

Application of machine learning techniques to search dark matter with ANAIS-112

Iván Coarasa on

behalf of the **ANAIS team** icoarasa@unizar.es

Centro de Astropartículas y Física de Altas Energías Universidad Zaragoza

MultiDark Multimessenger Approach for Dark Matter Detection

Outline

The ANAIS-112 experiment

Improving filtering protocols with Machine Learning

Annual modulation results with 6 years

Summary and outlook

Outline

The ANAIS-112 experiment

Improving filtering protocols with Machine Learning

Annual modulation results with 6 years

Summary and outlook

Dark matter in the universe

Planck's satellite (2018)

A large fraction of the Universe budget is not explained within the Standard Model

Dark matter candidates

A plethora of **DM candidates** beyond the SM: non-zero-mass, electrically neutral, stable particles having a very low interaction probability with baryonic matter

Dark matter detection

Different **complementary** strategies for detection

Dark matter direct detection

Dark matter annual modulation & DAMA/LIBRA positive signal

DAMA/Nal and DAMA/LIBRA @LNGS (since 1995)

R. Bernabei et al., Nucl. Phys. At. Energy 22 (2021) 329-342

DAMA/NaI: 100 kg NaI(Tl) [1995-2002] DAMA/LIBRA: 250 kg NaI(Tl) [2003-today] DAMA clearly observes an **annual modulation** compatible with DM **at more than 13\sigma**

STRONG TENSION

Other very sensitive experiments do not see the signal, but the comparison is **model dependent**

A model independent test is needed using the same target

Other Nal experiments around the world

Outline

The ANAIS-112 experiment

Improving filtering protocols with Machine Learning

Annual modulation results with 6 years

Summary and outlook

The ANAIS experiment

ANAIS (<u>Annual modulation with Nal(Tl) scintillators</u>) intends to provide a model
 GOAL independent test of the signal reported by DAMA/LIBRA, using the same target and technique, but different experimental approach and environmental conditions

Projected sensitivity: 3σ in 5 years data-taking

ANAIS-112 SET-UP

- 9 ultrapure NaI(Tl) crystals 12.5 kg (**112.5 kg**) in 3 × 3
- Cylindrical modules coupled to 2 high QE PMTs (~40%)

On 3 August 2017, data collection starts

Low energy calibration

Calibration with external ¹⁰⁹Cd sources (11.9, 22.6 and 88.0 keV) every two weeks for gain correction

Calibration in the **ROI [1-6] keV** with internal bulk contaminants ²²**Na (0.9 keV)** and ⁴⁰**K (3.2 keV)** using whole statistics

Linear calibration in 2 ranges:

- 1-10 keV [ROI]
- 10-100 keV

What do we expect to see?

Scintillation light in the NaI(Tl) crystal (bulk)

Due to the high light collection, we can see the individual photoelectrons (phe) in each PMT

What do we actually see?

The region of interest (1-6 keV) is dominated by **non-bulk scintillation events**

Application of event selection protocols to distinguish scintillation events from noise

I. Coarasa, 4th MODE Workshop – Astroparticle session, Valencia, 24/09/2024

10

ANAIS—112 event selection

The region of interest (1-6 keV) is dominated by **non-bulk scintillation events**

Application of event selection protocols to distinguish scintillation events from noise

energy (keV)

Rate (c/keV/kg/d)

Outline

The ANAIS-112 experiment

Improving filtering protocols with Machine Learning

Annual modulation results with 6 years

Summary and outlook

Machine-learning techniques for event selection

Boosted Decision Tree (BDT)

- → Multivariate analysis
- > Combination of several weak discriminating variables into a single powerful discriminator
- → Two classes: signal-like and noise-like events
- BDT response: from -1 (noise-like) to +1 (signal-like)

$$BDT(\vec{x}_i) = \frac{1}{n_{Trees}} \sum_{j=1}^{n_{Trees}} \ln(\alpha_j) \cdot T_j(\vec{x}_i)$$
AdaBoost

 n_{Trees} : number of trees

 f_i : fraction of misclassified events of the previous tree

 $T_i(\vec{x}_i)$: result of an individual classifier (-1 or +1)

Performance of using ML for event selection in: JCAP11(2022)048 and JCAP06(2023)E01 Reanalysis of 3 years data in: arXiv:2404.17348 (Apr. 2024), Accepted in Comm. Phys.

