataset

- 2D Image resolution (XY plane): 500x500 pixels, 2mm
- Model Inputs:
 - 100 image slices from each geometry.
 - Each slice has 100 different versions with a different sampling rate (increments of 1 day).
 - Input sampling rates are randomly sampled at each epoch for model generalisation.
- Image Up-Sampling Ground Truths:
 - Use the highest available sampling rate: 100 days
- Segmentation Ground Truths:
 - Produced directly from the Geant4 geometries, sliced up to produce a ground truth for each geometry slice.
 - One-hot encoded for model training.

The Conditional GAN (cGAN)

- cGANs are the supervised version of the GAN (conditioned on an input).
- Contain two parts: generator and discriminator.
- Adversarial process: compete until Nash equilibrium is reached.
- The model used is heavily based on the pix2pix architecture [2].

10

The Conditional GAN (cGAN)

- cGANs are the supervised version of the GAN (conditioned on an input).
- Contain two parts: generator and discriminator.
- Adversarial process: compete until Nash equilibrium is reached.
- The model used is heavily based on the pix2pix architecture [2].

Task 1: Image to Image Up-Sampling

Model:

- pix2pix cGAN architecture: U-Net generator, PatchGAN discriminator.
- Based on the open-source **pix2pix** [2] architecture.
- Optimiser: ADAM
- Loss functions: MAE (generator), MSE (discriminator).

[2] https://phillipi.github.io/pix2pix/

Preliminary Results

Future Work/Conclusions

Preliminary Results: Up-Sampling

- Up-sampling works well up to a ~60-day sampling rate, after which the input images perform better.
- Up-sampled images should ideally perform no worse than input images.
- However, these metrics don't capture the full picture.
- Image segmentation can help better understand feature representation.

SSIM vs Sampling Rate

Task 2: Image Segmentation

- Performed on the highest sampling (100-day data), for development.
- Utilises the ground truth geometries from our simulation setup.
- X-Y plane segmentation no z-information.
- Labels: concrete, rebar, ducts, voids, unknowns.
- Model: Same as up-sampling model, using DICE and cross-entropy losses.

Input: 100 Day	Output:		Reference:
Muon Image	Segmentation Map		Ground Truth
Outlining the Problem	Identifying a Solution	Preliminary Results	Future Work/Conclusions

Preliminary Results: Segmentation

• Let's look at z-plane discrimination by stacking our XY slices to create a volume, then looking side-on (500x100 pixels).

XZ Muon Slices	XZ Output Segmentation Maps	XZ Truth Segmentation Maps
		• • •
	a a a a a a a a a a a a a a a a a a a	
Segmentation Key: Blue = Rebar G	Grid, Green = Tendon Duct, Yellow = Air Voi	d, Purple = Unknown (Lead Block)
Outlining the Problem	tifying a Solution Preliminary Resu	Lits Future Work/Conclusions

Preliminary Results: Segmentation

Preliminary Results: Up-sampling and Segmentation

•

$$ext{Dice}_i = rac{2 imes ext{TP}_i}{2 imes ext{TP}_i + ext{FP}_i + ext{FN}_i}$$

- Performs well when classes are unbalanced.
 - Dice coefficient ranges from 0 (bad) to 1 (good).

Sampling Rate (Days)

4. FUTURE WORK/CONCLUSIONS

1. Model Optimisation

- Model is in early stages and requires development for reliable reconstruction of all materials.
- Move towards models that increase context size: global context, 3D context.
- Optimisation of method (do we up-sample, then segment or do we make one model for end-toend).

2. Defect Segmentation Task

Primary goal is to perform defect segmentation. Defects include:

- ➢ Rebar corrosion.
- > Voids, honeycombing and cracks in concrete.
- Tendon duct: strand placement/corrosion, air spaces.

3. Model Generalisation

- Assessing models on real datasets.
- Non-ideal object placement.
- Handling of different detector orientations.
- Handling of a variety of detector spacings.

Conclusion

Problem:

- A new technique is **urgently** required for high resolution NDT of built infrastructure.
- Muography can be used to do this but suffers from long imaging times and z-plane smearing.

Solution:

- We can use ML techniques to limit imaging times through up-sampling and reducing smearing effects with segmentation.
- *Preliminary results* show that these techniques can be successfully applied to muon scans.

Moving Forward:

- Further **model optimisation** and experimentation will aim to **improve the reliability** of current ML outputs.
- We ultimately aim to be able to identify the **minimum time required** to scan a given volume, whilst maintaining accuracy in **defect classification**.

Thanks for Listening

Additional thanks to my supervisors D. Mahon, G. Yang and S. Gardner, as well as E. Niederleithinger from BAM for their guidance and support.

Backups

Preliminary Results – Up-sampling and Segmentation

Original Segmentation DICE Scores 0.30 – Total Rebar — Duct Void 0.25 Unknown 0.20 DICE Score 0.10 0.05 0.00 20 80 100 40 60 0 Sampling Rate (Days)

What is Muography?

BACKUP SLIDES

Absorption Radiography:

- Uses muon attenuation (stopping).
- Two detector planes behind the object are required.
- Scattering Tomography:
 - Uses reconstructed scattering angles of muons.
 - Two detector planes in front and behind the object are required.
- This has been successfully applied to:
 - Nuclear waste characterization,
 - Border control,
 - Mining,
 - (and others).

CNN: Encoder-Decoder Architecture

BACKUP SLIDES

37

U-Nets

- Standard encoder-decoder CNNs are lossy lose information.
- Introduce 'skip connections' between layers in the encoder and decoder.
- Allows for uncaptured, minor details to be preserved while keeping model complexity low.
- U-Nets are widely used for I2I translation tasks, especially in medical imaging.

BACKUP SLIDES

Encoder-Decoder Architecture

• For image translation, we need to extract features from the input image and build them back into an output image.

- There are two main techniques for feature extraction in machine learning:
 - Convolutional layers Convolutional Neural Networks (CNNs)
 - Attention blocks Vision Transformers (ViTs)
- We will explore using the older, but well established CNNs.

- BACKUP SLIDES

Convolutional Feature Extraction

- Convolution operations have been used for image processing for a long time.
- The feature extracted from an input image depends on the kernel.
- Convolution of the input with a kernel produces a feature map.
- Many different kernels can be performed, each looking for different features and each producing a feature map.

BACKUP SLIDES

Convolution in CNNs

- CNNs however learn the kernels they use allowing for complex task-specific learning.
- The learnable parameters in a CNN are the components of these kernels each containing a set of weights $(w_{i,i})$ and a single bias term (b):

BACKUP SLIDES

$$O_{i,j} = w_{i,j} \times I_{i,j} + b$$

- $I_{i,j}$ is the input (3x3 window of input)
- $w_{i,j}$ are the weights of the 3x3 kernel
- *b* is the bias term
- $O_{i,j}$ is the 3x3 output of the element-wise product with bias.

9 params for one 3x3 kernel

$$w_{0,0}$$
 $w_{1,0}$
 $w_{2,0}$
 $w_{0,1}$
 $w_{1,1}$
 $w_{2,1}$
 + b

 $w_{0,2}$
 $w_{1,2}$
 $w_{2,2}$

Convolution in CNNs

- As well as task-specific learning, CNNs also allow for complex hierarchical feature extraction using multiple layers.
 - Top layers extract simple features such as edges.
 - Deeper layers can extract complex features, combining information of the feature maps from the previous layer (e.g. boxes).

