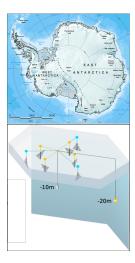


A surrogate model for the generation of radio pulses from neutrinos for IceCube-Gen2

Overview – IceCube-Gen2 detector

- The IceCube detector at the South Pole can detect cosmological high-energy neutrinos.
- IceCube-Gen2 is being developed.
- We consider the radio emission of particle showers.
- Radio detectors can still be optimized.

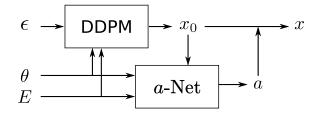


Overview – Aim of the project

• Part of a bigger aim to create an end-to-end optimization pipeline.

- We focus on the MC simulation part.
- Train a differentiable surrogate model to generate radio signals.

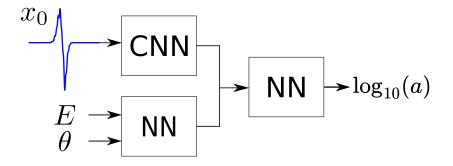
Model architecture



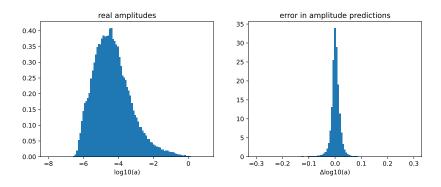
- A denoising diffusion probabilistic model (DDPM) is used to generate normalized samples x₀ from random noise ε, conditional on the viewing angle θ and the energy E.
- A neural network is employed to predict the amplitude *a* of the generated signal (a-Net).
- Subsequently, x_0 and a are combined to form the final signal x.

Amplitude prediction network (a-Net)

- Normalized waveforms x₀ are fed into a neural network to predict the amplitude.
- Combination of convolutional and fully-connected layers.
- Conditional on E and θ .



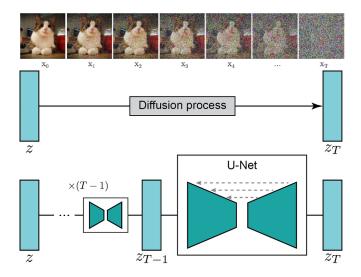
Results: amplitude prediction



Left: the main reason for using the a-Net is the large spread in signal amplitudes.

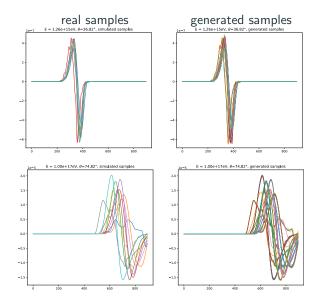
Right: the network manages to predict the amplitudes with high accuracy.

Denoising diffusion probabilistic models (DDPMs)



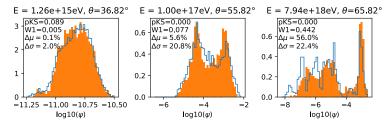
We use the implementation from https://github.com/lucidrains/denoising-diffusion-pytorch.

Results: generated samples



Results: distribution of summary statistics

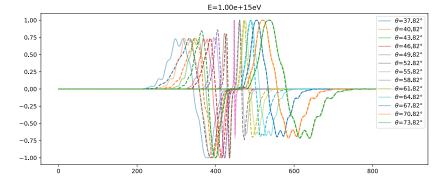
- Use summary statistics to evaluate the accuracy of the generated data distribution.
- E.g., the energy fluence ψ :



- There generally is a good match for low energies.
- At higher energies, we still often have $\Delta \mu > 10\%$.

Results: θ -dependence

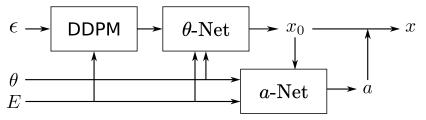
 The model needs to be capable of generating the resulting signals for the same event at different viewing angles θ.



• The vanilla DDPM does not automatically learn the correct θ -dependence.

