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Overview – IceCube-Gen2 detector

• The IceCube detector at the South

Pole can detect cosmological

high-energy neutrinos.

• IceCube-Gen2 is being developed.

• We consider the radio emission of

particle showers.

• Radio detectors can still be optimized.
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Overview – Aim of the project

• Part of a bigger aim to create an end-to-end optimization pipeline.

⇒ NuRadioOpt, see Christian’s talk

• We focus on the MC simulation part.

• Train a differentiable surrogate model to generate radio signals.
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Model architecture

• A denoising diffusion probabilistic model (DDPM) is used to

generate normalized samples x0 from random noise ϵ, conditional on

the viewing angle θ and the energy E .

• A neural network is employed to predict the amplitude a of the

generated signal (a-Net).

• Subsequently, x0 and a are combined to form the final signal x .
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Amplitude prediction network (a-Net)

• Normalized waveforms x0 are fed into a neural network to predict

the amplitude.

• Combination of convolutional and fully-connected layers.

• Conditional on E and θ.

NN

CNN
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Results: amplitude prediction
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Left: the main reason for using the a-Net is the large spread in signal

amplitudes.

Right: the network manages to predict the amplitudes with high

accuracy.
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Denoising diffusion probabilistic models (DDPMs)

We use the implementation from

https://github.com/lucidrains/denoising-diffusion-pytorch. 7/17

https://github.com/lucidrains/denoising-diffusion-pytorch


Results: generated samples

real samples generated samples
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Results: distribution of summary statistics

• Use summary statistics to evaluate the accuracy of the generated

data distribution.

• E.g., the energy fluence ψ:

• There generally is a good match for low energies.

• At higher energies, we still often have ∆µ > 10%.
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Results: θ-dependence

• The model needs to be capable of generating the resulting signals

for the same event at different viewing angles θ.

• The vanilla DDPM does not automatically learn the correct

θ-dependence.
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Model architecture to ensure correct θ-dependence

We modify the model architecture to enable the correct θ-dependence:

• The DDPM generates samples at a fixed angle θ0.

• A separate network (the θ-Net) transforms these samples into the

corresponding signals at arbitrary angles θ.
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Angle modification network (θ-Net)

preprocessing CNN

• Samples at the fixed angle θ0 = 75.32◦ serve as input.

• The samples are preprocessed via a loose geometric relationship.

• A convolutional network finetunes the transformed signals.
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Generating samples using the θ-Net

13/17



Generating samples using the θ-Net
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Generating samples using the θ-Net
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Generating samples using the θ-Net
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Results: θ-dependence with θ-Net

• Using the θ-Net, the correct θ-dependence is recovered with high

accuracy.
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Simple optimization experiment

• Test whether the backpropagation through the networks yields useful

gradients.

• We optimize the viewing angle θ to obtain (normalized) signals that

are as ‘squeezed’ as possible.

• That is, we minimize

A(x0(θ)) =

∫ ∞

−∞
|x0(t, θ)|dt (1)

with respect to θ.
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Results: simple optimization experiment

• Reasonable results with both architectures.

• The model with θ-net converges faster and the results are more

accurate.

• The VRAM requirements are significantly lower with the θ-Net

architecture (1GB vs 20GB).
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Summary and outlook

Summary:

• DDPMs can generate realistic radio signals

• Modular model design improves the results

• deal with wide range of amplitudes

• ensure the correct angle-dependence

• Gradients are suitable for optimization

Outlook:

• Further model tuning to obtain good results at all energies

• Reduce overfit to existing data

• Combine with other elements of optimization pipeline

Thanks for your attention!
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