Training populations

JCAP11(2022)048

SIGNAL EVENTS: Neutron calibrations

Seven calibration runs since April 2021 using ²⁵²Cf neutron source at different positions in the ANAIS-112 set-up

NOISE EVENTS: "Blank" module (No NaI(Tl))

Since 2018 a Blank module (similar to ANAIS–112 modules, but without NaI(Tl) crystal) is taking data with the same DAQ, but in an independent shielding close to ANAIS–112

I. Coarasa, 4th MODE Workshop – Astroparticle session, Valencia, 24/09/2024

Training parameters

15 discrimination parameters combined in a boosted decision tree

instead of the **4** parameters used in the standard analysis

Equivalent energy from LC = 14.5 phe/keV

I. Coarasa, 4th MODE Workshop – Astroparticle session, Valencia, 24/09/2024

JCAP11(2022)048

Improved filtering protocols with ML techniques

Following JCAP11(2022)048

Neutron calibration

10% unblinded 3 years background events

CUT on BDT parameter applied to background

Improving ANAIS-112 sensitivity prospects

Sensitivity to DAMA/LIBRA result as
$$S = \frac{S_m^{DAMA}}{\sigma(\hat{S}_m)} \propto \sqrt{\frac{M T \varepsilon}{B}}$$

The experimental sensitivity is given by the standard deviation of the modulation amplitude $\sigma(S_m)$, that can be estimated from:

- Updated background
- Efficiency estimate and its error
- Live time distribution

 3σ sensitivity with 3 y > 4σ sensitivity with 6 y (NOW)

 5σ sensitivity in late 2025

Annual modulation analysis strategy

Focus on **model independent** analysis searching for modulation

- ➔ In order to better compare with DAMA/LIBRA results
 - Juse the same energy regions ([1-6] keV, [2-6] keV)
 - → Fix period 1 year and phase to June 2nd
- → Simultaneous fit of the 9 detectors in 10-day bins. Chi-square minimization: $\chi^2 = \sum_i (n_i \mu_i)^2 / \sigma_i^2$, where the expected number of events μ_i for detector *d* in time bin *i* is given by:

$$\mu_{i,d} = \left[R_{0,d} \left(1 + f_d \phi_{bkg,d}^{MC}(t_i) \right) + \mathbf{S}_m \cos(\omega(t_i - t_0)) \right] M_d \Delta E \Delta t$$

Annual modulation analysis strategy

Focus on **model independent** analysis searching for modulation

- \rightarrow In order to better compare with DAMA/LIBRA results
 - → use the same energy regions ([1-6] keV, [2-6] keV)
 - Fix period 1 year and phase to June 2nd
- → Simultaneous fit of the 9 detectors in 10-day bins. Chi-square minimization: $\chi^2 = \sum_i (n_i \mu_i)^2 / \sigma_i^2$, where the expected number of events μ_i for detector d in time bin i is given by:

$2.5\sigma \rightarrow 2.8\sigma$

Improved 3-year results [1-6] keV

arXiv:2404.17348

Null hyp χ^2 /ndf: 982.20/972 [p_{val}=0.403]

Mod hyp χ^2 /ndf: 982.07/971 [p_{val}=0.395] S_m = (-0.0013 ± 0.0037) (cpd/kg/keV)

PRD103(2021)102005

Null hyp χ^2 /ndf: 1075.81/972 [p_{val}=0.011]

Mod hyp χ^2 /ndf: 1075.15/971 [p_{val}=0.011] S_m = (-0.0034 ± 0.0042) (cpd/kg/keV)

3-year annual modulation with BDT cut

Best fit modulation amplitudes **compatible with zero** at ~ 1σ Best fit **incompatible with DAMA/LIBRA** at 3.2 (1.9) σ for [1-6] ([2-6]) keV **Sensitivity with 3 years data: 2.8\sigma for [1-6] and [2-6] keV**

