

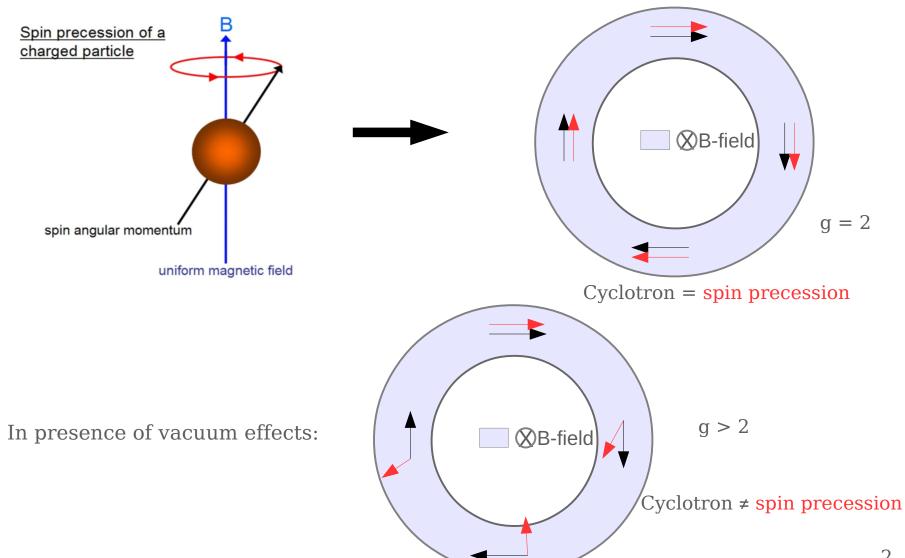
A Surrogate Model to Optimize Injection Efficiency in PSI muEDM Experiment

Ritwika Chakraborty (PSI)

Fourth MODE Workshop Valencia

24.09.2024

Muons in a Storage Ring



Muons Electric Dipole Moment (EDM)

In general, relativistic muons, in presence of electric fields + magnetic field

$$\vec{\Omega} = \vec{\Omega}_0 - \vec{\Omega}_c$$

$$\downarrow \qquad \qquad \downarrow$$
Spin Cyclotron precession

Thomas-BMT equation for spin dynamics in EM fields:

$$\vec{\Omega} = \frac{q}{m} \left[a\vec{B} - \frac{a\gamma}{(\gamma+1)} \left(\vec{\beta} \cdot \vec{B} \right) \vec{\beta} - \left(a + \frac{1}{1-\gamma^2} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right] + \frac{\eta q}{2m} \left[\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} - \frac{\gamma c}{(\gamma+1)} \left(\vec{\beta} \cdot \vec{E} \right) \vec{\beta} \right]$$

$$= \frac{q}{m} \left[a\vec{B} - \frac{a\gamma}{(\gamma+1)} \left(\vec{\beta} \cdot \vec{E} \right) \vec{\beta} \right]$$

$$= \frac{q}{m} \left[a\vec{B} - \frac{a\gamma}{(\gamma+1)} \left(\vec{\beta} \cdot \vec{E} \right) \vec{\beta} \right]$$

$$= \frac{q}{m} \left[a\vec{B} - \frac{a\gamma}{(\gamma+1)} \left(\vec{\beta} \cdot \vec{E} \right) \vec{\beta} \right]$$

$$= \frac{q}{m} \left[a\vec{B} - \frac{a\gamma}{(\gamma+1)} \left(\vec{\beta} \cdot \vec{E} \right) \vec{\beta} \right]$$

$$= \frac{q}{m} \left[a\vec{B} - \frac{a\gamma}{(\gamma+1)} \left(\vec{\beta} \cdot \vec{E} \right) \vec{\beta} \right]$$

$$= \frac{q}{m} \left[a\vec{B} - \frac{a\gamma}{(\gamma+1)} \left(\vec{\beta} \cdot \vec{E} \right) \vec{\beta} \right]$$

$$= \frac{q}{m} \left[a\vec{B} - \frac{a\gamma}{(\gamma+1)} \left(\vec{\beta} \cdot \vec{E} \right) \vec{\beta} \right]$$

$$= \frac{q}{m} \left[a\vec{B} - \frac{a\gamma}{(\gamma+1)} \left(\vec{\beta} \cdot \vec{E} \right) \vec{\beta} \right]$$

