Muon momentum estimation in scattering tomography

Fourth MODE Workshop on Differentiable Programming for Experiment Design 23-25 September 2024 Valencia

Florian Bury, Maxime Lagrange, for the TomOpt team

Thank you for being here at 9am !!!

Scattering tomography

For a given :

- Material with $X_0(A, \rho)$
- Momentum *p*

The deflection angle is a centred Gaussian with

$$\sigma_{\theta} = \frac{13.6MeV}{p} \sqrt{\frac{x}{X_0}}$$

Measuring track deflection gives access to X_0

Measurement method : $\sigma_{\theta} \sim \theta_{RMS} = \frac{1}{N} \sum_{i}^{N} \Delta \theta_{i}^{2}$

Example : yesterday's great talk by Zahraa !

Florian Bury

4th MODE workshop - Valencia

3

Scattering tomography

For a given :

- Material with $X_{\rho}(A,\rho)$
- Momentum *p*

Possible solution : inverse the formula $p = \frac{13.6MeV}{\theta_{BMG}} \sqrt{\frac{x}{X_0}}$

Florian Bury

Full detector objective

Florian Bury

Tomography section

Momentum measurement

- From hits obtain segments
- From segments obtain scattering angles
- Take RMS and plug in

$$p = \frac{13.6 MeV}{\theta_{RMS}} \sqrt{\frac{x}{X_0}}$$

Florian Bury

4th MODE workshop - Valencia

Maybe we can extract more than that

First ML attempt

Let us use a simple 3-layer DNN on the scattering angles

Florian Bury

Improved attempt

Adding more interesting variables

Florian Bury

Improved attempt

A more quantitative comparison

Florian Bury

Florian Bury

More complex architectures

Only deviations from a linear track carry information about the energy

Florian Bury

Dealing with scale

Florian Bury

Dealing with scale

Dealing with scale

More complex architectures : deviations as a sequence

Recurrent neural network (RNN) "Many-to-one" scheme

- Sequential processing (not parallel, slow)
- No geometrical info

More complex architectures : deviations as a sequence

Transformer encoder

18

After *N* steps :
$$h_G = \bigoplus_{i \in G} x_i^{(N)}$$
 then fed to a DNN for regression
(\oplus can again be simple (eg, mean) or complex (ML))

Florian Bury

(\oplus can again be simple (eg, mean) or complex (ML))

Florian Bury

$$\mathbf{x}_{i}^{(k)} = \gamma^{(k)} \left(\mathbf{x}_{i}^{(k-1)}, \bigoplus_{j \in \mathcal{N}(i)} \phi^{(k)}(\mathbf{x}_{i}^{(k-1)}, \mathbf{x}_{j}^{(k-1)}, \mathbf{e_{ij}}) \right)$$

Here PointGCN (other block models in back-up)

Not satisfactory, still have to play with aggregation and models

Florian Bury

Block 1

More complex architectures : comparing performance

Model summary

- Model size
 - DNN: 18K params / 0.07 MB
 - RNN : 165K params / 0.62 MB
 - TNN : 430K params / 1.64 MB
 - GNN : 100K params / 0.40 MB
- Computation time (batch size = 1024, GPU GeForce RTX 2080)
 - DNN : 21 μs / muon
 - RNN : 60 μs / muon
 - \circ TNN : 24 µs / muon
 - GNN : 80 μs / muon

(note : CPU batching not optimised)

Florian Bury

Effect of spatial resolution

Using a Gaussian smearing on x and y hit position

$$x, y \sim \mathcal{N}(\mu = 0, \sigma = 1 \text{ mm})$$

(typical resolution of RPC detectors)

ML methods can limit the issue of the limited precision ... up to a point

Florian Bury

Florian Bury

4th MODE workshop - Valencia

25

Effect of hit efficiency

Missed variables are zero-padded

For 8 detector planes (3 scatterer volumes) :

- $\epsilon = 90\%$: N_{8 hits} = 43%, N_{7 hits} = 38%, N_{6 hits} = 15%
- $\epsilon = 95\%$: $N_{8 \text{ hits}} = 66\%$, $N_{7 \text{ hits}} = 28\%$, $N_{6 \text{ hits}} = 5\%$
- $\epsilon = 99\%$: N_{8 hits} = 92%, N_{7 hits} = 7%, N_{6 hits} = <1%

Model is trained on a mix of datasets (fit and deviations done only on recorded hits)

Florian Bury

4th MODE workshop - Valencia

For 8 detector planes (3 scatterer volumes) :

Florian Bury

4th MODE workshop - Valencia

Resolution estimation

Mixture density network (MDN)

Correctly predicts the 1 σ range of E_{true}

Note : can also be done with TNN or GNN as backbone

Florian Bury

Resolution estimation

Florian Bury

Florian Bury

4th MODE workshop - Valencia

30

DNN fitter not perfect (especially at high energies) Can be recovered by specific training

