Generative Adversarial Neural Networks for Muography simulation: image prediction

R. López, C. Fernández, C. Díez, P. Gómez, P. Martínez

4 th Mode Workshop

Valencia, 23rd-25th September 2024

Context: muography for industrial applications

➢ Idea: use muon tomography as a **Non-Destructive Testing (NDT) technique in the industry**

- ➢Preventive maintenance of equipment (estimation of the degradation)
- ➢Quality control of the production process (measurement of liquid interfaces, tolerances, etc)
- ➢Risk assessment and evaluation (continuous monitoring of structural integrity)
- ➢ Muography has some unique properties that can be very useful for these applications
	- ➢Large power of penetration (no problem to deal with several meters of steel)
	- \rightarrow No need to physically "touch" the object \rightarrow can be applied to equipment in production

Some specifics of industrial applications

- \triangleright Industrial applications usually involve to work with very well known geometries
	- \triangleright In corrosión, wear, defect, etc detection the nominal geometry is known from designs
- \triangleright A full image reconstruction of the object is not critical for the application
- \triangleright It is more important to estimate accurately a few interesting parameters from the data

Example 2: ladle furnace

Only the position of the slag-mixture interface is really interesting for the application (1 parameter)

Suitability for traditional ML methods

- ➢ Since the number of parameters is relatively small this can be attacked by traditional ML
	- ➢ Simple fully connected DNNs operating in regression mode to the parameters of interest
- ➢ Basic muon distributions (angular deviation, spatial deviation, etc, etc) can be used as input ➢They can be quantified for example through quantiles or any other technique
- ➢ Ideally one could use real data to train the algorithms since often this is no problem

➢Think about the pipe problem: companies have hundreds of new, fresh, perfect pipes

- ➢ To achieve good stats these algorithms require also MC simulations to complete the training
	- ➢This is problematic since tools such as GEANT4 can be very time consuming
	- ➢For example, in a simple setup with pipes can take 6 minutes to simulate one hour of data
- ➢ Several efforts have been performed to speed up simulations

➢See for example

<https://indico.cern.ch/event/1022938/contributions/4487326/>

Simulation for scattering muography

➢ Simulation for scattering muography has three different components

Muon flux generation

- Most generators parametrize the muon flux as a function of altitude/latitude etc
- This part is usually relatively fast
- CRY is a good example

Muon propagation through matter Detector simulation

- Implementation of energy loss and multiple scattering at least
- Can be very time consuming specially for complex geometres
- GEANT4 very prcise on this

- A model of the detector response has to be considered for precise MC simulation
- This part can be critical and it is typically difficult to implement
- No general récipes, every detector needs its own model

Generative Adversarial Neural Networks

➢ We propose to use Generative Adversarial Neural Networks to produce MC simulation

Our Muography setup (I)

- ➢ Multiwire Proportional Chambers with tungsten-gold wires of 50 microns diameter every 4mm
	- \ge Each chamber is a 89x89 cm^{\land} 2 double layer with orthogonal wires to measure x and y
- ➢ Custom made electronics, ~ 95% efficiency, few microseconds deadtime, configurable trigger

Our Muography setup (II)

Pipe

corrosion Measure of the wear: 1mm

resolution 1 min exposure

Cracks in **concrete**

Measure of the crack size: 2mm resolution 10 min exposure time

Prestressed concrete

Furnace hearth

Measure of the wall refractory: 1cm resolution 15 min exposure

Real data 3D reconstruction of a silicon smelting furnace

P. Martínez/IFCA Generative Adversarial Neural Networks for Muography Simulation: Image prediction 8

Our Muography setup for the GAN studies

➢ Our GAN simulation is running for a muography setup as the one used for the pipe problem

➢This setup corresponds to the one from Muon Systems (see previous slides)

