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Context: muography for industrial applications & [ F (A

Instituto de Fisica de Cantabria

- ldea: use muon tomography as a Non-Destructive Testing (NDT) technique in the industry
~Preventive maintenance of equipment (estimation of the degradation)
~Quality control of the production process (measurement of liquid interfaces, tolerances, etc)
~Risk assessment and evaluation (continuous monitoring of structural integrity)
- Muography has some unique properties that can be very useful for these applications
~Large power of penetration (no problem to deal with several meters of steel)

~No need to physically “touch” the object — can be applied to equipment in production
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Some specifics of industrial applications & iF(A
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> Industrial applications usually involve to work with very well known geometries
> In corrosion, wear, defect, etc detection the nominal geometry is known from designs
» A full image reconstruction of the object is not critical for the application

» It is more important to estimate accurately a few interesting parameters from the data

Example 1: pipes Example 2: ladle furnace
Only the thickness of the pipe is interesting for the Only the position of the slag-mixture interface is really
application (1 parameter or maybe a few to account for interesting for the application (1 parameter)

asymmetries in the wear of the walls)
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Suitability for traditional ML methods & iF(A

-~ Since the number of parameters is relatively small this can be attacked by traditional ML
- Simple fully connected DNNSs operating in regression mode to the parameters of interest

- Basic muon distributions (angular deviation, spatial deviation, etc, etc) can be used as input
~They can be quantified for example through quantiles or any other technique

- ldeally one could use real data to train the algorithms since often this is no problem
~Think about the pipe problem: companies have hundreds of new, fresh, perfect pipes

~ To achieve good stats these algorithms require also MC simulations to complete the training
~This is problematic since tools such as GEANT4 can be very time consuming
~For example, in a simple setup with pipes can take 6 minutes to simulate one hour of data

-~ Several efforts have been performed to speed up simulations

~See for example

https://indico.cern.ch/event/1022938/contributions/4487326/
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Simulation for scattering muography @ IF(A
- Simulation for scattering muography has three different components

Muon propagation
through matter

Detector simulation

fIi

Muon flux generation
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* Most generators parametrize the * Implementation of energy loss « A model of the detector response
muon flux as a function of and multiple scattering at least has to be considered for precise
altitude/latitude etc « Can be very time consuming MC simulation
» This part is usually relatively fast specially for complex geometres « This part can be critical and it is
« CRY isagood example *  GEANT4 very prcise on this typically difficult to implement

* No general récipes, every

detector needs its own model
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Generative Adversarial Neural Networks ~ @ i F (A
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- We propose to use Generative Adversarial Neural Networks to produce MC simulation
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Our Muography setup (1) & iF(A

- Multiwire Proportional Chambers with tungsten-gold wires of 50 microns diameter every 4mm

- Each chamber is a 89x89 cm”2 double layer with orthogonal wires to measure x and y

- Custom made electronics, ~ 95% efficiency, few microseconds deadtime, configurable trigger
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Our Muography setup (1)

Pipe
corrosion
Measure of the

wear. 1mm

resolution
1 min exposure

Cracks in
concrete

Measure of the crack
size:
2mm resolution
10 min exposure time
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Tailings

0.2g-cm density loss detection

Furnace hearth

Measure of the wall
refractory:
1cm resolution
15 min exposure
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Real data 3D reconstruction of a
silicon smelting furnace
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Our Muography setup for the GAN studies % 1 F (A
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- Our GAN simulation is running for a muography setup as the one used for the pipe problem

~This setup corresponds to the one from Muon Systems (see previous slides)

- Simulator target: predict lower segment having the upper segment as input
~This means that we rely on CRY for the simulation of the upper segment

~All tests performed on MC samples where detectors are assumed to be perfect

Upper detector

A
X1, Y1, Vx1 = atan(Bx1), viy = atan(6y1)
Lower detector
X2, Y2, Vx2 = atan(Bxz), Vay = atan(6y2) L
Target variables
AX=X2 - L vx1 - X1 Ay=Yy7 - Lvy1 - Y1

\ 4
AVx= Vx2 - Vx1 AVy = Vy2 - Vy1
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First attempt: simple GAN & iF(A

