Machine learning based design optimization for the search of neutrinoless double-beta decay with LEGEND

Ann-Kathrin Schuetz (LBNL), Aobo Li (UCSD) Lawrence Berkeley National Laboratory on behalf of the LEGEND collaboration

4th MODE Workshop - September 23rd 2024

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

Experimental goal is to measure mono-energetic peak at Q_{bb}

 $0\nu\beta\beta:(\mathbf{A},\mathbf{Z})\rightarrow(\mathbf{A},\mathbf{Z}+2)+2\mathbf{e}^{-}$

But this signal is buried under other backgrounds...

 \rightarrow increase sensitivity by background reduction (BI) at Q_{ββ} and simultaneous increase of mass (M) and improvement of the energy resolution (ΔE)

Example: Bayesian Inference and 0vßß decay

Experimental sensitivity:

background (BI) > 1:

$$T_{1/2}^{0\nu} \propto \varepsilon \cdot a \cdot \sqrt{\frac{M \cdot t}{BI \cdot \Delta E}}$$

0vββ decay - Experimental sensitivity

$$T_{1/2}^{0\nu} \propto \varepsilon \cdot a \cdot \sqrt{\frac{M \cdot t}{BI \cdot \Delta E}}$$

Background index

BUT: many opportunities to reduce and actively suppress this background

arXiv:1802.05040

What options are there to reduce the impact of cosmogenic background?

- 1. Reduce the muon flux \rightarrow increase overburden.
- 2. Reduce the neutron flux around the detectors.
- 3. Tag the $^{77(m)}$ Ge production and apply a delayed coincidence cut.

Regression task:

predict the value of *y_n* for a new value of *x_n* where $f: \{\theta_n\}^N \to \{y_n\}^N$ maps the input space to the output space

Let's start with a distribution of all possible functions that, could have produced our data (without actually looking at the data!).

$$f(\cdot) \sim p(f(\cdot)) \sim \mathcal{N}(\mu(\cdot), \sigma(\cdot))$$

A Gaussian process is a probability distribution over possible functions that fit a set of points.

Surrogate based on Gaussian Process

09/23/2024

Surrogate with Multi-Fidelity (MF)

- Emulator \rightarrow ⁷⁷Ge Reduction efficiency
- Emulator \rightarrow ⁷⁷Ge Reduction efficiency
 - combine fast low-fidelity simulations with costly **high-fidelity** simulations
 - efficient method to decrease costly simulations when predicting the output of a system
 - simulator can be run at **different levels of complexity**, from most high level code to the most basic version
 - each level share some basic features and include most important features
 - **simple, fast versions** useful for preliminary investigations
 - Bayesian methods of prediction and uncertainty analysis combined with multi-level approach

HF & LF simulation: Neutron input locations

10000000 primary muons (high fidelity) \Rightarrow ~1300000 (~13%) secondary neutrons crossing the LAr cryostat (low fidelity)

- 300 LF samples, randomly sampled while adhering to parameter constraints
- 4 initial HF samples
- Count number of neutron captures on ⁷⁶Ge

Geant4 MC Simulation

Run Geant4 LF simulations for different moderator configurations

count number of neutrons being captured given the configuration

Question: How likely is a neutron being captured with certain physics parameters given a certain moderator configuration?

Run Geant4 LF simulations for different moderator configs

physics parameter of each primary neutron in simulation

We use a conditional neural process (CNP)

Neutron capture probability

Conditional Neural Process (CNP)

ML based design optimization for LEGEND

09/23/2024

- Signal (red) vs background (blue) **Classification**
- Mixed-up data augmentation method used for dealing with the imbalanced training data set
- CNP effectively learns from neutron physics parameters
- Separation between signal and background

Conditional Neutral Process - Result

Combine CNP with Multi-Fidelity Gaussian Processes

Minimize noisy black-box function:

 $\min \eta(x)$ with $\eta(x) = f(x) + \varepsilon$, where $\varepsilon \sim \mathcal{N}(0,\sigma)$ $x \in X$

 Multi-Fidelities (MF) ranked hierarchically by accuracy (h=0,...,m)

• Adaptive sampling by maximizing acquisition function (tradeoff between exploration and exploitation) under parameter constraints

Multi-fidelity Model - Results

Optimal design found with reduction by a factor of 2.1 and a ⁷⁷Ge production rate of 0.13 nuc/(kg·yr)

ML based design optimization for LEGEND

Trigger Probability $p_i(\theta, \phi_i)$ low

Design Parameters $\theta \in \Theta$

Event Simulation *N* events m = trigger w/ signal

Rare Event Assumption:

 $m \sim \text{Poisson}(\lambda(\theta))$, where

$$\lambda(\theta) = \bar{p}(\theta) = \sum_{i=1}^{N} p_i(\theta, \phi_i)$$

In a boarder context: Rare Event Trigger Rate Problem

Design Parameters $\theta \in \Theta$

Event Simulation *N* events m = trigger w/ signal

Rare Event Assumption: $m \sim \text{Poisson}(\lambda(\theta))$, where $\lambda(\theta) = \bar{p}(\theta) = \sum_{i=1}^{N} p_i(\theta, \phi_i)$

Challenge:

- **Problem:** Large *N* = accurate but **costly**
- **Solution:** Build a surrogate model combining

 - fidelity splitting
 - adaptive sampling

Rare Event Surrogate Model

- background reduction goals.
- Various options for moderator designs are currently under active research and are being considered for implementation
- Through active learning using a Multi-Fidelity Surrogate Model combined with a CNP Network a solid shield design has been identified - design holds the potential reduction by a factor of at least 2.1

Rare Event Surrogate Model for Nuclear Physics Detector Design

- Goal: Find the optimal design parameters θ by minimizing the event trigger rate y=mN, but large number of simulations are **costly**, while small simulations lead to **greater uncertainty in** y...
- Solution: a surrogate model that approximates the probability distribution $p(y|\theta)$ based on a limited number of simulations.
- Reduced need for expensive large-scale simulations
- \Rightarrow Efficient exploration of the design space and optimization of the parameters θ
- Future Improvements: Transfer Learning MF-GP model that makes informed decisions by incorporating expected improvements and considering the computational resources associated with each fidelity level
- Future Improvements: can we model the CNP prediction and propagate it into the MFGP

Summary & Conclusion

Active and passive background reduction is contingent upon LEGEND-1000 selecting a shallower host site where cosmogenic background becomes a primary concern and plays a determining role in achieving its

Thank you for your attention! **Question?**

Germanium Machine Learning (GeM) Group

