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Example: Bayesian Inference and 0νββ decay 
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Experimental goal is to measure mono-energetic peak at Qbb

→ increase sensitivity by background reduction (BI) at Qββ and simultaneous increase of mass (M) and improvement of the energy 
resolution (ΔE)

background (BI) > 1:

But this signal is buried under other backgrounds…

Experimental sensitivity:

0νββ : (A, Z) → (A, Z + 2) + 2e−

measure sum energy spectrum of 
electrons
• 2νββ ➞ continuum 
• 0νββ ➞ mono-energetic peak 

@ Qββ

Lepton number violation
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Background reduction for LEGEND-1000
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 Why do we have to reduce the 
cosmogenic background at LNGS?

LEGEND-1000 background goal:  
<10-5 cts/keV/kg/yr  

77(m)Ge background at LNGS:  
>10-5 cts/keV/kg/yr 

BUT: many opportunities to reduce and 
actively suppress this background

arXiv:2107.11462

arXiv:1802.05040

0νββ decay - Experimental sensitivity

Background index

https://arxiv.org/abs/2107.11462
https://arxiv.org/abs/1802.05040
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Cosmogenic background reduction
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 What options are there to reduce the impact of 
cosmogenic background?

1. Reduce the muon 
flux → increase 
overburden. 

2. Reduce the neutron 
flux around the 
detectors. 

3. Tag the 77(m)Ge 
production and apply 
a delayed 
coincidence cut.

Reduce the neutron flux around the 
detectors - Idea: 

add neutron moderators to slow neutrons 
down and increase their likelihood to be 
captured by LAr instead of 76Ge.

µ

n
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Optimal Design Parameters
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Computer 
Simulator

Parameter 
Estimation

How to find the optimal design parameter?

• MC studies using a custom simulation module[3] based on 
LEGEND-1000 and GERDA setup[3] implementation 

• Solid neutron moderator design: enclosing tube or turbine-
like structure 

• 5 design parameters: Radius r, n Panels, Thickness d, 
Length L and Angle 𝜃

no moderator enclosure turbine-like structure

Run a few simulations at 
different parameters

➡ High-dimensional parameter spaces 
➡ High computational cost of Geant4 MC 

simulations (~200 CPUh) 
➡ Traditional methods like grid searches are 

impractical Starting point: 4 high fidelity 
simulation data points only!!

f(θ)
?
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Surrogate based on Gaussian Process
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Gaussian Process

mean of 
posterior

f(θ) ∼ GP(m(θ), k(θ, θ′ ))

GP prior GP posterior

data

Regression task:  
predict the value of yn for a new value of xn where   

 maps the input space to the output 
space  
f : {θn}N → {yn}N

A Gaussian process is a probability distribution over 
possible functions that fit a set of points.

Let’s start with a distribution of all possible functions 
that, could have produced our data (without actually 

looking at the data!). 

f( ⋅ ) ∼ p( f( ⋅ )) ∼ 𝒩(μ( . ), σ( . ))
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Surrogate with Multi-Fidelity (MF)
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e.g. include additional high fidelity point here

area of high uncertainty

• combine fast low-fidelity simulations with costly 
high-fidelity simulations 

➡ efficient method to decrease costly simulations 
when predicting the output of a system 

• simulator can be run at different levels of 
complexity, from most high level code to the most 
basic version  

• each level share some basic features and include 
most important features 

• simple, fast versions useful for preliminary 
investigations 

• Bayesian methods of prediction and uncertainty 
analysis combined with multi-level approach

Design 1: [Mod. Thickness, …]    →    Emulator    →   77Ge  Reduction efficiency 

Design 2: [Mod. Thickness, …]    →    Emulator    →   77Ge  Reduction efficiency
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HF & LF simulation: Neutron input locations 
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neutrons not 
homogeneously 

distributed → effect 
slightly washed out 
for randomly drawn 

starting points

10000000 primary muons (high fidelity) ⇒  ~1300000 (~13%) secondary neutrons crossing the LAr cryostat (low fidelity)

draw distributions 
with random 

starting points 
from high fidelity 
simulation w/o 

moderator

HF LF
Primary particle Muon Neutron

CPUh per neutron 1.5·10-4  (2·10-5  
per muon) 3·10-6

Full detector geometry ✓ ✓
Full neutron physics lists ✓ ✓
Timing to primary and 
production info ✓ ❌
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• HF 
• LF

Geant4 MC Simulation
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• 300 LF samples, randomly sampled while adhering to 
parameter constraints 

• 4 initial HF samples 
• Count number of neutron captures on 76Ge

Neutron capture is shown 
as 1-dim projection  

→ Strong fluctuations in 
the LF training data 
→ MF surrogate model 
fails due to high noise

Run Geant4 LF simulations for 
different moderator configurations

Count number of neutrons being 
captured given the configuration

0 1
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Neutron capture probability
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Run Geant4 LF simulations for 
different moderator configurations

physics parameter of each 
primary neutron in simulation

count number of neutrons being 
captured given the configuration

Question: How likely is a neutron being captured with certain physics parameters given a certain 
moderator configuration?

discrete

continuous
Run Geant4 LF simulations 
for different moderator configs

Add Network

We use a conditional neural process (CNP)
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Conditional Neural Process (CNP)
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Gaussian Process

mean of 
posterior

f(x) ∼ GP(m(x), k(x, x′ ))

