MODE workshop, Valencia, Spain, 24.09.2024

Automated Design of Quantum (and Gravitational Wave) Experiments

Mario Krenn

Artificial Scientist Lab, Theory Division

@mariokrenn6240

http://mariokrenn.wordpress.com/

MAX PLANCK INSTITUTE FOR THE SCIENCE OF LIGHT

Some examples: (without symmetry)

- 3 lasers, 3 BS, 3 detectors: 1000 combinations
- 5 lasers, 5 BS, 5 detectors: 81,000 combinations (!)

Some examples: (without symmetry)

- 3 lasers, 3 BS, 3 detectors: 1000 combinations
- 5 lasers, 5 BS, 5 detectors: 81,000 combinations (!)

Some examples: (without symmetry)

- 3 lasers, 3 BS, 3 detectors: 1000 combinations
- 5 lasers, 5 BS, 5 detectors: 81,000 combinations (!)

High-dimensional multipartite entanglement

$$|\psi\rangle_{GHZ-3D} = \frac{1}{\sqrt{3}} \left(|000\rangle + |111\rangle + |222\rangle \right)$$

High-dimensional multipartite entanglement

$$|\psi\rangle_{GHZ-3D} = \frac{1}{\sqrt{3}} \left(|000\rangle + |111\rangle + |222\rangle\right)$$

High-dimensional multipartite entanglement

$$|\psi\rangle_{GHZ-3D} = \frac{1}{\sqrt{3}} \left(|000\rangle + |111\rangle + |222\rangle\right)$$

Krenn, Malik, Fickler, Lapkiewicz, Zeilinger, Automated Search for new Quantum Experiments, *Phys. Rev. Lett.* **116**, 090405 (2016) Krenn, Erhard, Zeilinger, Computer-inspired quantum experiments, *Nat.Rev.Phys* **2**, 649 (2020).

High-dimensional multipartite entanglement

$$|\psi\rangle_{GHZ-3D} = \frac{1}{\sqrt{3}} \left(|000\rangle + |111\rangle + |222\rangle \right)$$

<u>MK</u>, Hochrainer, Lahiri, Zeilinger, Entanglement by Path Identity, *PRL* **118** (2017)

<u>Krenn</u>, Malik, Fickler, Lapkiewicz, Zeilinger, Automated Search for new Quantum Experiments, *Phys. Rev. Lett.* **116**, 090405 (2016) <u>Krenn</u>, Erhard, Zeilinger, Computer-inspired quantum experiments, *Nat.Rev.Phys* **2**, 649 (2020).

Computer-inspired ideas and concepts

<u>MK</u>, Hochrainer, Lahiri, Zeilinger, Entanglement by Path Identity, *PRL* **118** (2017). <u>MK</u>, Erhard, Zeilinger, *Nature Reviews Physics* **2**, 649 (2020).

Gu, Erhard, Zeilinger, <u>MK</u>, PNAS **116** (2019).

Bao et al., Very-large-scale integrated quantum graph photonics, Nature Photonics, 17, 573 (2023).

Feng, et al., On-Chip nonlocal quantum interference between the origins of a fourphoton state, Optica (2023).

Qian et al., *Multiphoton non-local quantum interference controlled by an undetected photon, Nature Communications* **14** (1), 1480 (2023)

Computer-inspired ideas and concepts

<u>MK</u>, Hochrainer, Lahiri, Zeilinger, Entanglement by Path Identity, *PRL* **118** (2017). <u>MK</u>, Erhard, Zeilinger, *Nature Reviews Physics* **2**, 649 (2020).

OPEN ACCESS
IOP Publishing

Phys. Scr. 95 (2020) 062501 (50pp)

Physica Scripta

https://doi.org/10.1088/1402-4896/ab7a35

Perspective

The sounds of science—a symphony for many instruments and voices

Gerianne Alexander¹, Roland E Allen², Anthony Atala³, Warwick P Bowen^{4,5}, Alan A Coley⁶, John B Goodenough⁷, Mikhail I Katsnelson⁸, Eugene V Koonin⁹, Mario Krenn^{10,11}, Lars S Madsen⁵, Martin Månsson¹², Nicolas P Mauranyapin⁴, Art I Melvin^{10,13}, Ernst Rasel^{14,15}, Linda E Reichl¹⁶, Roman Yampolskiy¹⁷, Philip B Yasskin¹⁸, Anton Zeilinger^{10,13} and Suzy Lidström^{19,20}

14. How can a computer find autonomously new, surprising or creative solutions or insights? by Mario Krenn, Art I. Melvin and Anton Zeilinger

Computer-inspired ideas and concepts

<u>MK</u>, Hochrainer, Lahiri, Zeilinger, Entanglement by Path Identity, *PRL* **118** (2017). <u>MK</u>, Erhard, Zeilinger, *Nature Reviews Physics* **2**, 649 (2020).