➢ Simulator target: predict lower segment having the upper segment as input

➢This means that we rely on CRY for the simulation of the upper segment

➢All tests performed on MC samples where detectors are assumed to be perfect

$x_1, y_1, v_{x1} = \text{atan}(\theta_{x1}), v_{1y} = \text{atan}(\theta_{y1})$ Upper detector $x_2, y_2, v_{x2} = \text{atan}(\theta_{x2}), v_{2y} = \text{atan}(\theta_{y2})$ Lower detector Target variables

 $\Delta x = x_2 - L v_{x1} - x_1$ $\Delta y = y_2 - L v_{y1} - y_1$

$$
\Delta v_x = v_{x2} - v_{x1} \qquad \qquad \Delta v_y = v_{y2} - v_{y1}
$$

First attempt: simple GAN

- ➢ Our first attempt uses a simple GAN
	- \geq Keras + TensorFlow
	- ➢The variables of the segment in the first detector are given as input to the generator
	- ➢Loss function: Mean Squared Error
	- ➢Architecture: 512, 256, 256, 128, 64, 16 LeakyReLU
	- ➢Latent space dimension: 64
	- ➢Optimizer: Adam, 0.001 (halves every 50 epochs)
	- \blacktriangleright Trained for 200 epochs (Total training time \sim 2-3 hours, GeForce RTX 3090)

Results using a conventional GAN (I)

 \ge The GAN is able to produce the correct 1D distributions with a \sim 1 mm resolution

P. Martínez/IFCA Generative Adversarial Neural Networks for Muography Simulation: Image prediction 11

Results using a conventional GAN (II)

➢ Correlations among variables seems to be very well described as well by the GAN

P. Martínez/IFCA Generative Adversarial Neural Networks for Muography Simulation: Image prediction

Second attempt: Wasserstein conditional GAN

➢ Our second attempt uses a Wasserstein conditional GAN

- E Keras + TensorFlow
- ➢The variables of the segment in the first detector are given as input to the generator

➢**The thickness of the pipe to be generated is also provided as input**

- c -Critic + Loss function \rightarrow more stability
- ➢Architecture: 32, 64, 128 LeakyReLU
- ➢Latent space dimension: 64
- ➢Optimizer: Adam, 0.001 (halves every 50 epochs)
- \blacktriangleright Trained for 1000 epochs (Total training time \sim 2-3 hours, GeForce RTX 3090)

Results using a conditional WGAN (I)

- ➢ The WGAN also provides very good results in describing the 1D distributions (and correlations)
- ➢ It also exhibit very good interpolation capabilities -> generating a thicknes not previously seen works fine

Is the GAN really absorbing the geometry?

- ➢ The purpose of this system is to produce simulations quickly to be used with a ML method
- ➢ To proof that we really need to see whether the GAN has "absorbed" the geometry
- ➢ First thing we can do is the see how the POCA estimation looks for this simulation

Geant4 generated - 16 mm thickness pipe GAN generated - 16 mm thickness pipe

CNN for pipe thickness regression

- ➢ A convolutional neural network has been trained to predict the pipe thickness based on POCA
- \sim Training dataset based on 90 POCA images per thickness (4, 6, 8, ..., 18 mm thickness)
- \geq Each POCA image is made with 300K muons based on CRY + GEANT4 simulation
- \ge The CNN uses RestNET50 with 4 additional dense layers with 1024, 512, 512 and 256 nodes

The CNN scores similarly on both GEANT4 and GAN samples indicating the validity of the method

Conclusions

➢ We have explored the possibility to use GANs to generate fast MC simulation in muography

➢ Two different kinds of GANs tested: simple + Wasserstein, conditional GAN

➢Both are giving very good results in terms of similarity to the targeted distributions

➢The Wasserstein GAN seems to be in general more stable and easier to converge

➢The Wasserstein, conditional GAN is able to interpolate to non-trained thicknesses

➢ Our setup has tested only the muon propagation part of the simulation

 \rightarrow If trained with real data from a real detector \rightarrow capacity to learn the detector response

 \rightarrow We are focusing on this right now as it would be a ML driven detector simulation

➢ A CNN has been devised to predict the parameter of interest in a muography problem

 \ge The GAN samples are similar to GEANT4 for the CNN with a speed up of at least x50