Vi BN

* & JENM o Third MODE Workshop on

COMPILER

Differentiable
N\l @ Programming for
MODE @ hep @ Experiment Design C R
\/ AP Pr;':-:;tGO;‘ulI’: i;grzs;ty RESEARCH
x\\ 7 1 L /":‘

Automatic Differentiation in RooFit

Jonas Rembser”, Vaibhav Thakkar*, Petro Zarytskyi*, Vassil Vassilev*
{ *CERN, *Princeton, compiler-research.org }

Bl ver [Nov (B
TES | TAM
M| =N v (8

This work is partially supported by National Science Foundation under Grant OAC-2311471

https://compiler-research.org/

Introduction

If math is the language of science, the language of experimental
science is statistics.

Statistical modelling helps us define a scientific narrative by
talking to our data sets

Introduction

o =T T T 1 T T 1 rrrr|rrrrjrrrr[prrrr|rrrr|rrr1re
o
= ATLAS 2011 - 2012 e Obe
§ Vs=7TeV: [Ldt=4.6-4.81b" eme Exp. -
Vs=8TeV: [Ldt=5.8-5.9fb 4o
1 P e~ - =\ = Oc
2 01 == " i e o 1o
102 frmenenn T] 20
10‘3 """"".'.'.""""‘W#:{ -- 30
104 Y
10° 4o
10°
PP S e 5 50
10° =
10 g -mmemmme e nme oo N GRS 60
10‘10 ~§~~
10-11 PR TR TN T T T N TN T TN YO T T T NN T MY) |\|“L v by vy 1
110 115 120 125 130 135 140 145 150
m,, [GeV]

Local p-value

CMS \s=7TeV,L=5.1fb" \s=8TeV,L=5.31b"

1 T T T T T T T T T [I T T T I T T T T l T LI T I T T LI | T T T T
TN =
g \V/ §
104 el \ / —
6| *]
10°) \/ -

|
.
|

8| *e |
10° .
10 [~ | = Combined obs. \‘ 7
10 " [|---- Exp.for SMH *,]
| |=——s=7TeV _

[|—— {s=8TeV 1

1 O 12 S S S B A S S S S S S S 7 S S S S S B =

1c
26

30

4c

56

66

76

110 115 120 125 130 135 140 145

m,, (GeV)

Observation of a New Boson at a Mass of 125 GeV with the ATLAS and CMS Experiments at the LHC

25-September-2024

Credits: ATLAS, CMS Collaborations

V. Vassilev -- Automatic Differentiation in RooFit — The 4" MODE Workshop

Motivation

Likelihoods are central for High Energy Physics

Numerical and

> oo - fc(fcilﬁ,)? analytic integrals
L(7, dl7, 7) = 1 l .
(n aln X) b ffc(falﬁ»)?) dfc

A
ceunbinned ch i€ob

1_[l_[Pois(nq,|lv(7, X)) - l_[Cx(axl)()

ceEbinned ch(analytical) beobs YEX

n : data, d : auxilary data, 17 : unconstrained parameters, y : constrained parameters

CMS Combine Paper https://arxiv.org/pdf/2404.06614

25-September-2024 V. Vassilev -- Automatic Differentiation in RooFit — The 4" MODE Workshop

https://arxiv.org/pdf/2404.06614

Object Oriented Math with RooFit

g1(x) = alﬁ

1 _ 2
__ 1 555
g2>(x) sze z

14+ayg*T(x)+aq *xTy(x)
J1+ag*Ti(x) + ay * T,(x)

P bkg (x) =

S(x) = fsiglgl(x) + (1 - fsigl)gz (x)

Model(x) = forgPorg () + (1 = fprg)S(x)

Ag = 05, a, = O'ZIfSigl == 0-8rfbkg = 05,
u =50 =050 =1.0

25-September-2024

RooGaussian sigl ("sigl",
RooGaussian sig2 ("sig2",

"Signal component 1", x,
"Signal component 2", x,

mu, sigmal)

mu, sigma?2)
// Build Chebychev polynomial pdf

RooChebychev bkg("bkg", "Background", x, {a0, al}l);

// Sum the signal components into a composite signal pdf
RooRealVar siglfrac("siglfrac",
1.);

RooAddPdf sig("sig",

"fraction of ¢ 1 in signal',

"Signal", {sigl, sigZ2}, siglfrac);
// Sum the composite signal and background
RooRealVar bkgfrac ("bkgfrac", "fraction of background", 0.5,

RooAddPdf model ("model", "gl+g2+a", {bkg, sig}, bkgfrac);

// Create NLL function

std::unique ptr<RooAbsReal> nll{model.createNLL (*data,
EvalBackend ("codegen")) };

V. Vassilev -- Automatic Differentiation in RooFit — The 4™ MODE Workshop

.
14

.
14

0.

