Muon momentum estimation in scattering tomography

Fourth MODE Workshop on Differentiable Programming for Experiment Design 23-25 September 2024 Valencia

Florian Bury, Maxime Lagrange, for the TomOpt team

Thank you for being here at 9am !!!

Scattering tomography

For a given :

- Material with $X_0(A,\rho)$
- Momentum *p*

The deflection angle is a centred Gaussian with

$$
\sigma_{\theta} = \frac{13.6 MeV}{p} \sqrt{\frac{x}{X_0}}
$$

Measuring track deflection gives access to X_{α}

Measurement method : $\sigma_{\theta} \sim \theta_{RMS} = \frac{1}{N} \sum_{i=1}^{N} \Delta \theta_i^2$

Example : yesterday's great [talk](https://indico.cern.ch/event/1380163/contributions/6058091/) by Zahraa !

Florian Bury 4th MODE workshop - Valencia

3

Scattering tomography

For a given :

- Material with $X_0(A,\rho)$
- Momentum *p*

Possible solution : inverse the formula

$$
p = \frac{13.6 MeV}{\theta_{RMS}} \sqrt{\frac{x}{X_0}}
$$

Florian Bury 4th MODE workshop - Valencia

4

Full detector objective

Florian Bury 4th MODE workshop - Valencia

Tomography section

Momentum measurement

- From hits obtain segments
- From segments obtain scattering angles
- Take RMS and plug in

$$
p = \frac{13.6 MeV}{\theta_{RMS}} \sqrt{\frac{x}{X_0}}
$$

Florian Bury 4th MODE workshop - Valencia

True energy [GeV]

Maybe we can extract more than that

First ML attempt

Let us use a simple 3-layer DNN on the scattering angles

Improved attempt

Adding more interesting variables

Improved attempt

A more quantitative comparison

More complex architectures

Only deviations from a linear track carry information about the energy

Dealing with scale

Dealing with scale

Dealing with scale

More complex architectures : deviations as a sequence

Recurrent neural network (RNN) "Many-to-one" scheme

- Sequential processing (not parallel, slow)
- No geometrical info

More complex architectures : deviations as a sequence

Transformer encoder

18

After N steps:
$$
h_G = \bigoplus_{i \in G} x_i^{(N)}
$$
 then fed to a DNN for regression
(\oplus can again be simple (eg, mean) or complex (ML))

 $(\oplus$ can again be simple (eg, mean) or complex (ML))

$$
\mathbf{x}_i^{(k)} = \gamma^{(k)}\left(\mathbf{x}_i^{(k-1)}, \bigoplus_{j \in \mathcal{N}(i)} \phi^{(k)}(\mathbf{x}_i^{(k-1)}, \mathbf{x}_j^{(k-1)}, \mathbf{e_{ij}})\right)
$$

Here PointGCN (other block models in back-up)

Not satisfactory, still have to play with aggregation and models

More complex architectures : comparing performance

Model summary

- Model size
	- DNN : 18K params / 0.07 MB
	- RNN : 165K params / 0.62 MB
	- TNN : 430K params / 1.64 MB
	- GNN : 100K params / 0.40 MB
- Computation time (batch size = 1024, GPU GeForce RTX 2080)
	- \circ DNN : 21 µs / muon
	- RNN : 60 µs / muon
	- \circ TNN : 24 µs / muon
	- o GNN : 80 µs / muon

(note : CPU batching not optimised)

Effect of spatial resolution

Using a Gaussian smearing on x and y hit position

$$
x, y \sim \mathcal{N}(\mu = 0, \sigma = 1 \text{ mm})
$$

(typical resolution of RPC detectors)

ML methods can limit the issue of the limited precision … up to a point

Florian Bury 4th MODE workshop - Valencia

25

Effect of hit efficiency

Missed variables are zero-padded

For 8 detector planes (3 scatterer volumes) :