$$= \frac{q}{m} \left[a\vec{B} - \frac{a\gamma}{(\gamma+1)} \left(\vec{\beta} \cdot \vec{E} \right) \vec{\beta} \right]$$

$$= \frac{q}{m} \left[a\vec{B} - \frac{a\gamma}{(\gamma+1)} \left(\vec{\beta} \cdot \vec{E} \right) \vec{\beta} \right]$$

$$= \frac{q}{m} \left[a\vec{B} - \frac{a\gamma}{(\gamma+1)} \left(\vec{\beta} \cdot \vec{E} \right) \vec{\beta} \right]$$

$$= \frac{q}{m} \left[a\vec{B} - \frac{a\gamma}{(\gamma+1)} \left(\vec{\beta} \cdot \vec{E} \right) \vec{\beta} \right]$$

$$= \frac{q}{m} \left[a\vec{B} - \frac{a\gamma}{(\gamma+1)} \left(\vec{\beta} \cdot \vec{E} \right) \vec{\beta} \right]$$

- Non-zero muon EDM indicates CP-violation
- Standard model prediction ~10⁻³⁸ e.cm
- PSI muon EDM sensitivity target 6 x 10^{-23} e.cm $\rightarrow \sim 3$ order of magnitude better than current limit

Frozen Spin Technique

• E ⊥B ⊥ β

$$\vec{\Omega} = \frac{q}{m} \left[a\vec{B} - \frac{a\gamma}{(\gamma + 1)} (\vec{\beta} \cdot \vec{B}) \vec{\beta} - \left(a + \frac{1}{1 - \gamma^2} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right] + \frac{\eta q}{2m} \left[\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} - \frac{\gamma c}{(\gamma + 1)} (\vec{\beta} \cdot \vec{E}) \vec{\beta} \right]$$

$$= \frac{q}{m} \left[a\vec{B} - \frac{a\gamma}{(\gamma + 1)} (\vec{\beta} \cdot \vec{B}) \vec{\beta} - \left(a + \frac{1}{1 - \gamma^2} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right] + \frac{\eta q}{2m} \left[\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} - \frac{\gamma c}{(\gamma + 1)} (\vec{\beta} \cdot \vec{E}) \vec{\beta} \right]$$

$$= \frac{q}{m} \left[a\vec{B} - \frac{a\gamma}{(\gamma + 1)} (\vec{\beta} \cdot \vec{B}) \vec{\beta} - \left(a + \frac{1}{1 - \gamma^2} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right] + \frac{\eta q}{2m} \left[\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} - \frac{\gamma c}{(\gamma + 1)} (\vec{\beta} \cdot \vec{E}) \vec{\beta} \right]$$

$$= \frac{q}{m} \left[a\vec{B} - \frac{a\gamma}{(\gamma + 1)} (\vec{\beta} \cdot \vec{B}) \vec{\beta} - \left(a + \frac{1}{1 - \gamma^2} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right] + \frac{\eta q}{2m} \left[\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} - \frac{\gamma c}{(\gamma + 1)} (\vec{\beta} \cdot \vec{E}) \vec{\beta} \right]$$

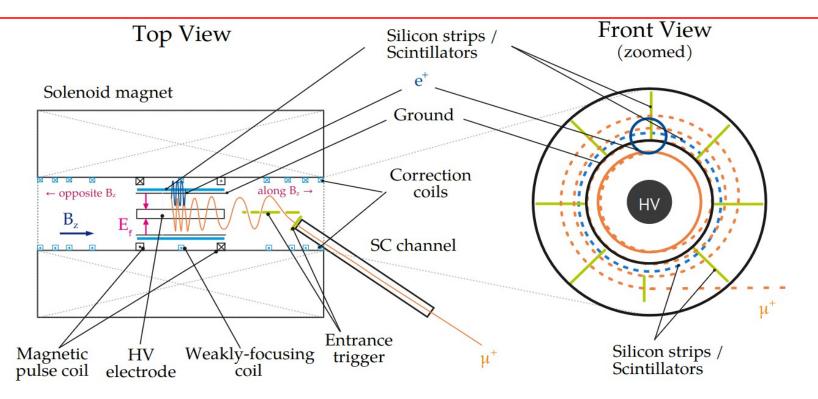
$$= \frac{q}{m} \left[a\vec{B} - \frac{a\gamma}{(\gamma + 1)} (\vec{\beta} \cdot \vec{B}) \vec{\beta} - \left(a + \frac{1}{1 - \gamma^2} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right] + \frac{\eta q}{2m} \left[\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} - \frac{\gamma c}{(\gamma + 1)} (\vec{\beta} \cdot \vec{E}) \vec{\beta} \right]$$

