
Automatic Differentiation in RooFit

Jonas Rembser*, Vaibhav Thakkar+, Petro Zarytskyi+, Vassil Vassilev+
{ *CERN, +Princeton, compiler-research.org }

This work is partially supported by National Science Foundation under Grant OAC-2311471

https://compiler-research.org/

Introduction

If math is the language of science, the language of experimental
science is statistics.

Statistical modelling helps us define a scientific narrative by
talking to our data sets

25-September-2024 V. Vassilev -- Automatic Differentiation in RooFit – The 4th MODE Workshop 2

Introduction

25-September-2024 V. Vassilev -- Automatic Differentiation in RooFit – The 4th MODE Workshop 3

Observation of a New Boson at a Mass of 125 GeV with the ATLAS and CMS Experiments at the LHC
Credits: ATLAS, CMS Collaborations

Motivation

CMS Combine Paper https://arxiv.org/pdf/2404.06614
25-September-2024 V. Vassilev -- Automatic Differentiation in RooFit – The 4th MODE Workshop 4

𝐿 𝑛, 𝑎⃗&𝜂, 𝜒 = *
!∈#$%&$$'(!*

*
&∈+%,

𝑓! 𝑥⃗!&&𝜂, 𝜒
∫ 𝑓! 𝑥⃗!&&𝜂, 𝜒 𝑑𝑥⃗!

/

	 *
!∈%&$$'(!*(.$./01&!./)

*
%∈+%,

𝑃𝑜𝑖𝑠 𝑛!%|𝜈 𝜂, 𝜒 /*
3∈3

𝑐3 𝑎3|𝜒

𝑛 ∶ 𝑑𝑎𝑡𝑎, 𝑎⃗ ∶ 𝑎𝑢𝑥𝑖𝑙𝑎𝑟𝑦	𝑑𝑎𝑡𝑎, 𝜂 ∶ 𝑢𝑛𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑	𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, 𝜒 ∶ 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑	𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

Numerical and
analytic integrals

Likelihoods are central for High Energy Physics

https://arxiv.org/pdf/2404.06614

Object Oriented Math with RooFit

25-September-2024 V. Vassilev -- Automatic Differentiation in RooFit – The 4th MODE Workshop 5

𝑔! x =
1

𝜎! 2𝜋
𝑒"

!
#
$"%
&!

"

𝑔# x =
1

𝜎# 2𝜋
𝑒"

!
#
$"%
&"

"

𝑃'() x =
1 + 𝑎* ∗ 𝑇!(𝑥) + 𝑎! ∗ 𝑇#(𝑥)
∫ 1 + 𝑎* ∗ 𝑇!(𝑥) + 𝑎! ∗ 𝑇#(𝑥)

𝑆 x = 𝑓+,)!𝑔! 𝑥 + 1 − 𝑓+,)! 𝑔# 𝑥

RooGaussian sig1("sig1", "Signal component 1", x, mu, sigma1);
RooGaussian sig2("sig2", "Signal component 2", x, mu, sigma2);

// Build Chebychev polynomial pdf
RooChebychev bkg("bkg", "Background", x, {a0, a1});

// Sum the signal components into a composite signal pdf
RooRealVar sig1frac("sig1frac", "fraction of c 1 in signal", 0.8, 0.,
1.);
RooAddPdf sig("sig", "Signal", {sig1, sig2}, sig1frac);

// Sum the composite signal and background
RooRealVar bkgfrac("bkgfrac", "fraction of background", 0.5, 0., 1.);
RooAddPdf model("model", "g1+g2+a", {bkg, sig}, bkgfrac);

// Create NLL function
std::unique_ptr<RooAbsReal> nll{model.createNLL(*data,
EvalBackend("codegen"))};