8,

0

L 4

Object Oriented Math. Compute Cost

25-September-2024

(f, %) = argmin[NLL]
X [

V. Vassilev -- Automatic Differentiation in RooFit — The 4™ MODE Workshop

serial old

migrad_seed 230

Serial Old

/

~ Gradient is compute bottleneck

Z. Wolffs, ICHEP22

https://agenda.infn.it/event/28874/contributions/169205/attachments/93887/129094/ICHEP_RooFit_ZefWolffs.pdf

Lower Compute Cost of Gradients

e Automatic/Algorithmic differentiation (AD) employs the chain rule to
decompose the compute graph into atomic operations.

* Top-down decomposition is called forward and bottom up -- reverse mode

* Reverse mode provides independent time complexity of the gradient from input
parameters at the cost of adding extra code to enable functions to be run
bottom-up (reverse) requiring extra memory

* Operation record-and-replay (operator overloading) or source code
transformation are the two common approaches to implement AD

Automatic/Algorithmic Differentiation

e X
+e€ +ef +e”*

»

_e® >
f (x)‘ =e T

A

ox Symbolic via Wolfram Alpha d pe* pe* X
(eee) — pXxte

Figure out the Handcode Handcode, optimized by expert

analytical fn

v v

double f dx(double x) {
// f(x)=e"(e"(e*(e”(e’x)))) -

, double result = x;
#include <cmath> double d result = 1;
double £ (double_x) { AD R for (unsggned i=0; 1 < 5; i++) {
double result = x; | | result = std::exp(result);
for (unsigned 1 = 0; 1 < 5; 1++) d result *= result:
result = std::exp(result);) — '

return result;

} }

return d result;

25-September-2024 V. Vassilev -- Automatic Differentiation in RooFit — The 4™ MODE Workshop

Source Code Transformation with Clao

Extensible Clang/LLVM plugin that runs at compile time to produce readable C++
source code and apply advanced AD high-level analyses

25-September-2024 V. Vassilev -- Automatic Differentiation in RooFit — The 4" MODE Workshop

https://github.com/vgvassilev/clad

- e e e e e e e e e e e e e e ———

/ RooFit Compute Graph /" Standalone Simplified Compute Graph C++

Claod as RooFit's AD Engine

B e I e e . e

double gauss (double *x) {
using namespace RooFit::Detail;

' CodeGen/Flatten . AD
! 4 return gEvaluate (x[3], (x[0] + x[1]1), E > [x
i o (x[2] * 1.5)) / |
i ! gIntegral (-10., 10., (x[0] + :
; x[11), (x[2] * 1.5)); | Optimize
! o} I
\ E FCN

__

pdf.fitTo (data, RooFit::EvalBackend ("codegen'"))
pdf.createNLL (data, RooFit::EvalBackend("codegen'))

Most of HistFactory RooFit primitives are supported. Please reach out if you need additional primitive support

25-September-2024 V. Vassilev -- Automatic Differentiation in RooFit — The 4™ MODE Workshop 10

What was a discovery yesterday is a test case today

ATLAS Benchmark Models

49 HistFactory

channels, 739 parameter in total, in rootbench, toy data

How to read this plot:

e Seeding time: initial Hessian estimate
(num. second derivatives)

* Minimization time: finding the minimum

: time to generate and compile the gradient code

* The gradient can be be reused across different minimizations,
amortizing the JIT time

* For example, possible reuse in profile likelihood scans

Using AD drastically reduces minimization time on top of
the new CPU backend in ROOT 6.32.

Bottom line: 10x faster minimization compared to ROOT

6.30.

25-September-2024

V. Vassilev -- Automatic Differentiation in RooFit — The 4" MODE Workshop

Atlas Higgs Model benchmark - single minimization

JIT Time ™ Minimization time m Seeding time

Time (seconds)

100

75

50

25

Legacy CPU
(ROOT 6.30 default)

CPU

Codegen + AD
(ROOT 6.32 default)

Final Min Val = -368.36 for all evaluations

12

https://indico.jlab.org/event/459/contributions/11570/
https://github.com/root-project/rootbench

Experiments with A

Clad JIT Time (ms) vs Channels

LAS Benchmark models

Primal to Gradient Evaluation time Ratio vs Channels

5.00

() 124*x + 802
8000

@ 6000 5115 > ¢ S
£ 4699 4 S 300
~ 4187 o
() ® 0}
E 4000 3323 o £
== — == 2.00
= ' T
= 1906 o 5
©
3 2000 @ 1.00
(@)

0 0.00

10 20 30 40 50 10 20 30 40 50
Channels

Channels

Memory consumption of gradient evaluation is very low compared to the python/ML based frameworks.
Constant factor of the consumption by primal function.

