

AI for MMCs

Utilizing Neuronal Networks to Enhance the Application of Metallic-Magnetic Calorimeters for X-ray Spectroscopy

M.O. Herdrich^{1,2,3}, T. Mattis⁴, and Th. Stöhlker^{1,2,3}

¹ Helmholtz Institute Jena

² IOQ / Friedrich-Schiller-University Jena

³ GSI Helmholtz-Center for Heavy Ion Research, Darmstadt

⁴ Hasso Plattner Institute, Potsdam

4th MODE Workshop, Valencia, 09/24/2024

I Introduction

Al for MMCs

Motivation: Atomic Physics

Quantum Electro Dynamics (QED)

Light elements $Z\alpha \ll 1$: Only perturbative correction and most precisely measured theory **BUT:** Heavy elements $Z\alpha \approx 1$: Theory is very complex (all orders) and experiments are sparse \rightarrow Validation required in form of high precision experiments.

www.hi-jena.de

Methods: X-Ray Spectroscopy

Technology: Microcalorimeters

Challenges: How to extract a spectrum?

Typical thermal capacity

$$C \approx 1 \frac{\mathrm{pJ}}{\mathrm{K}} \rightarrow \frac{\Delta T}{\Delta E} \approx 100 \frac{\mu K}{keV}$$

Operation requires very intricate hardware (cooling < 20 mK, read-out, amplification, ...)

High sensitivity leads to susceptibility for external noise (vibrations, external fields, ...)
⇒ Digital pulse shape analysis required to mitigate artifacts

→ A multitude of hardware settings and numerical parameters require optimization
 So far: Very labor intensive, partially manual process

Fast **signal rise** time up to $\tau_0 \approx 100$ ns

Excellent **linearity** $\Delta E / E < 5.9\% @ 60 \text{ keV}$

High energy resolution $\Delta E_{FWHM} = 1.25 \text{ eV} @ 6 \text{ keV}$ [1]

Signal $\propto \Delta T = \frac{\Delta E}{C}$ $C \propto V = d \cdot A$ efficiency small small small small

Future: Thousands of pixels \Rightarrow manual optimization per pixel not possible

[1] F. Toschi et al., Phys. Rev. D 109, 043035 (2023)

Helmholtz Institute lena

II Thought Process

AI for MMCs

Enhance MMCs using AI?

Where to start?

First idea: Hardware

Amplification/Read-out SQUID tuning Supervised learning cycle: SQUID parameters vs. performance ♣ Could benefit more groups than just us

– Long learning cycle

Software

Feature extraction from raw detector signals

- Signal characterization
- Pulse shape analysis
- Artifact correction

Traditional Pulse Shape Analysis

The Universal Detector

How to label data that you want to find labels for?

Reverse the analysis process!

Utilize, that we know analytically, how our signals should look like.

 \Rightarrow Postpone the problem of using real-world data for training. Evaluate the feasibility of a NN-based approach fast.

Lets us generate ...

well-defined pulses ...

for **arbitrary** MMCs ... and as **many** as we need.

III Implementation

AI for MMCs

Improvement: Autoencoder

MLP = Multi-Layer Perceptron

Latent Space

Principle Component Analysis (PCA) of the embedded signals with n = 3:

www.hi-jena.de

Helmholtz Institute Jena

Results I: Synthetic Data

Neuronal network beats traditional filter!

Real World Data

www.hi-jena.de

Helmholtz Institute Jena

Real World Data Embedding

Real-world 4 2 0 -2 -4150 100 50 -100_50 0 50 100 150 200 250 0 -50 -100-150

Real-World data embedding is a subvolume of synthetic Data

• Synthetic

Results II: Real World Data

Real-world spectrum from NN trained on synthetic data

Conclusion and Outlook

Summary

MMCs as promising tool for high precision X-ray spectrometers Require a lot of knowledge about each individual detector channel Need to explore new ways to optimize the read-out scheme

Many opportunities to use methods of AI to enhance MMC application Chosen to start with pulse shape analysis because it's most accessible Use synthetic pulses to bootstrap the process Make the NN learn the general pulse shape

Use CVAE to find embedding of pulse into a lower dimensional latent space Map compressed pulse information to signal parameters via MLP Successful benchmark against currently used FIR algorithm Real-world data subspace of synthetic data embedding **Real-world data spectrum from NN trained on synthetic data**

Future Plans

Near: Improve inclusion of real-world data into training

Use Generative Adversary Network (GAN) to improve generator

Use CVAE+MLP to generate iteratively generate pseudo-labels

Mid: Implement more signal read-out steps

Far: Automated SQUID-tuning with supervised learning

Thank your for your attention!

Thank you to everyone who has participated and helped (non-exhaustive list)

HI JENA Helmholtz-Institut Jena

HI-J / IOQ C. Hahn F. Kröger G. Weber O. Forstner P. Pfäfflein

S. Bernitt

S. Fritzsche

Th. Stöhlker

GSI A. Gumberidze A. Kalinin C. Brandau G. Vorobjev M. Lestinsky N. Petridis N. Petridis N. Stahlkamp P.-M. Hillenbrand S. Trotsenko T. Gassner

- T. Morgenroth
- U. Spillmann
- Ö. Gülsever

KIP A. Fleischmann C. Enss C. Schötz D. Hengstler J. Geist M. Keller M. Krantz S. Allgeier

LKB P. Indelicato

emmi

Financial support

Backup

Dillusion Cryostat

Working Principles

MMC Sensor

Few 100 ppm of Er in Ag / Au

[Kr]4d¹⁰4f¹¹5s²5p⁶ 2 Å, closed 0.6 Å, 3 e⁻ missing →magnetic moment < 100 K: interaction with crystal field splits ground state

Thermal energy into Zeeman System

Random spin flips out of orientation

$$\Delta M = -\frac{1}{VB}C_{\rm Z}\Delta T$$

SQUID

 $I_{\rm b}$

SQUID magnetometer for sensor read-out Superconducting Quantum-Interference Device Sensitive to changes in magnetic flux

 Φ_{s}

S

 $I_{\rm J} = I_{\rm c} \sin \Delta \phi$ — Flux modulates phase Like optical interferometer

Flux-quantization in closed sc loop \rightarrow shielding I_s Overlapping bias I_b and shielding I_s shift critical I_c Quasi-particle flow leads to U-drop across SQUID

HI JENA Helmholtz Institute Jena

Read-out and Amplification

Gradiometric setup cancels global temperature fluctuation

Imbalance by design creates temperature sensitive pixels

Signal, S(t)

Flux-locked loop (FLL) to stabilize operation point Cryogenic SQUID based multistage amplifier

Resolution

Ideal Case: Only one thermal capacity Noise from thermal fluctions

Reality: Multiple coupled systems

Additional noise sources (environment, read-out, ...)

FIR-based Signal Processing

First Attempt: CNN

Comparable results to traditional filtering method.

- + Outperforms FIR aproach in scenarios with high parameter jitter.
- Unstable during training.
- Difficult to train with real-world data.

MLP = Multi-Layer Perceptron