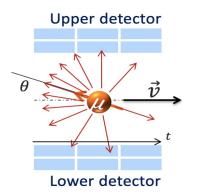
- Suppress g-2 term by setting $a\vec{B} = \left(a \frac{1}{\gamma^2 1}\right) \frac{\vec{\beta} \times \vec{E}}{c}$
- Radial E-field $E_{\rm f} \approx aBc\beta\gamma^2$

$$\vec{\omega}_e = \frac{\eta q}{2m} \left[\vec{\beta} \times \vec{B} + \frac{\vec{E}_{\rm f}}{c} \right]$$

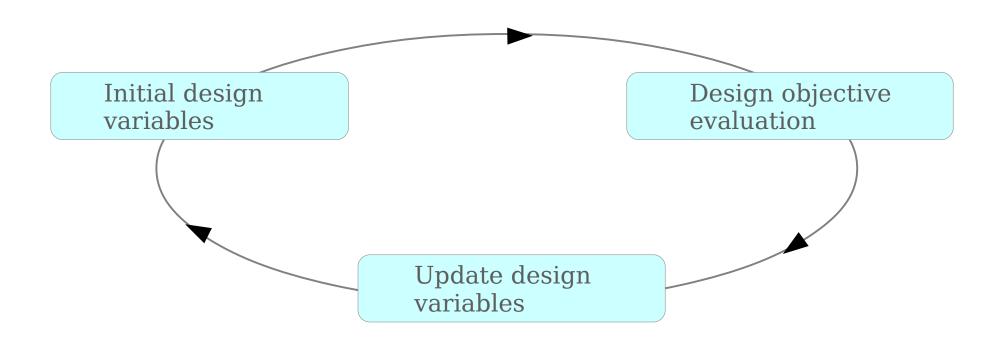
Precession frequency only due to EDM

PSI muEDM Experiment





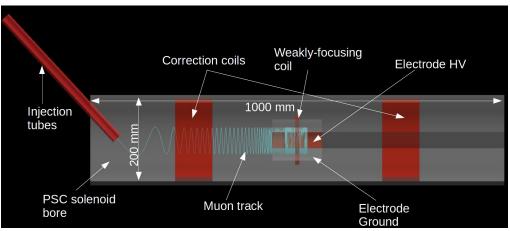
Asymmetry in number of detected positrons upstream vs downstream is proportional to EDM signal



Initial design

variables

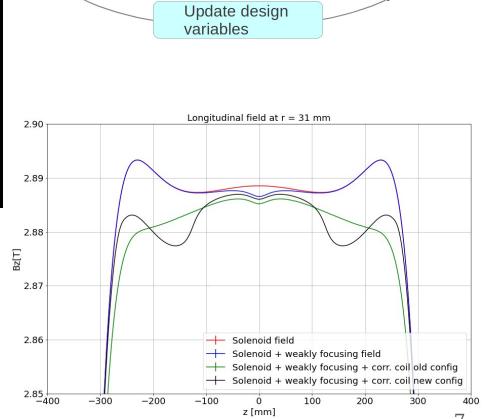
Design simulation in g4bl



Design parameters:

- Injection coordinates
- Magnetic field strength
- Correction coil features
- Weak-focusing coil features
- Kicker pulse features

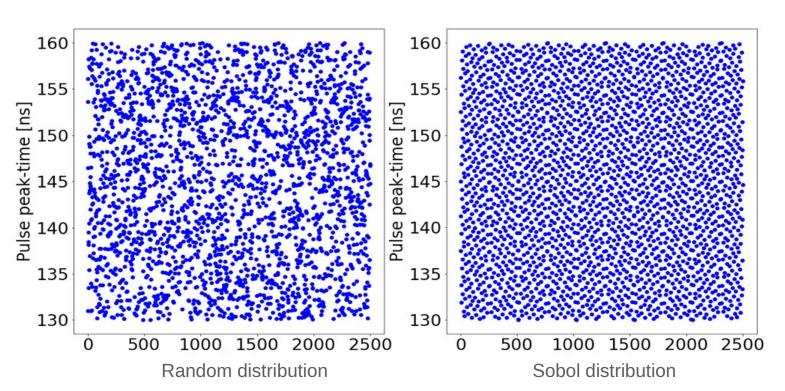
•

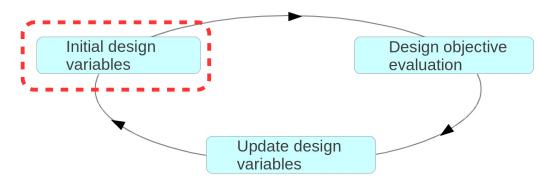


Design objective

evaluation

- Sampling input variables
- Sobol distribution (Sobol, 1967)
- Maximum uniform spread

