

Optimal design for experimental production of exotic hypernuclei

Fourth MODE Workshop 23-25/09/2024, Valencia (Spain)

Dr. Christophe Rappold¹ and **Samuel Escrig**¹, ¹Instituto de Estructura de la Materia (IEM - CSIC), Spain

Introduction to hypernuclei

[T.R. Saito et al., Nature Reviews Physics 3 (2021) 803-813]

Study Y-N and Y-Y interaction:

- Difficult to get scattering data
 - Short lifetime
- Analyse Charge Symmetry Breaking (CSB)
 Difference Y-p and Y-n
- Describe hypernuclei (mass and half-life)
- Modelize high-density environments
 - Neutron stars cores

Introduction to hypernuclei

[O. Hashimoto and H. Tamura, Prog. Part. Nucl. Phys. 57 (2006) 564]

Experiments without fragment separator

• Phase 0 of HypHI Project in GSI-FAIR (Germany) in 2009

[C. Rappold et al., Nucl. Phys. A 913 (2013) 170-184]

Experiments with fragment separator

• WASA-FRS Experiment of HypHI Project in GSI-FAIR (Germany) in 2022

Experiments with fragment separator

• WASA-FRS Experiment of HypHI Project in GSI-FAIR (Germany) in 2022

Experiments with fragment separator

• New experiment in SuperFRS of HypHI Project in GSI-FAIR (Germany)

Exp. optimization for hypernuclear production

Many parameters:

- Primary beam: isotope, energy
- Primary target: isotope, thickness
- > Separator setup for exotic beam: Bp, slits, degrader \rightarrow intensity, energy, contaminants
- Secondary target: isotope, thickness

Production of exotic beam

Optimization of:

Exotic beam yield

(all isotopes from H to $_{21}$ Sc)

Variables:

- Primary beam isotope
- Primary target isotope
 (all stable up to ⁴⁰Ca)
- Primary target thickness

Fix parameter:

•	Primary	beam	intensity:	5x10 ⁹	ions/s
---	---------	------	------------	-------------------	--------

Universal empirical formula EPAX for fragmentation cross sections

[C. Rappold and J. López-Fidalgo, Phys. Rev. C 94 (2016) 044616]

>

Transmission of exotic beam

MOCADI code for MC simulations of ion-optic transmission

Production of hypernuclei

Theoretical model for collisions hadron-hadron, hadron-N, N-N: Quark-Gluon String Model (QGSM)

Production of hypernuclei

Theoretical model for collisions hadron-hadron, hadron-N, N-N: Quark-Gluon String Model (QGSM)

Multivariate analysis

[[]C. Rappold and J. López-Fidalgo, Phys. Rev. C 94 (2016) 044616]

Multivariate analysis

Maximax criterion:

$$\underset{\alpha,\beta}{\operatorname{argmax}} \max_{C,E,T,I} \{ F_{\alpha,\beta}(C,E,T,I) \}$$

Multivariate analysis

Maximax criterion:

$$\underset{\alpha,\beta}{\operatorname{argmax}} \max_{C,E,T,I} \{ F_{\alpha,\beta}(C,E,T,I) \}$$

Multivariate analysis results

	Reaction	Target	2^{nd} beam	\mathbf{E}_{k}	Ι	Yield
		(cm)		(AGeV)	$(10^{6}/s)$	(/s)
${}^{8}C$	$^{14}N+^{9}Be$	5.5	^{12}N	1 94	51	0.2
9 C	$^{14}N+^{9}Be$	5.5	^{12}N	1.94	5.1	0.8
^{10}C	$^{14}N+^{9}Be$	5.5	^{12}N	1.04	5.1	1.5
$^{\Lambda}$	$^{14}N \perp ^{9}Bo$	5.5	12N	1.04	5.1	0.0
$7 \mathbf{R}$	$14 N \pm 9 Bo$	5.5	12 N	1.04	5.1	0.5
⁸ B	14 N \pm ⁹ Bo	5.5	12 N	1.94	5.1	27
лD 9 р	$14 \text{ N} + 9 \text{ D}_{2}$	5.5	12 N	1.94	5.1	2.1
ΛD 10D	14 N + 9 Pc	5.5	12 N	1.94	5.1	0.0 0.5
Λ D 11 D	10 + 100	0.0	17 E	1.94	5.1	2.0
A D	$14 \text{ M} + 9 \text{ D}_{2}$	2 F F	Г 12 м	1.97	0.7 5.1	1.2
6 De	$14 M + 9 D_{\odot}$	0.0 E E	12 N	1.94	5.1	1.0
ADe 7 D	14 N + 9 D	0.0 F F	12 N	1.94	5.1	1.9
ABe 8 D	N + Be 14N + 9D	5.5	12 N	1.94	5.1	3.9
⁸ Be	N+ Be	5.5	16 O	1.94	5.1	4.0
A Be	stable f	eam	14 14	2.	10.	4.4
A Be	stable b	eam	12D	2.	10	3.1
A Be	²⁰ Na+ ¹¹ B	15.5	17 D	1.79	1.2	0.6
λL1	²⁰ Ne+ ⁵ Be	2	10 m	1.97	5.7	1.1
ΔLi	¹⁴ C+ ⁹ Be	6	¹⁰ C	1.94	5.1	2.5
$^{\circ}_{\Lambda}$ Li	¹⁴ N+ ⁹ Be	5.5	¹² N	1.94	5.1	4.3
ΔLi	stable b	eam	14 N	2.	10.	5.2

Conclusion

Optimization of experimental study of exotic hypernuclei

- More precise hypernuclear spectroscopy, targeting sub-MeV
- ➢ Use of FRS and SuperFRS
 - Separator to provide exotic beams
 - High resolution spectrometer for decayed fragment
 - Exclusive measurements
- Future at SuperFRS
 - Possibility to study neutron-deficient and neutron-rich hypernuclei
 - Example for ${}^{8}_{\Lambda}$ Be:
 - Primary beam ¹⁴N to a 5.5-cm primary target of ⁹Be, separating ¹²N to bombard a 4-cm ¹²C secondary target, in order to produce 4 ⁸ Be per second

Thank you for your attention!

Back up

Experiments without fragment separator

• Phase 0 of HypHI Project in GSI-FAIR (Germany) in 2009

Coalescence of Λ in spectator fragment Reaction energy threshold ~1.6 GeV for NN $\rightarrow \Lambda$ NN

[T.R. Saito et al., Nature Reviews Physics 3 (2021) 803-813]

Experiments without fragment separator

• Phase 0 of HypHI Project in GSI-FAIR (Germany) in 2009

[C. Rappold et al., Nucl. Phys. A 913 (2013) 170-184]