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Overview — IceCube-Gen2 detector

e The lceCube detector at the South
Pole can detect cosmological

high-energy neutrinos.
e lceCube-Gen? is being developed.

e We consider the radio emission of

particle showers.

e Radio detectors can still be optimized. K/
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Overview — Aim of the project

e Part of a bigger aim to create an end-to-end optimization pipeline.
= NuRadioOpt, see Christian’s talk

science output, e.g.,
- neutrino-nucleon cross-section
- source discovery

automatic differentiation - flux measurement

v W erncion Mo

detector parameters, e.g.,
- antenna positions
- antenna orientation

costs,
engineering

constraints

e We focus on the MC simulation part.
e Train a differentiable surrogate model to generate radio signals.
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Model architecture
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e A denoising diffusion probabilistic model (DDPM) is used to
generate normalized samples xg from random noise ¢, conditional on
the viewing angle 6 and the energy E.

e A neural network is employed to predict the amplitude a of the
generated signal (a-Net).

e Subsequently, xp and a are combined to form the final signal x.
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Amplitude prediction network (a-Net)

e Normalized waveforms xg are fed into a neural network to predict
the amplitude.

e Combination of convolutional and fully-connected layers.

e Conditional on E and 6.

X0

CNN

—> NN —logyy(a)
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Results: amplitude prediction
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Left: the main reason for using the a-Net is the large spread in signal

amplitudes.

Right: the network manages to predict the amplitudes with high

accuracy.

6/17



Denoising diffusion probabilistic models (DDPMs)
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We use the implementation from
https://github.com/lucidrains/denoising-diffusion-pytorch. 7/17


https://github.com/lucidrains/denoising-diffusion-pytorch

Results: generated samples

real samples generated samples

ey E=126e+15eV, 6=36.82°, simulated samples o7 E=126e+15eV, =36.82°, generated samples

] 200 400 500 800 [ 200 400 500, 800

les  E=100e+17ev, §=74.82°, simulated samples s E=100e+17eV, 6=74.82°, generated samples

8/17



Results: distribution of summary statistics

e Use summary statistics to evaluate the accuracy of the generated
data distribution.

e E.g., the energy fluence ¢:

E = 1.26e+15eV, 6=36.82° E = 1.00e+17eV, 6=55.82° E = 7.94e+18eV, 6=65.82°
3 [pKS=0.089 pK5=0.000

W1=0.005
A =0.1%
5 180 =2.0%

-8 -6 -4
log10(y) log10(y) log10(y)

0 0.0
—11.25 -11.00 -10.75 -10.50

e There generally is a good match for low energies.

e At higher energies, we still often have Au > 10%.
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e The vanilla DDPM does not automatically learn the correct



Model architecture to ensure correct /-dependence

We modify the model architecture to enable the correct #-dependence:

€ —| DDPM 0-Net oy T
\ \ A l
0
_ a
B a-Net

e The DDPM generates samples at a fixed angle 6.

e A separate network (the #-Net) transforms these samples into the
corresponding signals at arbitrary angles 6.
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Angle modification network (/-Net)

—{ preprocessing CNN |-

) T

E

e Samples at the fixed angle 0y = 75.32° serve as input.
e The samples are preprocessed via a loose geometric relationship.

e A convolutional network finetunes the transformed signals.
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Generating samples using the 6-Net

E = 2.51e+16eV, 6=43.32°
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Generating samples using the 6-Net

E =2.51e+16eV, 6=43.32°
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Generating samples using the 6-Net

E = 2.51e+16eV, 6=43.32°
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Generating samples using the 6-Net

E = 2.51e+16eV, 6=43.32°
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Results

e Using the 0-Net, the correct 6-dependence is recovered with high

accuracy.
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Simple optimization experiment

e Test whether the backpropagation through the networks yields useful
gradients.

e We optimize the viewing angle 6 to obtain (normalized) signals that
are as ‘squeezed’ as possible.

e That is, we minimize

AGa(0) = [ " o(6,0)]dt (1)

J —oco

with respect to 6.
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Results: simple optimization experiment
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e Reasonable results with both architectures.

e The model with #-net converges faster and the results are more
accurate.

e The VRAM requirements are significantly lower with the #-Net

architecture (1GB vs 20GB).
16/17



Summary and outlook

Summary:

e DDPMs can generate realistic radio signals
e Modular model design improves the results

e deal with wide range of amplitudes
e ensure the correct angle-dependence

e Gradients are suitable for optimization
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e Further model tuning to obtain good results at all energies
e Reduce overfit to existing data

e Combine with other elements of optimization pipeline
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Thanks for your attention!
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