Florian Bury

Conclusion

 $p = \frac{13.6 MeV}{\theta_{RMS}} \sqrt{\frac{x}{X_0}}$

Advanced ML architectures allow extracting more information from the scattering

Detector-specific predictions

Done :

- Hit efficiency
- Hit resolution
- Posterior P(E_{true}|E_{pred})
- End-to-end model

To-dos :

- Modify E distributions
- Different detector setups
- Optimize architectures

Detector agnostic predictions

- Exploit symmetries more explicitly (contrastive learning)
- Generative pre-training
- Test within TomOpt

Conclusion

Advanced ML architectures allow extracting more information from the scattering Experimental requirements are met : $13.6 MeV \sqrt{x}$

- Hit efficiency
- Hit resolution
- Posterior $P(E_{true}|E_{pred})$
- End-to-end model

Future checks :

- Modify E spectrum in training
- Hyperparameter scans
- Test different setups (#planes, X₀)

Future developments :

- Include symmetry (contrastive learning)
- Generative pre-training

$$p = \frac{13.6 MeV}{\theta_{RMS}} \sqrt{\frac{x}{X_0}}$$

Specific detector

Detector-agnostic predictions (TomOpt)

Florian Bury

Effect of hit efficiency

Model only trained on 8 hits, evaluated on 6, 7 and 8 hits

35

DNN fitter

DNN fitter

Deviations from linear track 7 Track E = 0.2 GeV 2.00 Track E = 0.5 GeV 6 1.75 **DNN** fitter Track E = 1.0 GeV $\theta_{hit} - \theta_{vack}$ [rad] (relative) Track E = 2.0 GeV E 1.50 1.25 4 Track E = 3.0 GeV Track E = 4.0 GeV π Track E = 5.0 GeV E 1.00 Track E = 10.0 GeV ₹ 0.75 Track E = 20.0 GeV Track E = 30.0 GeV 0.50 Track E = 40.0 GeV Track E = 50.0 GeV -2 0.25 511 Track E = 100.0 GeV 0.00 -500 -1000 -1500 -1000 -1500 311 0 0 -500 Ztrack [mm] Ztrack [mm] Deviations from linear track fitter Track E = 0.2 GeV 子 2.00 8 Track E = 0.5 GeV 1.75 Track E = 1.0 GeV - θ_{rack} [rad] (relative) Track E = 2.0 GeV 6 الله 1.50 ۱.25 الله Track E = 3.0 GeV Classic Track E = 4.0 GeV 1.25 Track E = 5.0 GeV π ě 1.00 Track E = 10.0 GeV Track E = 20.0 GeV ₹ 0.75 Track E = 30.0 GeV 2 θhit 0.50 Track E = 40.0 GeV Track E = 50.0 GeV 50 0.25 Track E = 100.0 GeV 0 0.00 0 -250 -500 -750 -1000 -1250 -1500 -250 -500 -750 -1000 -1250 -1500 317 0 Ztrack [mm] Ztrack [mm]

Florian Bury

4th MODE workshop - Valencia

$$\mathbf{x}_{i}^{(k)} = \gamma^{(k)} \left(\mathbf{x}_{i}^{(k-1)}, \bigoplus_{j \in \mathcal{N}(i)} \phi^{(k)}(\mathbf{x}_{i}^{(k-1)}, \mathbf{x}_{j}^{(k-1)}, \mathbf{e_{ij}}) \right)$$

Many models on the market (see <u>pytorch-geometric</u>), the following are considered :

- Convolutional-based : in feature space x (in my case x_i = deviations { $\Delta x_i, \Delta y_i, z_i$ })
 - GCN [1] (2016) : \oplus = mean and ϕ = linear layer
 - GAT(v2) [2][3] (2017,2021) : \oplus = mean (concat per head) and ϕ = attention mechanism
 - GraphSAGE [4] (2017) : \oplus = max, ϕ = linear layer + ReLU and γ = linear layer on concat
 - EdgeConv [5] (2018): \oplus = mean/sum/max/... and ϕ = NN applied on concat(x_i, x_j, x_i, x_j)
 - GIN [6] (2018) : \oplus = sum and γ = NN on (variable) weighted sum of x_i and the aggregation
 - PNA [7] (2020) : \oplus = several aggregations combined and scaled, γ , ϕ = NN
- Point-based : depends on positions p_i (with potential addition of node features x_i)
 - PointNet [8] (2016) : \oplus = max, γ =NN and ϕ = NN applied on concat($\mathbf{x}_{i}, \mathbf{p}_{i}, \mathbf{p}_{i}, \mathbf{p}_{i}$)
 - PointTransformer [9] (2020) : more complex attention mechanism based on x_i and $p_i p_i$

Florian BurgointGCN [10] (2020) thmore pleased on x, and p, p