-~ Our first attempt uses a simple GAN
-~ Keras + TensorFlow
~The variables of the segment in the first detector are given as input to the generator
~-Loss function: Mean Squared Error
~Architecture: 512, 256, 256, 128, 64, 16 LeakyRelL U
-Latent space dimension: 64
~-Optimizer: Adam, 0.001 (halves every 50 epochs)
~Trained for 200 epochs (Total training time ~ 2-3 hours, GeForce RTX 3090)

..................................... Simple GAN
Dataset Pipe thickness (mm) | Number of training samples | Number of evaluation samples
: 16 306707 307352
¢ | Initial muon | : Conditional GAN
variables Pipe thickness (mm) | Number of training samples | Number of evaluation samples
4 619605 300000
S —— | — o =
ST : 7 10 616700 300000
11 614944 300000
T 16 615216 300000
- f\ 18 [?14%()9 300000
Noise Ay Generator 122{) 613692 ::3338
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Results using a conventional GAN (1) G iF(A

- The GAN is able to produce the correct 1D distributions with a ~ 1 mm resolution

GEANT4 simulation for different
pipe thickness (mm)
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Results using a conventional GAN (11) G iF(A

Correlations among variables seems to be very well described as well by the GAN
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Second attempt: Wasserstein conditional GAN G iF(A

- Our second attempt uses a Wasserstein conditional GAN
~Keras + TensorFlow
~The variables of the segment in the first detector are given as input to the generator
- The thickness of the pipe to be generated is also provided as input
~Critic + Loss function — more stability
~Architecture: 32, 64, 128 LeakyRelLLU
-Latent space dimension: 64
~-Optimizer: Adam, 0.001 (halves every 50 epochs)
~Trained for 1000 epochs (Total training time ~ 2-3 hours, GeForce RTX 3090)

Simple GAN

Pipe thickness (mm) | Number of training samples | Number of evaluation samples

additional input update model 16 306707 307352
Conditional GAN
| real samples . Pipe thickness (mm) | Number of training samples | Number of evaluation samples

Discriminator classification 4 619605 300000

real/fake 6 618798 300000

8 617951 300000

|generated samples| 10 616700 300000

14 614944 300000

16 615216 300000

. 13 614100 300000
Noise Generator update model 20 613692 300000
127 : 300000

P. Martinez/IFCA Generative Adversarial Neural Networks for Muography Simulation: Image prediction



Instituto de Fisica de Cantabria

Results using a conditional WGAN (1) G irF(A

= The WGAN also provides very good results in describing the 1D distributions (and correlations)

- It also exhibit very good interpolation capabilities -> generating a thicknes not previously seen works fine
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Is the GAN really absorbing the geometry? % 1 F (A
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~ The purpose of this system is to produce simulations quickly to be used with a ML method
~ To proof that we really need to see whether the GAN has “absorbed” the geometry

- First thing we can do is the see how the POCA estimation looks for this simulation

Geant4 generated - 16 mm thickness pipe GAN generated - 16 mm thickness pipe
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CNN for pipe thickness regression G iF(A
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-~ A convolutional neural network has been trained to predict the pipe thickness based on POCA
-~ Training dataset based on 90 POCA images per thickness (4, 6, 8, ..., 18 mm thickness)
- Each POCA image is made with 300K muons based on CRY + GEANT4 simulation

- The CNN uses RestNET50 with 4 additional dense layers with 1024, 512, 512 and 256 nodes
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Conclusions & i F(A
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- We have explored the possibility to use GANS to generate fast MC simulation in muography

- Two different kinds of GANSs tested: simple + Wasserstein, conditional GAN
~Both are giving very good results in terms of similarity to the targeted distributions
- The Wasserstein GAN seems to be in general more stable and easier to converge
- The Wasserstein, conditional GAN is able to interpolate to non-trained thicknesses

-~ Our setup has tested only the muon propagation part of the simulation
~If trained with real data from a real detector — capacity to learn the detector response
~We are focusing on this right now as it would be a ML driven detector simulation

~ A CNN has been devised to predict the parameter of interest in a muography problem

- The GAN samples are similar to GEANT4 for the CNN with a speed up of at least x50
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