OPEN ACCESS
IOP Publishing

Phys. Scr. 95 (2020) 062501 (50pp)

Physica Scripta

https://doi.org/10.1088/1402-4896/ab7a35

Perspective

The sounds of science—a symphony for many instruments and voices

Chemistry Nobel 2019

Gerianne Alexander¹, Roland E Allen², Anthony Atala³, Warwick P Bowen^{4,5}, Alan A Coley⁶, John B Goodenough⁷, Mikhail I Katsnelson⁸, Eugene V Koonin⁹, Mario Krenn^{10,11}, Lars S Madsen⁵, Martin Månsson¹², Nicolas P Mauranyapin⁴, Art I Melvin^{10,13}, Ernst Rasel^{14,15}, Linda E Reichl¹⁶, Roman Yampolskiy¹⁷, Philip B Yasskin¹⁸ Anton Zeilinger^{10,13} and Suzy Lidström^{19,20}

Physics Nobel 2022

14. How can a computer find autonomously new, surprising or creative solutions or insights? by Mario Krenn, Art I. Melvin and Anton Zeilinger

Highly efficient computer-designed quantum experiments

<u>MK</u>, Kottmann, Tischler, Aspuru-Guzik, Conceptual understanding through efficient inverse-design of quantum experiments, *Phys. Rev. X* **11**, 031044 (2021).

Highly efficient computer-designed quantum experiments

<u>MK</u>, Kottmann, Tischler, Aspuru-Guzik, Conceptual understanding through efficient inverse-design of quantum experiments, *Phys. Rev. X* **11**, 031044 (2021).

Change Perspective:

New representation -> orders of magnitude speed-up.

Highly efficient computer-designed quantum experiments

<u>MK</u>, Kottmann, Tischler, Aspuru-Guzik, Conceptual understanding through efficient inverse-design of quantum experiments, *Phys. Rev. X* **11**, 031044 (2021).

Change Perspective:

New representation -> orders of magnitude speed-up.

A) Bridge between quantum experiments and graphs

Vertex: Photonic path Edge: Photon pair Edge weight: amplitude Color: Photonic Mode

B) Gradient-based optimization + discrete topological optimization

Highly efficient computer-designed quantum experiments

< luantum

the open journal for quantum science

Digital Discovery of 100 diverse Quantum Experiments with PyTheus

Carlos Ruiz-Gonzalez^{§1}, Sören Arlt^{§1}, Jan Petermann¹, Sharareh Sayyad¹, Tareq Jaouni², Ebrahim Karimi^{1,2}, Nora Tischler³, Xuemei Gu¹, and Mario Krenn¹

Quantum 7, 1204 (2023).

(a) Four-dimensional four-photon GHZ state (overcoming the 3-dimensional barrier for multiphoton entanglement)

(b) Heralded 3D Bell state with single photons (improves state-of-the-art design by requiring less ancilla photons)

pentagram)

(g) Toffoli quantum gate

without ancilla photons

(c) Two-mode five-photon N00N state $|50\rangle + |05\rangle$ (very symmetric shape with an inscribed

(d) A 4-qubit entangled states with unit coefficients, which requires complex-valued weights for generation

(e) Quantum measurement for a quantum communication task with quantum advantage (Mean King's Problem)

(f) Entanglement swapping without using two Bell states

(h) Mixed state with bound entanglement that can violate a Bell inequality (counterexample to the Peres conjecture from 1999, solved 2014)

github.com/artificial-scientist-lab/PyTheus pip install pytheusQ

Al-driven design of new Gravitational Wave Detectors

Al-driven design of new Gravitational Wave Detectors

with Yehonathan Drori, Rana X. Adhikari (Caltech, LIGO): arXiv:2312.04258

LIGO's next Generation Detector Update: Voyager

Al-driven design of new Gravitational Wave Detectors

Al-driven design of new Gravitational Wave Detectors

Al-driven design of new Gravitational Wave Detectors

Al-driven design of new Gravitational Wave Detectors

AI-based Quantum Hardware & Experiment Design:

In many domains in physics (quantum optics, gravitational wave physics, microscopes/telescopes soon), we have now algorithms for

finding solutions to <u>open</u> questions.

The solutions are presented such that

we can learn and understand new concepts.

AI-based Quantum Hardware & Experiment Design:

In many domains in physics (quantum optics, gravitational wave physics, microscopes/telescopes soon), we have now algorithms for

finding solutions to <u>open</u> questions.

The solutions are presented such that

we can learn and understand new concepts.

AI-based Quantum Hardware & Experiment Design:

In many domains in physics (quantum optics, gravitational wave physics, microscopes/telescopes soon), we have now algorithms for

finding solutions to <u>open</u> questions.

The solutions are presented such that

we can learn and understand new concepts.

AI-based Quantum Hardware & Experiment Design:

In many domains in physics (quantum optics, gravitational wave physics, microscopes/telescopes soon), we have now algorithms for

finding solutions to <u>open</u> questions.

The solutions are presented such that we can learn and understand new concepts.

ERC Starting Grant 2024

ArtDisQ

Artificial Scientific Discovery of advanced Quantum Hardware with high-performance Simulators

Numerous PhD and PostDoc positions available!!!