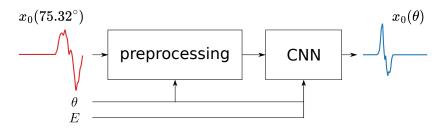
Model architecture to ensure correct θ -dependence

We modify the model architecture to enable the correct θ -dependence:

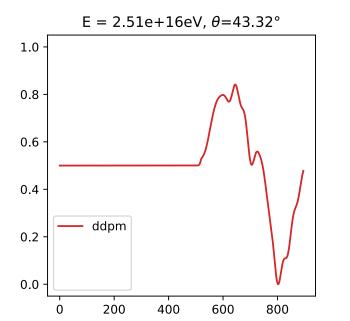


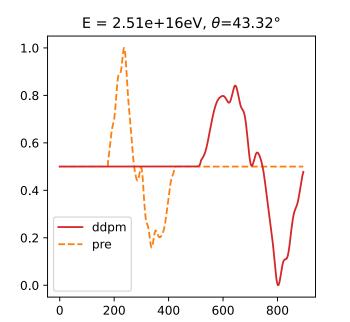
- The DDPM generates samples at a fixed angle θ_0 .
- A separate network (the θ-Net) transforms these samples into the corresponding signals at arbitrary angles θ.

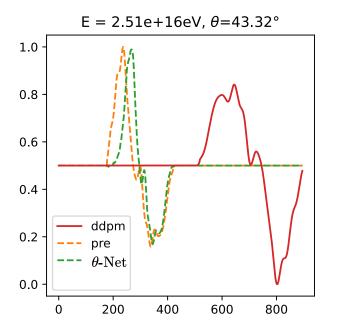
Angle modification network (θ -Net)

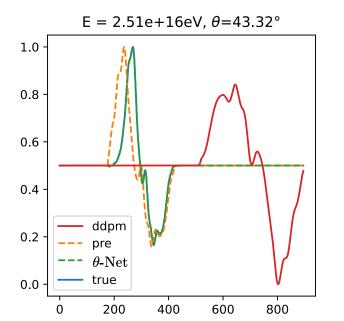


- Samples at the fixed angle $\theta_0 = 75.32^\circ$ serve as input.
- The samples are preprocessed via a loose geometric relationship.
- A convolutional network finetunes the transformed signals.



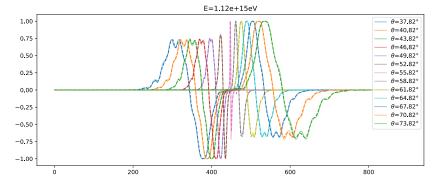






Results: θ -dependence with θ -Net

• Using the θ -Net, the correct θ -dependence is recovered with high accuracy.



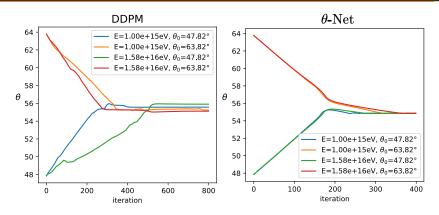
Simple optimization experiment

- Test whether the backpropagation through the networks yields useful gradients.
- We optimize the viewing angle θ to obtain (normalized) signals that are as 'squeezed' as possible.
- That is, we minimize

$$A(x_0(\theta)) = \int_{-\infty}^{\infty} |x_0(t,\theta)| dt$$
(1)

with respect to θ .

Results: simple optimization experiment



- Reasonable results with both architectures.
- The model with θ -net converges faster and the results are more accurate.
- The VRAM requirements are significantly lower with the θ-Net architecture (1GB vs 20GB).

Summary and outlook

Summary:

- DDPMs can generate realistic radio signals
- Modular model design improves the results
 - deal with wide range of amplitudes
 - ensure the correct angle-dependence
- Gradients are suitable for optimization

Summary and outlook

Summary:

- DDPMs can generate realistic radio signals
- Modular model design improves the results
 - deal with wide range of amplitudes
 - ensure the correct angle-dependence
- Gradients are suitable for optimization

Outlook:

- Further model tuning to obtain good results at all energies
- Reduce overfit to existing data
- Combine with other elements of optimization pipeline

Summary and outlook

Summary:

- DDPMs can generate realistic radio signals
- Modular model design improves the results
 - deal with wide range of amplitudes
 - ensure the correct angle-dependence
- Gradients are suitable for optimization

Outlook:

- Further model tuning to obtain good results at all energies
- Reduce overfit to existing data
- Combine with other elements of optimization pipeline

Thanks for your attention!