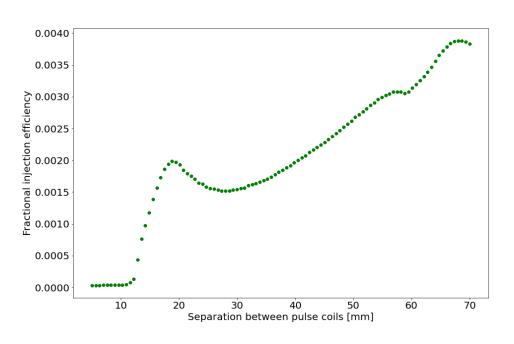


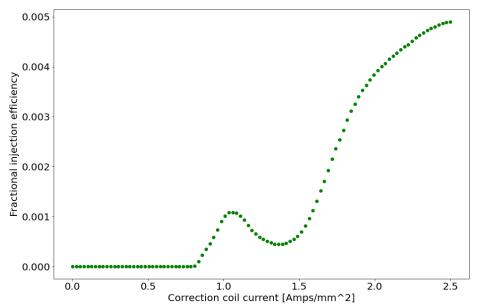


variables

- Maximize injection efficiency
- Minimize power dissipation of setup
- Minimize polarization spread in stored muons

Design objective Initial design evaluation Update design variables

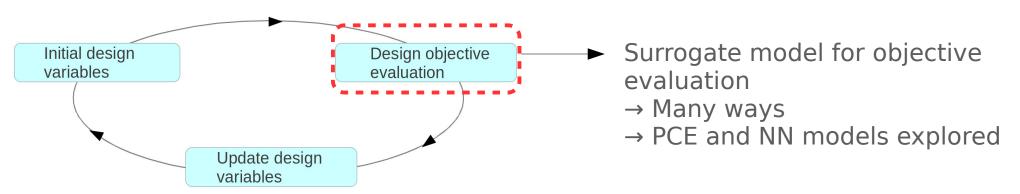




Initial design

variables

- Update design variables based on objective evaluation
- Repeat until optimal solution found
- Required to run simulation thousands of times
 → computationally expensive
- Replace physics simulation with approximation
 - → surrogate model



Design objective

evaluation

Update design

variables

PCE Surrogate Model

• Polynomial Chaos Expansion (PCE) :

$$Y = \sum_{i=0}^{\infty} \alpha_i \Psi_i \left(\vec{x} \right)$$

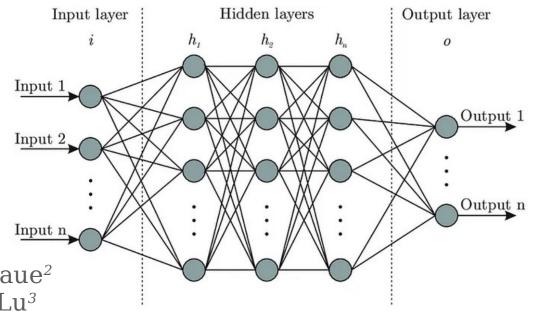
 $Y \to \text{Model response (injection efficiency)}, \ \Psi_i \to \text{Orthogonal polynomials}$ $x \to \text{input variables}, \ \alpha_i \to \text{expansion coefficients}$

- Polynomial basis based on input variable distribution
- Coefficients determined using regression based methods

$$\vec{\alpha} = \operatorname{Argmin} \frac{1}{N} \sum_{j=1}^{N} \left\{ f(\vec{\xi}^{j}) - \sum_{i=0}^{P-1} \alpha_{i} \Psi_{i} \left(\vec{x}^{j} \right) \right\}^{2}$$

