Optimising the DSA-2000

22 September, 2024 Joshua Albert jgalbert@caltech.edu MODE Conference, Valencia

Collab: Gregg Hallinan, Greg Hellbourg, Yuping Huang, James Lamb, David Woody, et al.

In this talk

- 1. Why forward modelling is key in achieving science outcomes for big experiments
 - 2. Three examples of how it's being used for DSA-2000

lconnor@caltech.edu

walter@mpia.de

> 100x known sources, and a novel gravitational wave observatory!

David Woody dwoody@caltech.edu

dana.simard@caltech.edu

Steve Myers smyers@nrao.edu

Dana Simard

y.wiaux@hw.ac.uk

3

GIANT GALACTIC OUTFLOWS AND SHOCKS IN THE COSMIC WEB

What is radio interferometry? Some basics...

Wiener-Khinchin theorem states: Sky Brightness = FFT(Electric field coherence)

Traditional radio imaging problem

Sampled aperture leads to complex **Point Spread Function (PSF**) that necessitates some form of inference

Traditional radio imaging problem

Classic iterative solution can takes days/weeks to analyse a single modern large dataset!

Traditional radio imaging problem

As the number of antennas (N) grows, we get better images but longer processing times and more data volume.

Traditionally (small N) Data volume $\propto N^2$ Thermal Noise $\propto N^{-1}$ Survey Speed $\propto N^2$ Dynamic Range $\propto N$ Processing $\propto N^2$ log(N) Radio Camera (large N)

- ⇒ Data volume ∝ N²
- ⇒ Thermal Noise∝N⁻¹
- ⇒ Survey Speed∝N²
- ⇒ Dynamic Range∝N
- \Rightarrow Processing \propto N²log(N)

The Challenge To go where no one has gone before.

DSA-2000 the first point-and-shoot radio camera: revolutionising radio astronomy

Caltech OVRO

What makes a radio camera?

- 1. Large N fills in the aperture, "approaching a CCD"
- 2. Real-time capability, "don't need to wait for imaging"

Radio Camera (large N)

- ⇒ Data volume ∝ N²
- ⇒ Thermal Noise∝N⁻¹
- \Rightarrow Survey Speed \propto N²
- ⇒ Dynamic Range∝N
- \Rightarrow Processing \propto N²log(N)

The Challenge To make a streaming radio interferometer with thousands of antennas.

What is forward modelling?

Generative data useful for surrogate ML components

With infinite datasets and realistic systematics you can explore ML surrogates.

E.g. deconvolving the PSF with CNNs.

Dirty map zoom

NN reconstruction

NN reconstruction zoom

True map

True map

(POLISH; Connor et al. 2021)

Liam Connor

Three examples of optimising DSA-2000

- 1. Array layout, subject to land allotment constraints.
- 2. Dish design, subject to manufacturing constraints.
- 3. Calibration hyper-parameters, subject to real-time.

Optimising array layout

Antenna nosition

Choosing a site can be a challenge...

Optimisation objective is reference PSF

Science requirements have already be verified with reference PSF

Defining problem with probabilistic programming

Formulate as a maximum likelihood problem.

Constraints defined via setting per-antenna \mathbf{x}_0 and σ

$$\begin{aligned} \mathbf{x} \sim & \mathcal{N}[\mathbf{x}_0, \sigma^2 \mathbf{I}] \\ \mathbf{y} = & f_{\text{PSF}}(\mathbf{x}) \\ p(\mathbf{y} \mid \mathbf{x}) = & \mathcal{N}[f_{\text{PFS}}(\mathbf{x}_{\text{ref}}), \epsilon^2 \mathbf{I}] \end{aligned}$$

Implement probabilistic program with JAXNS

Formulate as a maximum a-posteriori problem.