Model x = 𝑓'()𝑃'() 𝑥 + 1 − 𝑓'() 𝑆 𝑥

𝑎* = 0.5, 𝑎! = 0.2, 𝑓+,)! = 0.8, 𝑓'() = 0.5,

𝜇	 = 5, 𝜎! = 0.5, 𝜎! = 1.0

Object Oriented Math. Compute Cost

25-September-2024 V. Vassilev -- Automatic Differentiation in RooFit – The 4th MODE Workshop 6

outputs

likelihood

pdfs

pdfs components

inputs

𝑁𝐿𝐿 = − d
-∈-/01123+

d
,4*

5#

log 𝑀𝑜𝑑𝑒𝑙 𝑥,

𝜂̂, 𝜒̂ = argmin
!,#

𝑁𝐿𝐿

Gradient is compute bottleneck
Z. Wolffs, ICHEP22

https://agenda.infn.it/event/28874/contributions/169205/attachments/93887/129094/ICHEP_RooFit_ZefWolffs.pdf

Lower Compute Cost of Gradients

25-September-2024 V. Vassilev -- Automatic Differentiation in RooFit – The 4th MODE Workshop 7

• Automatic/Algorithmic differentiation (AD) employs the chain rule to
decompose the compute graph into atomic operations.
• Top-down decomposition is called forward and bottom up -- reverse mode
• Reverse mode provides independent time complexity of the gradient from input

parameters at the cost of adding extra code to enable functions to be run
bottom-up (reverse) requiring extra memory
• Operation record-and-replay (operator overloading) or source code

transformation are the two common approaches to implement AD

Automatic/Algorithmic Differentiation

double f_dx(double x) {
double result = x;
double d_result = 1;
for (unsigned i = 0; i < 5; i++) {

result = std::exp(result);
d_result *= result;

}
return d_result;

}

𝑑
𝑑𝑥 𝑒'!

!!
"

= 𝑒gh'!
!!
"
h'!!

"
h'!"h'"

// f(x)=e^(e^(e^(e^(e^x))))
#include <cmath>
double f (double x) {
 double result = x;
 for (unsigned i = 0; i < 5; i++)
 result = std::exp(result);
 return result;
}

𝑓 𝑥 = 𝑒'!
!!
" Symbolic via Wolfram Alpha

Handcode Handcode, optimized by expert

AD

Figure out the
 analytical fn

25-September-2024 V. Vassilev -- Automatic Differentiation in RooFit – The 4th MODE Workshop 8

Source Code Transformation with Cla∂

25-September-2024 V. Vassilev -- Automatic Differentiation in RooFit – The 4th MODE Workshop 9

Extensible Clang/LLVM plugin that runs at compile time to produce readable C++
source code and apply advanced AD high-level analyses

Atell’s talk

Max’s talk

https://github.com/vgvassilev/clad

Cla∂ as RooFit’s AD Engine

10

RooFit Compute Graph

CodeGen/Flatten

Standalone Simplified Compute Graph C++

...
double gauss(double *x) {
 using namespace RooFit::Detail;

 return gEvaluate(x[3], (x[0] + x[1]),
(x[2] * 1.5)) /
 gIntegral(-10., 10., (x[0] +
x[1]), (x[2] * 1.5));
}
...

AD
∆

Optimize

FCN

25-September-2024 V. Vassilev -- Automatic Differentiation in RooFit – The 4th MODE Workshop

pdf.fitTo(data, RooFit::EvalBackend("codegen"))
pdf.createNLL(data, RooFit::EvalBackend("codegen"))

Most of HistFactory RooFit primitives are supported. Please reach out if you need additional primitive support

What was a discovery yesterday is a test case today

How to read this plot:

• Seeding time: initial Hessian estimate
(num. second derivatives)

• Minimization time: finding the minimum
• JIT time: time to generate and compile the gradient code

• The gradient can be be reused across different minimizations,
amortizing the JIT time

• For example, possible reuse in profile likelihood scans

Using AD drastically reduces minimization time on top of
the new CPU backend in ROOT 6.32.

Bottom line: 10x faster minimization compared to ROOT
6.30.

12

Can be amortized by
reusing the NLL

ATLAS Benchmark Models
49 HistFactory channels, 739 parameter in total, in rootbench, toy data

Max’s talk

25-September-2024 V. Vassilev -- Automatic Differentiation in RooFit – The 4th MODE Workshop 12

https://indico.jlab.org/event/459/contributions/11570/
https://github.com/root-project/rootbench

Experiments with ATLAS Benchmark models

Memory consumption of gradient evaluation is very low compared to the python/ML based frameworks.
Constant factor of the consumption by primal function.