NN Surrogate Model

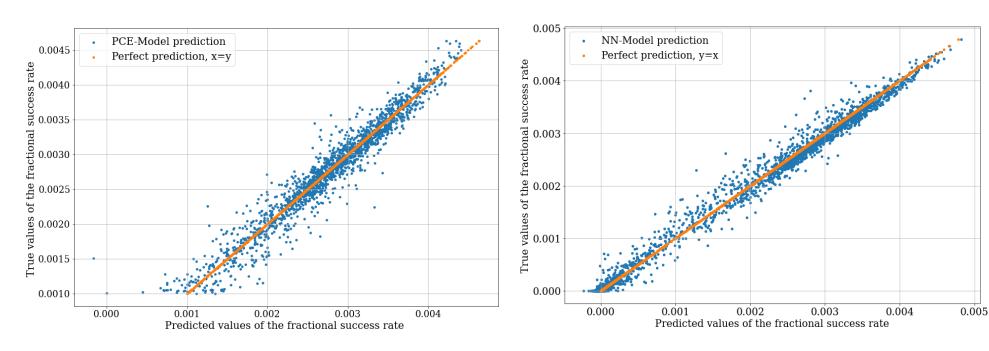
- Use the input (design) and output (objective) to train a neural network
- Hyper parameters:
 - \rightarrow no. of hidden layers = 8
 - \rightarrow no. of neurons/layer = 500
 - \rightarrow learning rate = 0.001
 - → optimizer: Adam¹
 - → scheduler: ReduceLRonPlateaue²
 - → activation function: LeakyReLu³



¹ Kingma and Ba, 2014 ² Maas, 2013 ³ K Developers, 2019

Surrogate Model Performance

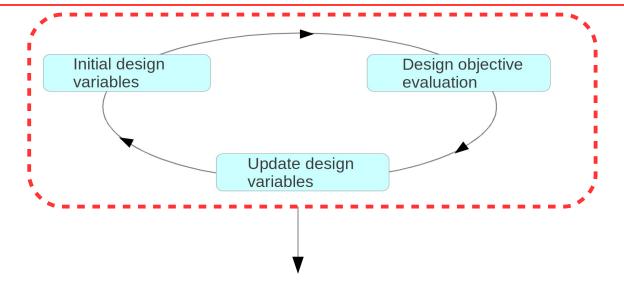
Model performance for a 6 dimensional input space (Kicker timing, Kicker strength, Corr coil position, Corr coil length, Corr coil thickness and Corr coil radius)