Constraints defined via setting per-antenna \mathbf{X}_0 and σ

$$\begin{aligned} \mathbf{x} \sim & \mathcal{N}[\mathbf{x}_0, \sigma^2 \mathbf{I}] \\ \mathbf{y} = & f_{\text{PSF}}(\mathbf{x}) \\ p(\mathbf{y} \mid \mathbf{x}) = & \mathcal{N}[f_{\text{PFS}}(\mathbf{x}_{\text{ref}}), \epsilon^2 \mathbf{I}] \end{aligned}$$

```
from jaxns import Model, Prior
from jax.scipy import optimize
import tensorflow probability.substrates.jax as tfp
tfpd = tfp.distributions
x0 = \dots \# [n, 2]
sigma = ... # [n, 2]
ref psf = ... # [m]
def prior model():
   x = yield Prior(tfpd.Normal(x0, sigma),
                    'x').parametrised()
   y = compute psf(x)
   return y
def log likelihood (y):
   return tfpd.Normal(ref psf, epsilon).log prob(y)
model = Model(prior model, log likelihood)
result = optimize.minimize(
   lambda params: -model(params).log prob joint(),
   x0=model.params,
   method='BFGS'
print(result.x)
```

Optimised PSF vs Reference PSF

We are able to maintain the FWHM, while also decreasing sidelobes.

A similar application: Optimising dish manufacturing

Systematics:

- Pointing errors
- Feed offsets
- Elevation-dependent gravitational deformations
- Surface RMS

Each has an impact on the signal path.

Optimising Calibration

Calibration involves fixed point solvers

However, there are many parameters θ that affect performance.

- 1. Number of approximate vs exact steps
- 2. Damping parameters
- 3. Improvement threshold parameters
- 4. Metric p-norm

Adaptive Multi-step Levenberg-Marquardt (Fan et al. 2019) has **11 total parameters** that define the algorithm.

Question: Can we choose θ to solve in real-time?

Optimising Calibration

Question: Can we choose θ to solve in real-time?

Options:

1. Implicit differentiation $G(\mathbf{g}; \boldsymbol{\theta}) = F(\mathbf{g}; \boldsymbol{\theta}) - \mathbf{g} \quad (G(\mathbf{g}_*) = \mathbf{0})$ 2. Gradient-free optimisation $\operatorname{JVP}_G(\mathbf{v}; \mathbf{g}_*) = \nabla_{\boldsymbol{\theta}} G(\mathbf{g}_*) \cdot \mathbf{v}$ (Implicit diff)

 $\delta > \mathbb{E}\left[||F(\mathbf{g}^n; \boldsymbol{\theta}) - \mathbf{g}_*||\right] \text{ for small } n$

Optimising Calibration: gradient-free global optimisation (JAXNS)

Reformulate as MAP problem $\mathbf{q}_{\perp} = \arg \max n(\mathbf{v} \mid \mathbf{q})n(\mathbf{q})$

 $\mathbf{g}_* = \arg \max_{\mathbf{g}} p(\mathbf{y} \mid \mathbf{g}) p(\mathbf{g})$

Use generative data and JAXNS for global optimisation,

 $\delta > \mathbb{E}\left[||F(\mathbf{g}^n; \boldsymbol{\theta}) - \mathbf{g}_*||\right] \text{ for small } n$

```
from jaxns.experimental import (
   GlobalOptimisation,
   TerminationCondition
def prior model() -> CalibrationParams:
   . . .
def log likelihood(params: CalibrationParam$):
   . . .
model = Model(
   prior model=prior model,
   log likelihood=log likelihood
go = GlobalOptimisation(model)
term cond = TerminationCondition(
   max likelihood evaluations=1024
results = qo.run(jax.random.PRNGKey 42), term cond)
```

Optimising Calibration: global optimisation using JAXNS

Optimising Calibration: selecting optimal real-time parameters

6 (nats)

Optimal Adaptive Multi-step Levenberg-Marquardt (Fan et al. 2019) parameters for this particular dataset, such that we are real-time.

$c_{\text{lessNewton}} =$	2.78
$c_{\rm moreNewton} =$	0.16
$\delta =$	1.04
$\mu_1 =$	9.28
$\mu_{\min} =$	0.02
$p_0 =$	0.06
$p_{\rm lessNewton} =$	0.88
$p_{\rm moreNewton} = p_{\rm sufficient} =$	1

Summarising the importance of forward modelling

In today's science de-risking science outcomes is crucial to success,

- Science outcomes are de-risked via detailed forward modelling, and design optimisation (enabled by auto-diff etc.).
- The feasibility of analysis can be assessed via realistic generative models.
- High-level frameworks, e.g. JAX, enable a self-consistent platform to merge design, development, *and production*.

Thank you