

Munternational UON Collider Collaboration

Machine Learning approach to shield optimization at Muon Collider

D. Calzolari , L. Castelli*, F. Collamati, A. Lechner, D. Lucchesi

*speaker

Muon Collider

Motivation

- Both a precision and high energy collider
- Luminosity scales with energy
- Cost effective and sustainable machine

Challenges

- Muon beam production, cooling and acceleration
- Beam Induced Background
- Neutrino flux

Beam Induced Background at $\sqrt{s} = 3 TeV$

- Muon decay products interact with the machine
 - 2.34 · 10⁷ expected decays/meter each bunch crossing
- Intense flux of particle reaches the detector each bunch crossing
 - $3.45 \cdot 10^7$ expected photons
 - 7.18 · 10⁶ expected neutrons
 - $5.75 \cdot 10^5$ expected e^+/e^-
- Mitigation strategies required:
 - **Tungsten shields** (nozzles) reduce the number of particle arriving to the detector
 - Readout window of [-1, +15]ns with respect to bunch crossing removes off-time Beam Induced Background

Original Design

- MAP nozzle design:
 - **1**. 10° closest to the IP
 - 2. 5° starting from $z = 100 \ cm$
- Optimized for $\sqrt{s} = 1.5 TeV$
- Optimization of shape and material required for **3** and 10 *TeV*
- Goal is to reduce BIB effects on detector and maximize detector acceptance
- BIB simulated with FLUKA

cpus

The time needed to simulate depends on the computer characteristics. In my case $\sim 4 \ days$ working with 8

Shape Optimization Approaches

Hard ML approach

- 8 parameters, 13121 "low" statistics simulations
- Simple XGBoost regressor
- Smart ML approach
 - Bayesian optimization loop with
 - "medium" statistic

By hand optimization

"High" statistics simulation with user-

defined parameters

Key concepts

- Layer of tungsten outside the boron
- Last ~100 cm geometry most impacting
- Small changes impact strongly the BIB

Optimization Approaches

Statistics

- Low $\rightarrow 0.02\%$ of bunch crossing
- Medium $\rightarrow 0.06\%$ of bunch crossing
- High $\rightarrow 1.6\%$ of bunch crossing

Parameters:

- $\theta_{tip} \in [0.126, 0.174]$ degree
- $r_{base} \in [45, 60]cm$
- $r_{boron} \in [0.8, 0.95]\%$ of r_{base}
- $z_{step} \in [-450, -250]cm$ from IP
- $r_{step} \in [0.75, 0.95]\%$ of r_{base}
- $z_{change} \in [-130, -80]cm$ from IP
- $z_{tip} \in [-6, -4]cm$ from IP
- $r_{tip} \in [0.6, 1.4]cm$

Figure of merit

- Integrated flux of particles entering the Detector area
- Flux $\in [1.3 \cdot 10^3, 1.1 \cdot 10^5]$, for low statistic simulation

Hard ML results

XGBoost regressor to predict the flux from the

parameters to:

- Perform in short time large amount of pseudosimulation
- Do a Bayesian optimization without running FLUKA
- Flux in 2 o.o.m range, so log applied → no effect
- Applied scalers (std, min-max) → removed outliers

•
$$Delta[\%] = \frac{Flux_{true} - Flux_{predicted}}{Flux_{true}} * 100$$

Hard ML results

- XGBoost regressor to predict the flux from the parameters to:
 - Perform in short time large amount of pseudo-simulation
 - Do a Bayesian optimization without running FLUKA
- Flux in 2 o.o.m range, so log applied → no effect
- Applied scalers (std, min-max) → removed outliers

• $Delta[\%] = \frac{Flux_{true} - Flux_{predicted}}{Flux_{true}} * 100$

Tried a pytorch NN model, but did not achieve any result

class NeuralNetwork(nn.Module): def init (self, ninputs, device=torch.device("cpu")): super(). init () #self.flatten = nn.Flatten() self.linear relu stack = nn.Sequential(nn.Linear(ninputs, 512), nn.BatchNorm1d(512), nn.ReLU(), nn.Linear(512,128), nn.BatchNorm1d(128), nn.ReLU(), nn.Linear(128,64), nn.BatchNorm1d(64), nn.ReLU(), nn.Dropout(p=0.2), nn.Linear(64, 1) self.linear relu stack.to(device)

Bayesian Optimization

- Code provided by T. Ramazyan and E. Kurbatov
 - Optimization of black-box function → Nozzle response to incoming BIB
 - Building a probabilistic model based on past evaluation
 - Model makes an educated guess on where the best solution is in the phase-space
- Optimization loop with 126 iteration, running FLUKA simulation with medium statistics
- Run a loop with the best XGBoost model as pseudosimulation → It did not converge

Optimization Results

- Combining XGBoost analysis and byhand simulations, an improved design has been achieved
- BIB energy spectrum after readout window applied (left)
- Occupancy on the vertex detector (right)

