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In this talk

1. Why forward modelling is key in achieving science outcomes for big 
experiments

2. Three examples of how it’s being used for DSA-2000
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DSA-2000 Science and Team

> 100x known sources, and a novel gravitational wave observatory! 3
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Cross - 
Correlator

What is radio interferometry? Some basics…

Wiener-Khinchin theorem states:
Sky Brightness = FFT(Electric field coherence) 
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Traditional radio imaging problem

FFT

Sampled aperture leads to complex Point Spread Function (PSF) 
that necessitates some form of inference
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Traditional radio imaging problem

Classic iterative solution can takes days/weeks to 
analyse a single modern large dataset!
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Traditional radio imaging problem

Traditionally (small N)
Data volume ∝N2

Thermal Noise∝N-1

Survey Speed∝N2

Dynamic Range∝N
Processing∝N2log(N)

Radio Camera (large N)
⇒ Data volume ∝N2

⇒ Thermal Noise∝N-1

⇒ Survey Speed∝N2

⇒ Dynamic Range∝N
⇒ Processing∝N2log(N)

The Challenge
To go where no one has gone before.

As the number of antennas (N) grows, we get better images but longer 
processing times and more data volume.
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DSA-2000 the first point-and-shoot radio 
camera: revolutionising radio astronomy
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What makes a radio camera?

Radio Camera (large N)
⇒ Data volume ∝N2

⇒ Thermal Noise∝N-1

⇒ Survey Speed∝N2

⇒ Dynamic Range∝N
⇒ Processing∝N2log(N)

The Challenge
To make a streaming radio interferometer with 

thousands of antennas.

1. Large N fills in the aperture, “approaching a CCD”
2. Real-time capability, “don’t need to wait for imaging”
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What is forward modelling?

Signal 
Simulation

Instrument 
Simulation

Data
Simulation Calibration Imaging

Enables

Validating requirements

Design optimisation

Generating infinite datasets

11~1GB 12.6 PB 200 TB 800 TB 16.7 GB

For a 10.3min observation



Generative data useful for surrogate ML components

With infinite datasets and 
realistic systematics you can 
explore ML surrogates. 

E.g. deconvolving the PSF 
with CNNs. 

(POLISH; Connor et al. 2021)
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Three examples of optimising DSA-2000

1. Array layout, subject to land allotment constraints.
2. Dish design, subject to manufacturing constraints.
3. Calibration hyper-parameters, subject to real-time.
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Optimising array layout
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FFT



Choosing a site can be a challenge…
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Optimisation objective is reference PSF

16

Science requirements have already be 
verified with reference PSF



Defining problem with probabilistic programming

Formulate as a maximum likelihood 
problem.

Constraints defined via setting 
per-antenna        and 
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Implement probabilistic program with JAXNS

Formulate as a maximum a-posteriori 
problem.

Constraints defined via setting 
per-antenna        and 
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from jaxns import Model, Prior
from jax.scipy import optimize
import tensorflow_probability.substrates.jax as tfp

tfpd = tfp.distributions
x0 = ... # [n, 2]
sigma = ... # [n, 2]
ref_psf = ... # [m]

def prior_model():
   x = yield Prior(tfpd.Normal(x0, sigma),
                   'x').parametrised()
   y = compute_psf( x)
   return y

def log_likelihood (y):
   return tfpd.Normal(ref_psf, epsilon).log_prob(y)

model = Model(prior_model, log_likelihood)
result = optimize.minimize(
   lambda params: -model(params).log_prob_joint(),
   x0=model.params,
   method='BFGS'
)
print(result.x)



Optimised PSF vs Reference PSF
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We are able to maintain the FWHM, 
while also decreasing sidelobes.



A similar application: Optimising dish manufacturing

Systematics:
● Pointing errors
● Feed offsets
● Elevation-dependent gravitational 

deformations
● Surface RMS

Each has an impact on the signal path.
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Optimising Calibration

Calibration involves fixed point solvers 

However, there are many parameters      that affect performance.

1. Number of approximate vs exact steps
2. Damping parameters
3. Improvement threshold parameters
4. Metric p-norm

Question: Can we choose     to solve in real-time?
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Adaptive Multi-step 
Levenberg-Marquardt (Fan et al. 
2019) has 11 total parameters 
that define the algorithm.



Optimising Calibration

Question: Can we choose     to solve in real-time?

Options:

1. Implicit differentiation
2. Gradient-free optimisation
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Reformulate as MAP problem

Use generative data and JAXNS for 
global optimisation,

Optimising Calibration: gradient-free global optimisation (JAXNS)
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from jaxns.experimental import (
   GlobalOptimisation,
   TerminationCondition
)

def prior_model() -> CalibrationParams:
   ...

def log_likelihood(params: CalibrationParams):
   ...

model = Model(
   prior_model=prior_model,
   log_likelihood=log_likelihood
)

go = GlobalOptimisation(model)
term_cond = TerminationCondition(
   max_likelihood_evaluations=1024
)
results = go.run(jax.random.PRNGKey(42), term_cond)



Optimising Calibration: global optimisation using JAXNS
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Optimising Calibration: selecting optimal real-time parameters
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Optimal Adaptive Multi-step 
Levenberg-Marquardt (Fan et al. 
2019) parameters for this 
particular dataset, such that 
we are real-time.



Summarising the importance of forward modelling

In today’s science de-risking science outcomes is crucial to success,

● Science outcomes are de-risked via detailed forward modelling, and design 
optimisation (enabled by auto-diff etc.).

● The feasibility of analysis can be assessed via realistic generative models.
● High-level frameworks, e.g. JAX, enable a self-consistent platform to merge 

design, development, and production.
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Design

Development

Production
That’s where you want 
your team focused.

Thank you


