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L_\ié AL Example: Bayesian Inference and Ovp33 decay
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— increase sensitivity by background reduction (Bl) at Qgg and simultaneous increase of mass (M) and improvement of the energy

resolution (AE)
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N Background reduction for LEGEND-1000

Why do we have to reduce the

Ov3B decay - Experimental sensitivity cosmogenic background at LNGS?
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BUT: many opportunities to reduce and

aCtlvely suppress this baCkground * standard background rejection are applied
arXiv:1802.05040 which strongly supresses ’’Ge



https://arxiv.org/abs/2107.11462
https://arxiv.org/abs/1802.05040

o ALz0 . .
: Cosmogenic background reduction

What options are the_re to reduce the impact of Reduce the neutron flux around the
cosmogenic background? detectors - /ea:

add neutron moderators to slow neutrons
down and increase their likelihood to be
N 1. Reduce the muon captured by LAr instead of 76Ge.

flux — increase
overburden.

U

2. Reduce the neutron
flux around the
detectors.

3. Tag the 77(mGe
production and apply
a delayed
coincidence cut.

(mean) neutron energy [eV]

107"
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N Optimal Design Parameters

turbine-like a geometry

How to find the optimal design parameter? / i

_ _ R | - C
Run a few simulations at : r
. Computer Parameter /—
different parameters | ° Simulator  ERACAEE Estimaton [N (NG

mass further out
over larger area

MC studies using a custom simulation modulel3l based on no moderator enclosure turbine-like structure

LEGEND-1000 and GERDA setupl3l implementation
Solid neutron moderator design: enclosing tube or turbine- _\\\\\\|
like structure = [ /
® @
7~
//I| =

5 design parameters: Radius r, n Panels, Thickness d,
Length L and Angle © i ‘

= High-dimensional parameter spaces

NS

= High computational cost of Geant4 MC
simulations (~200 CPUh)

= Traditional methods like grid searches are

Impractical Starting point: 4 high fidelity

simulation data points only!!
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M Surrogate based on Gaussian Process

Regression task: Gaussian Process

predict the value of y, for a new value of x, where
/
£:1{0.}" — {y }" maps the input space to the output f(0) ~ GP(m(0), k(0,0))

space

Let’s start with a distribution of all possible functions
that, could have produced our data (without actually mean of .
looking at the data!). posterior

fC) ~ pUC ) ~ H (), 0(.) | et

A Gaussian process is a probability distribution over
possible functions that fit a set of points.

data
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Surrogate with Multi-Fidelity (MF)

10 A

Design 1: [Mod. Thickness, ...]

Design 2: [Mod. Thickness, ...]

Linear multi-fidelity model fit to low and high fidelity Forrester function

—  Emulator

—  Emulator

- Low Fidelity

- High Fidelity

-== Predicted Low Fidelity
Predicted High Fidelity

area of high uncertainty

e.g. include additional high fidelity point here

0.0 0.2 0.4 0.6 0.8

10

— 7Ge Reduction efficiency

— 7Ge Reduction efficiency

» combine fast low-fidelity simulations with costly
high-fidelity simulations

= efficient method to decrease costly simulations
when predicting the output of a system

 simulator can be run at different levels of

complexity, from most high level code to the most
basic version

 each level share some basic features and include
most important features

» simple, fast versions useful for preliminary
iInvestigations

» Bayesian methods of prediction and uncertainty
analysis combined with multi-level approach
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HF & LF simulation: Neutron input locations
10000000 primary muons (high fidelity) = ~1300000 (~13%) secondary neutrons crossing the LAr cryostat (low fidelity)
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L Geant4 MC Simulation

/

Run Geant4 LF simulations for _ o] B * | *.
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- HF | Neutron capture is shown
° LF | as 1-dim projection

0.25 A

* 300 LF samples, randomly sampled while adhering to
parameter constraints

0.20 A

. — Strong fluctuations in

0 the LF training data
« 4 initial HF samples J

"1Ge production rate [nuc/(kg-yr)]

— MF surrogate model
— o & = = fails due to high noise

length [cm]

» Count number of neutron captures on 7°Ge
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Neutron capture probability

discrete
Run Geant4 LF simulations for
different moderator configurations
count number of neutrons being

i-th sampling

captured given the configuration 1, n captured,
JSx) = 0

model i-th New sample

, N not captured

Question: How likely is a neutron being captured with certain physics parameters given a certain
moderator configuration?