- $\varepsilon = 90\%$: N_{8 hits} = 43%, N_{7 hits} = 38%, N_{6 hits} = 15%
- $\varepsilon = 95\%$: N_{8 hits} = 66%, N_{7 hits} = 28%, N_{6 hits} = 5%
- $\varepsilon = 99\%$: N_{8 hits} = 92%, N_{7 hits} = 7%, N_{6 hits} = <1%

Model is trained on a mix of datasets (fit and deviations done only on recorded hits)

Florian Bury 4th MODE workshop - Valencia

For 8 detector planes (3 scatterer volumes) :

Florian Bury 4th MODE workshop - Valencia

Resolution estimation

Neural network Mixture model $\alpha_i(x)$ $\bigcirc^{\mu_i(x)}$ x $p(y|x)$ $\sum \sigma_i(x)$ $p(E|x,\theta) = \sum_{i} \pi_i \frac{1}{\sqrt{2\pi \sigma_i^2}} e^{-\frac{(x-\mu_i)^2}{2\sigma_i^2}}$ $\mu_i \equiv \mu_i(x|\theta), \sigma_i \equiv \sigma_i(x|\theta), \pi_i \equiv \pi_i(x|\theta)$ $L(t, \{\mu_i, \sigma_i, \pi_i\}) = -\log \left(\sum_i \exp(\log(\pi_i) - \log \sigma_i - \frac{1}{2}(\frac{t - \mu_i}{\sigma_i})^2) \right)$

Mixture density network (MDN)

Correctly predicts the 1 σ range of E_{true}

Note : can also be done with TNN or GNN as backbone

Florian Bury 4th MODE workshop - Valencia

29

Florian Bury 4th MODE workshop - Valencia

30

DNN fitter not perfect (especially at high energies) Can be recovered by specific training

Conclusion

 $p = \frac{13.6 MeV}{\theta_{BMS}}\sqrt{ }$ $\frac{x}{X_{\alpha}}$

Advanced ML architectures allow extracting more information from the scattering

Detector-specific predictions

Done:

- **Hit efficiency**
- Hit resolution
- Posterior $P(E_{true}|E_{pred})$
- **End-to-end model**

To-dos :

- **Modify E distributions**
- **Different detector setups**
- Optimize architectures

Detector agnostic predictions

- Exploit symmetries more explicitly (contrastive learning)
- Generative pre-training
- **Test within TomOpt**

Conclusion

Advanced ML architectures allow extracting more information from the scattering Experimental requirements are met :

- **Hit efficiency**
- **Hit resolution**
- Posterior $P(E_{true}|E_{pred})$
- End-to-end model

Future checks :

- Modify E spectrum in training
- Hyperparameter scans
- Test different setups (#planes, X_0)

Future developments :

- Include symmetry (contrastive learning)
- Generative pre-training

$$
p = \frac{13.6 MeV}{\theta_{RMS}} \sqrt{\frac{x}{X_0}}
$$

Specific detector

Detector-agnostic predictions (TomOpt)

Effect of hit efficiency Model only trained on 8 hits, evaluated on 6, 7 and 8 hits