25-September-2024 V. Vassilev -- Automatic Differentiation in RooFit — The 4™ MODE Workshop

13

CMS Higgs Observation Open Data Models

CMS published RooFit-based Higgs observation likelihood, 672 parameters, 102 channels, real data

Very heterogeneous likelihood:
* Template histogram fits line in the ATLAS benchmark

* Analytical shape fits, numerical integration necessary in some cases
Perfect example to test the new RooFit developments

See also the presentation on CMS analysis tools at ICHEP.

We implemented CMS-specific primitives in a custom CMS combine branch

Showing 17 changed files with 1,704 additions and 113 deletions.

25-September-2024 V. Vassilev -- Automatic Differentiation in RooFit — The 4™ MODE Workshop

14

https://indico.cern.ch/event/1291157/contributions/5889475/
https://github.com/cms-analysis/HiggsAnalysis-CombinedLimit/compare/main...guitargeek:HiggsAnalysis-CombinedLimit:roofit_ad_ichep_2024?expand=1
https://repository.cern/records/c2948-e8875

CMS Higgs Observation Models. Benchmarks

* The new CPU code path default in ROOT 6.32 cwis open Data Higgs Model - single minimization
iS a b|g improvement to the Old ROOF|t’ JIT Time ™ Minimization time m Seeding time

possibly making many custom improvements ;
in combine obsolete 0

e The AD backend further reduces
minimization time

* Printing out the generated NLL code helps a *
lot to understand what’s actually fitted ”

 Work in progress to improve the produced i ROSIYCRY T CRU ey Cotemen D
code and its gradient

30

20

Time (seconds)

25-September-2024 V. Vassilev -- Automatic Differentiation in RooFit — The 4" MODE Workshop 15

CMS Higgs Observation Models. Numerical Stability

In the CMS model we observed that the derivatives are small compared to the NLL value

e Numerical differentiation often fails because the finite differences are smaller than numerical

precision on the NLL

* Essential workaround for the Higgs model is to offset the NLL -
by initial value with: ji
.createNLL (, (true)) ij
Problems with this: -
e Offsetting might fail if initial value is far from the minimum "
* Bookkeeping of offsets is error-prone -

With AD, the offsetting is not necessary anymore!

25-September-2024

FCN
FCN
FCN
FCN
FCN
FCN
FCN
FCN
FCN
FCN
FCN
FCN

-9801946.549
-9801946.566
-9801946.574
-9801946.583
-9801946.589
-9801946.596
-9801946.602
-9801946.615
-9801946.625
-9801946.628

-9801946.63
-9801946.631

Edm
Edm
Edm
Edm
Edm
Edm
Edm
Edm
Edm
Edm
Edm
Edm

O O O O O O O o o o o o

changes wrt. large NLL value

V. Vassilev -- Automatic Differentiation in RooFit — The 4™ MODE Workshop

.01129396511
.01497173883
.007242353199
.004954953322
.005774308843
.004695329674
.004558156748
.008141300763
.004861879849
.003472778648
.001782083931
.0007515760698

Minimizer output, showing the small

16

Possible next steps and perspectives

* Make the codegen backend default for RooFit

* Work together with experiments to support your usecases and help out in
integration RooFit AD in experiment frameworks

* Extend RooFit’s interfaces so it will be easy to get out the generated code and
gradients to use them outside the RooFit minimization routines

* R & D on analytic higher-order derivatives that are used in Minuit

* Implement advanced clad-based analyses to remove the redundant
computation

Conclusion

Source-code transformation AD with Clad fits naturally into the ROOT ecosystem
and RooFit benefits from it in many ways:

* Faster likelihood gradients
* No need for tricks to get numerically stable gradients

* Likelihoods can be expressed in plain C++ without need for aggressive caching
by the user or in frameworks like RooFit
 Good for understanding the math: optimization gets decoupled from logic - simple code
 Good for collaboration: simple C++ can easily be shared and used in other contexts

Thank you!