Add Network

continuous i-th sampling

Run Geant4 LF simulations
for different moderator configs

physics parameter of each
primary neutron in simulation

model i-th New sample

fx) €[0,1]

We use a conditional neural process (CNP)
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Conditional Neural Process (CNP)

____________________________ Assumption: Analogous to
5 yr ~ pQyp) ~ N (ﬂyT» UyT) Gaussian Process
. Outputiyr, Oyt J(x) ~ GP(m(x), k(x, x"))
: Decoder mean of :
: posterior
Observe  Aggregate Predict IR
GP prior GP posterior

Context: (xi-, y>l-) Target: (7]-)

» Learn Contextual Features

» Maximize the Posterior Likelihood to Train

» Uncertainty prediction

- Small dataset size (where avoiding overfitting important)

data
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ST Conditional Neutral Process - Result

0.7 1

 Signal (red) vs background (blue) Classification

0.6 A

* Mixed-up data augmentation method used for dealing
with the imbalanced training data set

0.5 -

0.4 - t %
0.3 - b

* CNP effectively learns from neutron physics

mean probability for nC on 7Ge
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Combine CNP with Multi-Fidelity Gaussian Processes

* Minimize noisy black-box function:

min 7(x) with n(x) = f(x) + &, where ¢ ~ 4(0,0)
xeX

* Multi-Fidelities (MF) ranked hierarchically by accuracy
(h=0,...,m)

fx) €[0,1]

di t
» Use “co-kriging” model with GP: /\ ,f,fggeeﬁ,):g(g;, Z?
Mp(X) = Pp_1Mp—1(X) + 0p(X)

correlation to lower fidelity (GP)
~ Approximating true function with more data

- ==  Prediction

. Observed data

— True function

» Adaptive sampling by maximizing acquisition function (trade-
off between exploration and exploitation) under parameter
constraints

output, f(x)

i-th sampling (i+1)-th sampling

True function

Updated HF
Surrogate model

o~

4

6

10 Accuracy 1
: HF Surrogate
intput, x T - (i+1)-th New sample
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Multi-fidelity Model - Results
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* Modeling of 5 dim space (r, t, 6, n, L) with 3 fidelities

(HF(MC), HF(CNP) and LF(CNP))

» model evolution shown as projectiononr, t,n, 8 and L

at a random point in space

 Acquisition function: Integrated variance reduction with

parameter constraints
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i-th New sample
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-n__\p\ In a boarder context: Rare Event Trigger Rate Problem

Large N
scenario

_ D(0)
y ~ N (pO), =)

Low Variance, High Cost.

Trigger Probability

Signal trigger rate y = %

Design Event Simulation

Parameters N events
Key scenarios

0 e B m = trigger w/ signal

Rare Event Assumption:
Small N

scenario

m ~ Poisson(4(6)), where

X0)=pO) =Y piO. )

y € {0/N,1/N, ...} discrete

High Variance, Low Cost.
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n \i),p\ AL # Rare Event Surrogate Model

Expensive simulator

Trigger Probability Signal trigger rate y = %
p{0, ;) low Small N

scenario

Design Event Simulation
Parameters N events

y € {0/N,1/N, ...}

0e® m = trigger w/ signal

High Variance, Low Cost.

Rare Event Assumption:
m ~ Poisson(A(6)), where ® N

W0 =pO) =Y. p0.¢)

Approximated by CNP

N
we calculate: p(0) = Z pi0, .
i=1

Challenge:
+ Problem: Large N = accurate but costly

» Solution: Build a surrogate model combining
» a predictive model which approximate p.(0| ¢.) with small N

RESuM: A Rare Event
Surrogate Model for

Nuclear Physics
Detector Design

e fidelity splitting
» adaptive sampling
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N Summary & Conclusion

= Active and passive background reduction is contingent upon LEGEND-1000 selecting a shallower host site
where cosmogenic background becomes a primary concern and plays a determining role in achieving its
background reduction goals.

* Various options for moderator designs are currently under active research and are being considered for
Implementation

* Through active learning using a Multi-Fidelity Surrogate Model combined with a CNP Network a solid shield
design has been identified - design holds the potential reduction by a factor of at least 2.1

Rare Event Surrogate Model for Nuclear Physics Detector Design

» Goal: Find the optimal design parameters 6 by minimizing the event trigger rate y=m/N, but large number of
simulations are costly, while small simulations lead to greater uncertainty in y..

« Solution: a surrogate model that approximates the probability distribution p(y|0) based on a limited number of
simulations.

= Reduced need for expensive large-scale simulations
= Efficient exploration of the design space and optimization of the parameters ©

* Future Improvements: Transfer Learning MF-GP model that makes informed decisions by incorporating expected
improvements and considering the computational resources associated with each fidelity level

* Future Improvements: can we model the CNP prediction and propagate it into the MFGP
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,_\ip\ pL#0 Germanium Machine Learning (GeM) Group

Autonomous Data Cleaning and Run Monitor

Data Cleaning

® Data Quality
o

LBM Network PSA

Background Interpretable BDT

Veto
° Spectrum

/ o LBM Dead Layer Fitting
LBM Feature Importance Supervision ° l LBM Site Energy Reconstruction
Reconstruction » ,
o / LBM Position Reconstruction
® 4 Tuning Cyclic Positional U-Net

MC Simulation

GAN Waveform Simulation

Multi-fidelity Gaussian Process

Thank you for your attention!
Question?
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