35

DNN fitter

DNN fitter

Deviations from linear track $\frac{\pi}{2}$ 8 Track $E = 0.2$ GeV 聖 2.00 Track $E = 0.5$ GeV 6 1.75 Track $E = 1.0$ GeV **DNN fitter** $\theta_{hit} - \theta_{\text{track}}$ [rad] (relative) Track $E = 2.0$ GeV $\begin{array}{ll} \fbox{$\stackrel{\frown}{\in}$} & 1.50 \\ \hline \frac{\xi}{2} & 1.25 \end{array}$ \overline{a} Track $E = 3.0$ GeV Track $E = 4.0$ GeV π Track $E = 5.0$ GeV $\frac{5}{2}$ 1.00 Track $E = 10.0$ GeV Track $E = 20.0$ GeV 흔 0.75 Track $E = 30.0$ GeV 0.50 Track $E = 40.0$ GeV Track $E = 50.0$ GeV -2 0.25 $\frac{5\pi}{2}$ Track $E = 100.0$ GeV 0.00 $rac{3n}{2}$ -500 -1000 -1500 -500 -1000 -1500 \circ \circ $z_{track} [mm]$ Ztrack [mm] Deviations from linear track $\frac{\pi}{2}$ **Classic fitter** Track $E = 0.2$ GeV 꽃 $^{\rm 8}$ 2.00 Track $E = 0.5$ GeV 1.75 Track $E = 1.0$ GeV $-\theta_{\text{track}}$ [rad] (relative) Track $E = 2.0$ GeV 6 $\overline{\mathsf{E}}_{\mathsf{1.25}}^{\mathsf{1.50}}$ Track $E = 3.0$ GeV 1.25 Track $E = 4.0$ GeV π Ω Track $E = 5.0$ GeV ĕ 1.00 Track $E = 10.0$ GeV Track $E = 20.0$ GeV $\frac{3}{5}$ 0.75 Track $E = 30.0$ GeV $\overline{2}$ θ_{hit} 0.50 Track $E = 40.0$ GeV Track $E = 50.0$ GeV 0.25 묲 Track $E = 100.0$ GeV \circ 0.00 -250 -500 -750 -1000 -1250 -1500 $-250 - 500 - 750 - 1000 - 1250 - 1500$ $rac{3\pi}{2}$ \circ 0 z_{track} [mm] Ztrack [mm]

$$
\mathbf{x}_i^{(k)} = \gamma^{(k)} \left(\mathbf{x}_i^{(k-1)}, \bigoplus_{j \in \mathcal{N}(i)} \phi^{(k)}(\mathbf{x}_i^{(k-1)}, \mathbf{x}_j^{(k-1)}, \mathbf{e_{ij}}) \right)
$$

Many models on the market (see [pytorch-geometric\)](https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-layers), the following are considered :

- **•** Convolutional-based : in feature space \boldsymbol{x} (in my case \boldsymbol{x}_i = deviations $\{\Delta x_i, \Delta y_i, z_i\}$)
	- \circ GCN [\[1\]](https://arxiv.org/abs/1609.02907) (2016) : ⊕ = mean and ϕ = linear layer
	- GAT(v2) $[2][3]$ $[2][3]$ (2017,2021) : ⊕ = mean (concat per head) and ϕ = attention mechanism
	- \circ GraphSAGE [\[4\]](https://arxiv.org/abs/1706.02216) (2017) : ⊕ = max, ϕ = linear layer + ReLU and γ = linear layer on concat
	- EdgeConv [\[5\]](https://arxiv.org/abs/1801.07829) (2018): ⊕ = mean/sum/max/... and ϕ = NN applied on concat($\mathbf{x}_i \mathbf{x}_i \mathbf{x}_j$)
	- \circ GIN [\[6\]](https://arxiv.org/abs/1810.00826) (2018) : ⊕ = sum and γ = NN on (variable) weighted sum of \mathbf{x}_i and the aggregation
	- o PNA [\[7\]](https://arxiv.org/abs/1810.00826) (2020) : ⊕ = several aggregations combined and scaled, γ , ϕ = NN
- \bullet Point-based : depends on positions \boldsymbol{p}_i (with potential addition of node features \boldsymbol{x}_i)
	- PointNet $[8]$ (2016) : ⊕ = max, γ =NN and ϕ = NN applied on concat(\mathbf{x}_i , \mathbf{p}_i - \mathbf{p}_j)
	- \circ PointTransformer <u>[\[9\]](https://arxiv.org/abs/2012.09164)</u> (2020) : more complex attention mechanism based on \boldsymbol{x}_i and \boldsymbol{p}_i - \boldsymbol{p}_j

Florian Bur^{PointGCN} [\[10\]](https://arxiv.org/abs/2003.01251) (2020) in MODDENG With 3 NNs vared on *x_i* and *p_i*