GP prior GP posterior

data

Target: ( x j)

Analogous to

• Learn Contextual Features

• Maximize the Posterior Likelihood to Train

• Uncertainty prediction

• Small dataset size (where avoiding overfitting important)

Assumption: 
 yT ∼ p(yT) ∼ 𝒩(μyT

, σyT
)

Context: ( x i, y i)
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Conditional Neutral Process - Result
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• Signal (red) vs background (blue) Classification 
• Mixed-up data augmentation method used for dealing 
with the imbalanced training data set  

• CNP effectively learns from neutron physics 
parameters 

• Separation between signal and background

For each moderator configuration, 
a mean neutron capture 
probability with an uncertainty 
estimate can be derived

• Distribution smooths out, making 
underlying structures more 
discernible
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Combine CNP with Multi-Fidelity Gaussian Processes
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• Minimize noisy black-box function:  
 

• Multi-Fidelities (MF) ranked hierarchically by accuracy 
(h=0,…,m) 

• Use “co-kriging” model with GP:  
 

• Adaptive sampling by maximizing acquisition function (trade-
off between exploration and exploitation) under parameter 
constraints

min
x∈X

η(x) with η(x) = f(x) + ε,  where ε ∼ 𝒩(0,σ)

ηh(x) = ρh−1ηh−1(x) + δh(x)

discrepancy term 
modeled by GP

correlation to lower fidelity (GP)

MC 

HF

LF

CNP 
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Multi-fidelity Model - Results
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Optimal design found with 
reduction by a factor of 2.1 
and a 77Ge production rate of 
0.13 nuc/(kg·yr)

• Modeling of 5 dim space (r, t, 𝜃, n, L)  with 3 fidelities 
(HF(MC), HF(CNP) and LF(CNP)) 

• model evolution shown as projection on r, t, n, 𝜃 and L 
at a random point in space 

• Acquisition function: Integrated variance reduction with 
parameter constraints

Acquisition function

HF(MC)

HF(CNP)

LF(CNP)
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In a boarder context: Rare Event Trigger Rate Problem
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Large 𝑁  Low Variance, High Cost.

y ∼ 𝒩(p̄(θ), p̄(θ)
N )

High Variance, Low Cost.

Key scenarios
Small 𝑁

99.9999%

0.0001%

𝑚 𝑁-𝑚

Trigger Probability  
 lowpi(θ, ϕi)

Signal trigger rate y = m
N

Rare Event Assumption:      

, where m ∼ Poisson(λ(θ))

λ(θ) = p̄(θ) = ∑N
i=1 pi(θ, ϕi)

Design 
Parameters 

θ ∈ Θ

Event Simulation 
𝑁 events 

𝑚 = trigger w/ signal

 discretey ∈ {0/N,1/N, …}

Small 𝑁 
scenario

Large 𝑁 
scenario
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Rare Event Surrogate Model
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y ∈ {0/N,1/N, …}
High Variance, Low Cost.

99.9999%

0.0001%

𝑚 𝑁-𝑚

Trigger Probability  
 lowpi(θ, ϕi)

Signal trigger rate y = m
N

Rare Event Assumption:      
, where m ∼ Poisson(λ(θ))

λ(θ) = p̄(θ) = ∑N
i=1 pi(θ, ϕi)

Design 
Parameters 

θ ∈ Θ

Event Simulation 
𝑁 events 

𝑚 = trigger w/ signal
Small 𝑁

Challenge: 
• Problem: Large  = accurate but costly 

• Solution: Build a surrogate model combining 
• a predictive model which approximate  with small  
• fidelity splitting 
• adaptive sampling

N

pi(θ |ϕi) N

Approximated by CNP  

we calculate: p̄(θ) =
N

∑
i=1

pi(θ, ϕi)

RESuM: A Rare Event 
Surrogate Model for 

Nuclear Physics 
Detector Design

Expensive simulator

Small 𝑁 
scenario
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Summary & Conclusion
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➡ Active and passive background reduction is contingent upon LEGEND-1000 selecting a shallower host site 
where cosmogenic background becomes a primary concern and plays a determining role in achieving its 
background reduction goals. 

• Various options for moderator designs are currently under active research and are being considered for 
implementation 

• Through active learning using a Multi-Fidelity Surrogate Model combined with a CNP Network a solid shield 
design has been identified - design holds the potential reduction by a factor of at least 2.1

• Goal: Find the optimal design parameters 𝜃 by minimizing the event trigger rate 𝑦=𝑚/𝑁, but large number of 
simulations are costly, while small simulations lead to greater uncertainty in 𝑦.. 

•  Solution: a surrogate model that approximates the probability distribution p(𝑦|𝜃) based on a limited number of 
simulations.  

➡ Reduced need for expensive large-scale simulations  
➡ Efficient exploration of the design space and optimization of the parameters 𝜃 

• Future Improvements: Transfer Learning MF-GP model that makes informed decisions by incorporating expected 
improvements and considering the computational resources associated with each fidelity level 

• Future Improvements: can we model the CNP prediction and propagate it into the MFGP

Rare Event Surrogate Model for Nuclear Physics Detector Design 
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Thank you for your attention! 
Question?

Germanium Machine Learning (GeM) Group