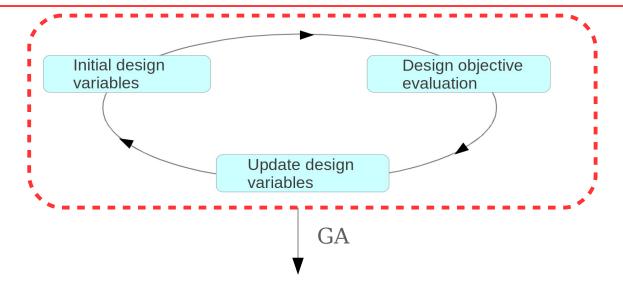
PCE Mean Square Error: 3.47 e-08

NN Mean Square Error: 1.88 e-08

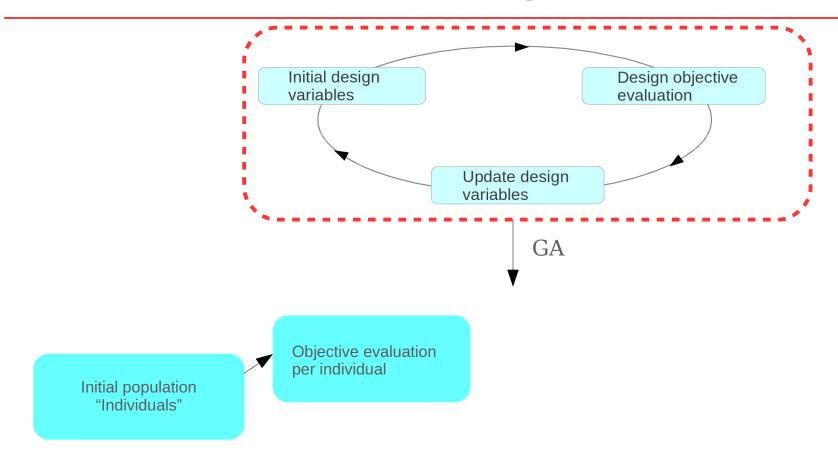
Multi-objective Optimization

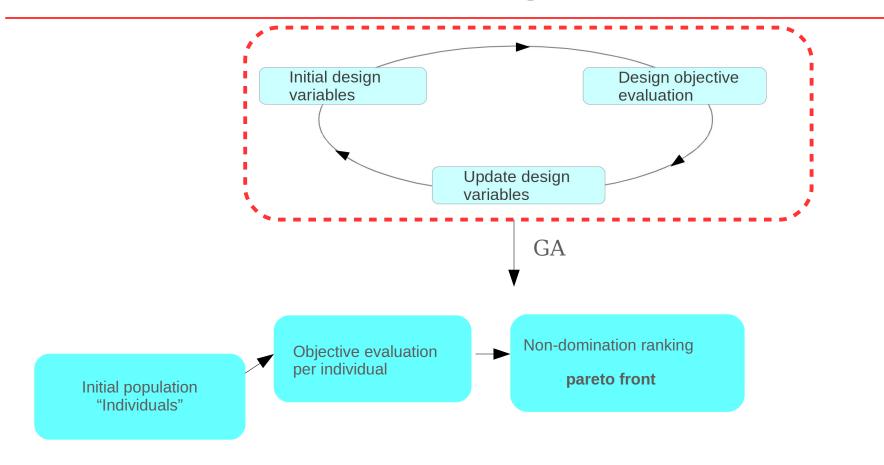


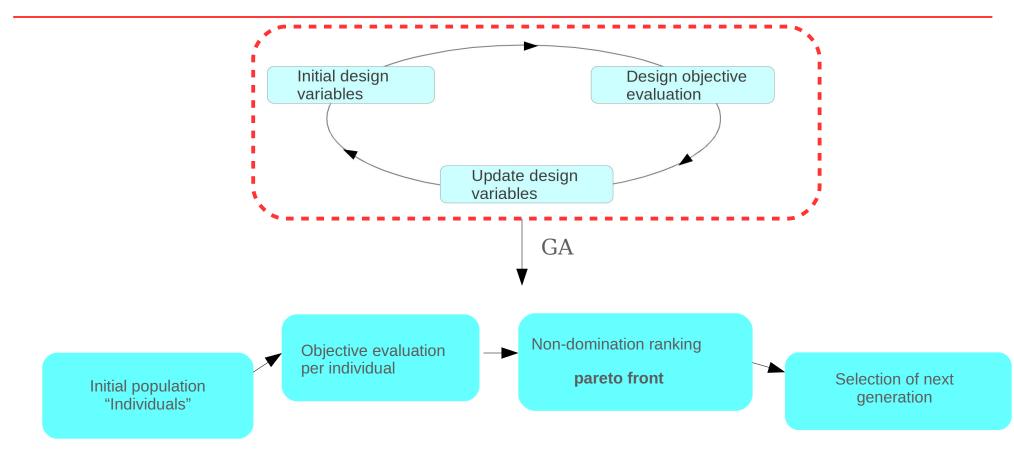
Genetic Algorithms (GA)

