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Context: muography for industrial applications

➢ Idea: use muon tomography as a Non-Destructive Testing (NDT) technique in the industry

➢Preventive maintenance of equipment (estimation of the degradation)

➢Quality control of the production process (measurement of liquid interfaces, tolerances, etc)

➢Risk assessment and evaluation (continuous monitoring of structural integrity)

➢ Muography has some unique properties that can be very useful for these applications

➢Large power of penetration (no problem to deal with several meters of steel)

➢No need to physically “touch” the object → can be applied to equipment in production
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Some specifics of industrial applications

➢ Industrial applications usually involve to work with very well known geometries

➢ In corrosión, wear, defect, etc detection the nominal geometry is known from designs

➢ A full image reconstruction of the object is not critical for the application

➢ It is more important to estimate accurately a few interesting parameters from the data

Example 1: pipes

Only the thickness of the pipe is interesting for the 
application (1 parameter or maybe a few to account for 
asymmetries in the wear of the walls)

Example 2: ladle furnace

Only the position of the slag-mixture interface is really 
interesting for the  application (1 parameter)
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Suitability for traditional ML methods

➢ Since the number of parameters is relatively small this can be attacked by traditional ML

➢ Simple fully connected DNNs operating in regression mode to the parameters of interest

➢ Basic muon distributions (angular deviation, spatial deviation, etc, etc) can be used as input

➢They can be quantified for example through quantiles or any other technique

➢ Ideally one could use real data to train the algorithms since often this is no problem

➢Think about the pipe problem: companies have hundreds of new, fresh, perfect pipes

➢ To achieve good stats these algorithms require also MC simulations to complete the training

➢This is problematic since tools such as GEANT4 can be very time consuming

➢For example, in a simple setup with pipes can take 6 minutes to simulate one hour of data

➢ Several efforts have been performed to speed up simulations

➢See for example

https://indico.cern.ch/event/1022938/contributions/4487326/

https://indico.cern.ch/event/1022938/contributions/4487326/
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Simulation for scattering muography

➢ Simulation for scattering muography has three different components

Muon flux generation
Muon propagation

through matter Detector simulation

• Most generators parametrize the

muon flux as a function of 

altitude/latitude etc

• This part is usually relatively fast

• CRY is a good example

• Implementation of energy loss

and multiple scattering at least

• Can be very time consuming

specially for complex geometres

• GEANT4 very prcise on this

• A model of the detector response 

has to be considered for precise 

MC simulation

• This part can be critical and it is

typically difficult to implement

• No general récipes, every

detector needs its own model
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Generative Adversarial Neural Networks

➢ We propose to use Generative Adversarial Neural Networks to produce MC simulation
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Our Muography setup (I)

➢ Multiwire Proportional Chambers with tungsten-gold wires of 50 microns diameter every 4mm

➢ Each chamber is a 89x89 cm^2 double layer with orthogonal wires to measure x and y

➢ Custom made electronics, ~ 95% efficiency, few microseconds deadtime, configurable trigger 

1m2
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Our Muography setup (II)

Pipe 

corrosion
Measure of the 

wear: 1mm 

resolution

1 min exposure

Cracks in 

concrete

Measure of the crack 

size:

2mm resolution

10 min exposure time

Real data 3D reconstruction of a 
silicon smelting furnace

Density 

maps

Tailings
0.2g·cm-3 density loss detection

Furnace hearth

Measure of the wall 

refractory:

1cm resolution

15 min exposure

Prestressed 

concrete
grout level detection
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Our Muography setup for the GAN studies

➢ Our GAN simulation is running for a muography setup as the one used for the pipe problem

➢This setup corresponds to the one from Muon Systems (see previous slides)

➢ Simulator target: predict lower segment having the upper segment as input

➢This means that we rely on CRY for the simulation of the upper segment

➢All tests performed on MC samples where detectors are assumed to be perfect

x1, y1, vx1 = atan(θx1), v1y = atan(θy1)

Upper detector

x2, y2, vx2 = atan(θx2), v2y = atan(θy2)

Lower detector

Target variables

Δx=x2 - L vx1 - x1 Δy=y2 - Lvy1 - y1

Δvx= vx2 - vx1 Δvy = vy2 - vy1

L
r=20cm
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First attempt: simple GAN

➢ Our first attempt uses a simple GAN

➢ Keras + TensorFlow

➢The variables of the segment in the first detector are given as input to the generator

➢Loss function: Mean Squared Error

➢Architecture: 512, 256, 256, 128, 64, 16 LeakyReLU

➢Latent space dimension: 64

➢Optimizer: Adam, 0.001 (halves every 50 epochs)

➢Trained for 200 epochs (Total training time ~ 2-3 hours, GeForce RTX 3090)
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Results using a conventional GAN (I)

➢ The GAN is able to produce the correct 1D distributions with a ~ 1 mm resolution

GEANT4 simulation for different

pipe thickness (mm)

r = 16 mm
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Results using a conventional GAN (II)

➢ Correlations among variables seems to be very well described as well by the GAN

r = 16 mm

real

real predicted

predicted
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Second attempt: Wasserstein conditional GAN

➢ Our second attempt uses a Wasserstein conditional GAN

➢Keras + TensorFlow

➢The variables of the segment in the first detector are given as input to the generator

➢The thickness of the pipe to be generated is also provided as input

➢Critic + Loss function → more stability

➢Architecture: 32, 64, 128 LeakyReLU

➢Latent space dimension: 64

➢Optimizer: Adam, 0.001 (halves every 50 epochs)

➢Trained for 1000 epochs (Total training time ~ 2-3 hours, GeForce RTX 3090)
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Results using a conditional WGAN (I)

➢ The WGAN also provides very good results in describing the 1D distributions (and correlations)

➢ It also exhibit very good interpolation capabilities -> generating a thicknes not previously seen works fine
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Is the GAN really absorbing the geometry?

➢ The purpose of this system is to produce simulations quickly to be used with a ML method

➢ To proof that we really need to see whether the GAN has “absorbed” the geometry

➢ First thing we can do is the see how the POCA estimation looks for this simulation

Geant4  generated - 16 mm thickness pipe GAN generated - 16 mm thickness pipe
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CNN for pipe thickness regression

➢ A convolutional neural network has been trained to predict the pipe thickness based on POCA

➢ Training dataset based on 90 POCA images per thickness (4, 6, 8, …, 18 mm thickness)

➢ Each POCA image is made with 300K muons based on CRY + GEANT4 simulation

➢ The CNN uses RestNET50 with 4 additional dense layers with 1024, 512, 512 and 256 nodes

The CNN scores similarly on both 
GEANT4 and GAN samples indicating 
the validity of the method
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Conclusions

➢ We have explored the possibility to use GANs to generate fast MC simulation in muography

➢ Two different kinds of GANs tested: simple + Wasserstein, conditional GAN

➢Both are giving very good results in terms of similarity to the targeted distributions

➢The Wasserstein GAN seems to be in general more stable and easier to converge

➢The Wasserstein, conditional GAN is able to interpolate to non-trained thicknesses

➢ Our setup has tested only the muon propagation part of the simulation

➢If trained with real data from a real detector → capacity to learn the detector response

➢We are focusing on this right now as it would be a ML driven detector simulation

➢ A CNN has been devised to predict the parameter of interest in a muography problem

➢ The GAN samples are similar to GEANT4 for the CNN with a speed up of at least x50