Outline

The ANAIS-112 experiment

Improving filtering protocols with Machine Learning

Annual modulation results with 6 years

Summary and outlook

Data-taking overview

Annual modulation results with 6 years

Annual modulation results with 6 years

Best fit modulation amplitudes **compatible with zero** at ~ 1σ Best fit **incompatible with DAMA/LIBRA** at 3.9 (2.9) σ for [1-6] ([2-6]) keV **Sensitivity with 6 years data: 4.2 (4.1)** σ **for [1-6] ([2-6]) keV**

 5σ sensitivity in late 2025

I. Coarasa, 4th MODE Workshop – Astroparticle session, Valencia, 24/09/2024

Ρ

R

E

Μ

Ν

Α

R

Υ

New parallel DAQ system in ANAIS-112

To better understand (and eventually remove) anomalous events appearing at low energy with asymmetric light-sharing

- Extending the digitization window from 1.25 to 8 μs and free of dead time (ANOD, Anais NO Dead time)
- ANOD is working smoothly since winter 2023 (CAEN DT5730, 8 channels)
- By now, only 4 crystals (8 PMTs) are readout, but very promising results! We have acquired a VX2730 CAEN card (32 channels, 14 bit, 500 MS/s, memory 83 MS/ch) that will allow to digitize the 9 detectors + blank module

Improving the background model

Understanding the background evolution is essential for the modulation fit

- Using the full non-blinded information [9 detectors, >7 years]
- Adding full PMT description + surface components
- Multiparametric fit to the different components present in the bkg model

Improving ML training populations

Simulating pulses through the response function of ANAIS-112 detectors

ANAIS+

Replacing the PMTs by SiPMs (at low T)

Outline

The ANAIS-112 experiment

Improving filtering protocols with Machine Learning

Annual modulation results with 6 years

Summary and outlook

Summary and outlook

- ANAIS—112 is leading the international efforts in the independent test of the DAMA/LIBRA signal, working properly after 7 years of data-taking
- Low-energy event selection and sensitivity have been improved with **machine-learning techniques**
- Preliminary results for **6 years**: ANAIS–112 is compatible with the absence of modulation and incompatible with the DAMA/LIBRA signal at 4σ (3σ) in [1-6] keV ([2-6] keV), for a sensitivity of 4.2σ (4.1σ) at [1-6] keV ([2-6] keV)
- 5σ sensitivity in late 2025
- **New parallel DAQ** in ANAIS working since winter 2023 for 4 crystals. Promising results for improving PSD event selection. 9 crystals + blank at the end of the year
- Plan to improve our **background model** with the accumulated exposure
- ANAIS-112/COSINE-100 working to combine results. Preliminary results in presented this summer in IDM 2024
- **Open Data Policy**: ANAIS-112 3-year annual modulation analysis and the reanalysis can be downloaded at https://www.origins-cluster.de/odsl/dark-matter-data-center/available-datasets/anais. 6 years in the near future

Thank you for your attention!

ANAIS research team

J. Amaré, J. Apilluelo, S. Cebrián, D. Cintas, <u>I. Coarasa</u>, E. García, M. Martínez, Y. Ortigoza, A. Ortiz de Solórzano, T. Pardo, J. Puimedón, M. L. Sarsa

ANAIS experiment operation is presently financially supported by MICIU/AEI/10.13039/501100011033 (Grants No. PID2022-138357NB-C21 and PID2019-104374GB-I00), and Unión Europea NextGenerationEU/PRTR (AstroHEP) and the Gobierno de Aragón. Funding from Grant FPA2017-83133-P, Consolider-Ingenio 2010 Programme under grants MULTIDARK CSD2009-00064 and CPAN CSD2007-00042, the Gobierno de Aragón and the LSC Consortium made possible the setting-up of the detectors. The technical support from LSC and GIFNA staff as well as from Servicios de Apoyo a la Investigación de la Universidad de Zaragoza (SAIs) is warmly acknowledged.

Backup

Annual modulation results with 5 years

I. Coarasa, 4th MODE Workshop – Astroparticle session, Valencia, 24/09/2024