25-September-2024 V. Vassilev -- Automatic Differentiation in RooFit – The 4th MODE Workshop 13

Very heterogeneous likelihood:
• Template histogram fits line in the ATLAS benchmark
• Analytical shape fits, numerical integration necessary in some cases
Perfect example to test the new RooFit developments

See also the presentation on CMS analysis tools at ICHEP.

We implemented CMS-specific primitives in a custom CMS combine branch

CMS Higgs Observation Open Data Models
CMS published RooFit-based Higgs observation likelihood, 672 parameters, 102 channels, real data

25-September-2024 V. Vassilev -- Automatic Differentiation in RooFit – The 4th MODE Workshop 14

https://indico.cern.ch/event/1291157/contributions/5889475/
https://github.com/cms-analysis/HiggsAnalysis-CombinedLimit/compare/main...guitargeek:HiggsAnalysis-CombinedLimit:roofit_ad_ichep_2024?expand=1
https://repository.cern/records/c2948-e8875

• The new CPU code path default in ROOT 6.32
is a big improvement to the old RooFit,
possibly making many custom improvements
in combine obsolete
• The AD backend further reduces

minimization time
• Printing out the generated NLL code helps a

lot to understand what’s actually fitted
• Work in progress to improve the produced

code and its gradient

Can be amortized by
reusing the NLL

CMS Higgs Observation Models. Benchmarks

25-September-2024 V. Vassilev -- Automatic Differentiation in RooFit – The 4th MODE Workshop 15

In the CMS model we observed that the derivatives are small compared to the NLL value
• Numerical differentiation often fails because the finite differences are smaller than numerical

precision on the NLL
• Essential workaround for the Higgs model is to offset the NLL

by initial value with:
pdf.createNLL(data, RooFit::Offset(true))

Problems with this:

• Offsetting might fail if initial value is far from the minimum
• Bookkeeping of offsets is error-prone

With AD, the offsetting is not necessary anymore!

36 - FCN = -9801946.549 Edm = 0.01129396511

37 - FCN = -9801946.566 Edm = 0.01497173883

38 - FCN = -9801946.574 Edm = 0.007242353199

39 - FCN = -9801946.583 Edm = 0.004954953322

40 - FCN = -9801946.589 Edm = 0.005774308843

41 - FCN = -9801946.596 Edm = 0.004695329674

42 - FCN = -9801946.602 Edm = 0.004558156748

43 - FCN = -9801946.615 Edm = 0.008141300763

44 - FCN = -9801946.625 Edm = 0.004861879849

45 - FCN = -9801946.628 Edm = 0.003472778648

46 - FCN = -9801946.63 Edm = 0.001782083931

47 - FCN = -9801946.631 Edm = 0.0007515760698

Minimizer output, showing the small
changes wrt. large NLL value

CMS Higgs Observation Models. Numerical Stability

25-September-2024 V. Vassilev -- Automatic Differentiation in RooFit – The 4th MODE Workshop 16

Possible next steps and perspectives

• Make the codegen backend default for RooFit
• Work together with experiments to support your usecases and help out in

integration RooFit AD in experiment frameworks
• Extend RooFit’s interfaces so it will be easy to get out the generated code and

gradients to use them outside the RooFit minimization routines
• R & D on analytic higher-order derivatives that are used in Minuit
• Implement advanced clad-based analyses to remove the redundant

computation

25-September-2024 V. Vassilev -- Automatic Differentiation in RooFit – The 4th MODE Workshop 17

Conclusion

Source-code transformation AD with Clad fits naturally into the ROOT ecosystem
and RooFit benefits from it in many ways:

• Faster likelihood gradients

• No need for tricks to get numerically stable gradients

• Likelihoods can be expressed in plain C++ without need for aggressive caching
by the user or in frameworks like RooFit
• Good for understanding the math: optimization gets decoupled from logic - simple code
• Good for collaboration: simple C++ can easily be shared and used in other contexts

25-September-2024 V. Vassilev -- Automatic Differentiation in RooFit – The 4th MODE Workshop 18

Thank you!