Flux per bunch crossing

 Plots compare the new geometry with the original one from MAP

Particle	MAP Design	Design XXI
photons	$3.45 \cdot 10^{7}$	$2.27 \cdot 10^7$
neutrons	$7.18 \cdot 10^{6}$	$1.34 \cdot 10^{7}$
e^+/e^-	$5.75 \cdot 10^{5}$	$4.19 \cdot 10^{5}$

	MAP Design	Design XXI	
Layer 0	2.14	0.81	
<i>Layer 1</i>	1.54	0.61	
Occupancy for 1.6% of bunch crossing			

Conclusions and next steps

- A first optimization has been achieved
- ML algorithm can be optimized
- A 9th parameters will be considered
- Optimization on a complex observable

$$flux \rightarrow a \cdot \frac{\Delta flux_{\gamma}}{flux_{ref_{\gamma}}} + b \cdot \frac{\Delta flux_{n}}{flux_{ref_{n}}} + c \cdot \frac{\Delta flux_{e}}{flux_{ref_{e}}} + d \cdot \frac{\Delta V}{V_{ref}}$$

Any suggestion?

Reference

- [1] C. Accettura et al., Towards a Muon Collider, <u>arxiv.org</u>
- [2] K. Long, D. Lucchesi, M. Palmer, N. Pastrone, D. Schulte, V. Shiltsev, Muon Colliders: Opening New Horizons for Particle Physics, <u>arxiv.org</u>
- [3] C. Accettura et al., Interim report for the International Muon Collider Collaboration, <u>arxiv.org</u>
- [4] Y. Alexahin, E. Gianfelice-Wendt and V. Kapin, MUON COLLIDER LATTICE CONCEPTS, <u>lopscience.iop.org</u>

Muon Collider Parameters

ternationa ION Collider

CLIC at 3 TeV 3 TeV **10 TeV 14 TeV Parameter** Unit **Target integrated luminosities** 10³⁴ cm⁻²s⁻¹ 1.8 L 20 40 2 (6) $\mathcal{L}dt$ 1012 2.2 1.8 1.8 N 1 ab^{-1} 5 5 5 f, Hz 28 P_{beam} 5.3 MW 14.4 20 4.5 C km 10 14 7 10.5 Т 10.5 MeV m 7.5 7.5 7.5 ε $\sigma_{\rm E}/E$ % 0.1 0.1 0.1 1.5 5 1.07 σ, mm β 5 1.5 1.07 mm 25 25 25 3 μm

3.0

μm

 $\sigma_{x,v}$

0.9

0.63

 $10 {\rm ~ab^{-1}}$ $10 {
m TeV}$ 20 ab^{-1} $14 {
m TeV}$ Note: currently focus on 10 TeV, also

explore 3 TeV

S

3 TeV

- Tentative parameters based on MAP study, might add margins
- Achieve goal in 5 years ٠
- FCC-hh to operate for 25 years •
- Aim to have two detectors

14

$\sqrt{s} = 1.5 TeV$ Design

15

- Considering 200 operational days/year, 1-MeV-neq fluence is expected to be:
 - ~10¹⁴⁻¹⁵ $cm^{-2}y^{-1}$ in the

tracker

• $\sim 10^{14} \ cm^{-2}y^{-1}$ in the

electromagnetic calorimeter

Dose

BIB simulation with FLUKA

- Generated one beam of μ^+ decays within **55** *m* from the Interaction Point
- Energy threshold for particles production fixed at 100 keV
- Particles which arrives to the nozzles are scored
- Propagation through the Nozzles
- Particles who exit the nozzle and enters the detector area are scored
- $\sim 1.6\%$ of one BIB event (i.e. bunch crossing) considering

only 1 beam \rightarrow 4 *days* per simulation

Muon decay position

- Muon decays up to 55 m cause BIB in the detector for the $\sqrt{s} = 3 TeV$ case
- In the $\sqrt{s} = 1.5 \ TeV$ it is
 - enough to consider decays

from 35 m

Detector

Occupancy in the tracker

20

Hard ML results

- XGBoost regressor to predict the flux from the parameters to:
 - Perform in short time large amount of pseudosimulation
 - Do a Bayesian optimization without running FLUKA
- Flux in 2 o.o.m range, so log applied \rightarrow no effect
- Applied scalers (std, min-max) → removed outliers
- Prediction correct within 10% with best model
- Tried a pytorch NN model, but did not achieve any result

```
class NeuralNetwork(nn.Module):
    def init (self, ninputs, device=torch.device("cpu")):
        super(). init ()
        #self.flatten = nn.Flatten()
        self.linear relu stack = nn.Sequential(
            nn.Linear(ninputs, 512),
            nn.BatchNorm1d(512),
            nn.ReLU(),
            nn.Linear(512,128),
            nn.BatchNorm1d(128),
            nn.ReLU(),
            nn.Linear(128,64),
            nn.BatchNorm1d(64),
            nn.ReLU(),
            nn.Dropout(p=0.2),
            nn.Linear(64, 1)
        self.linear relu stack.to(device)
```


Hard ML results

Feature Importance with XGBoost regressor