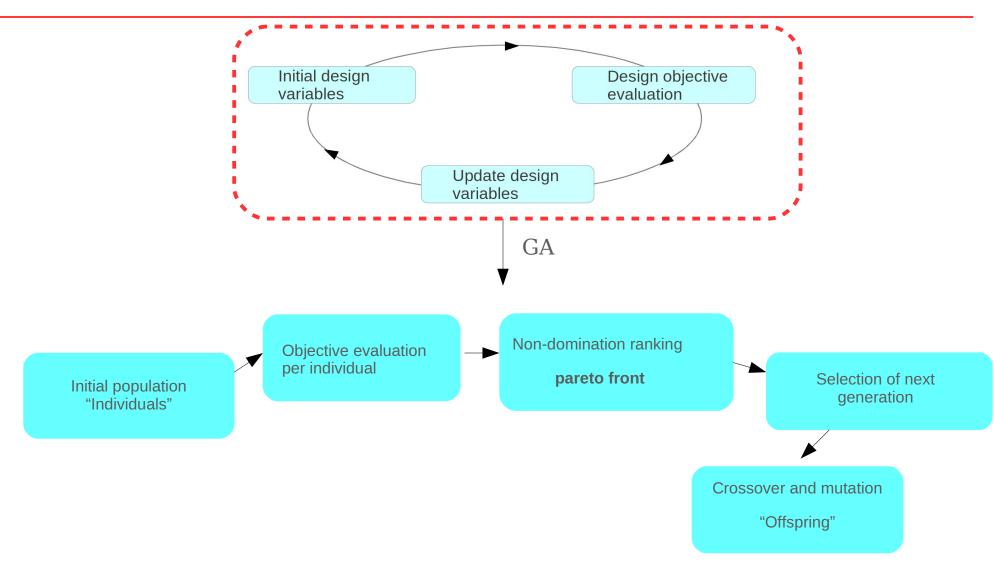


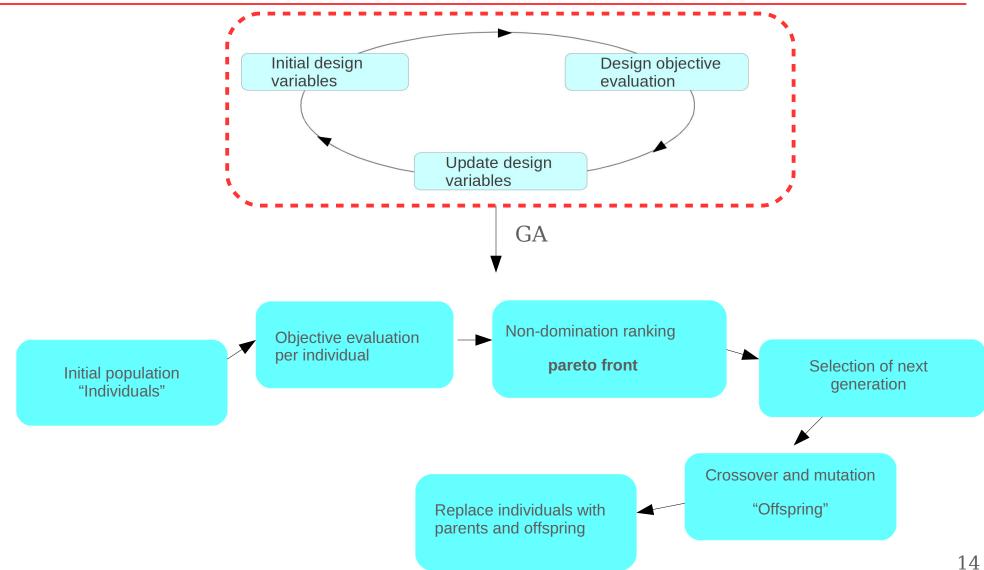
Initial population "Individuals"

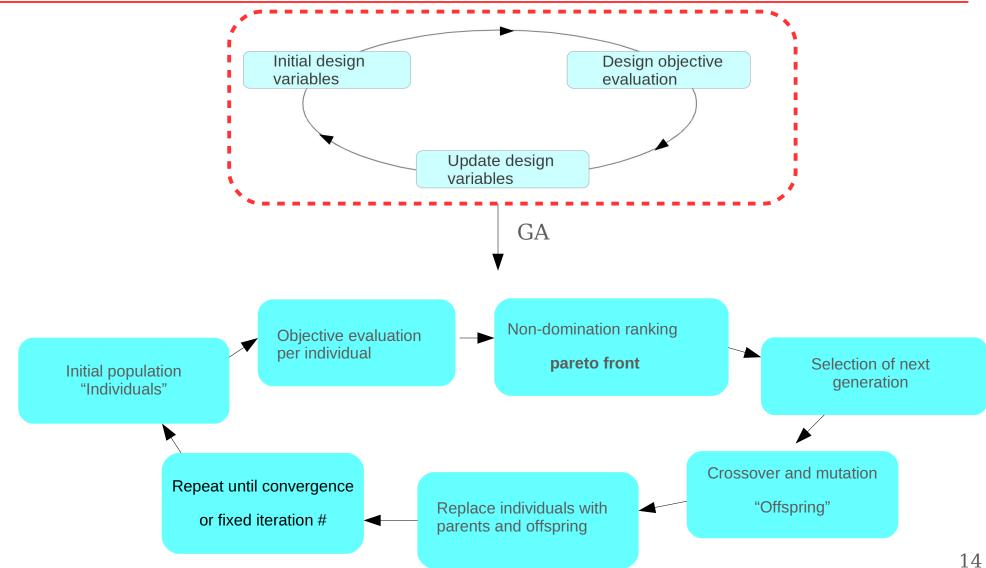






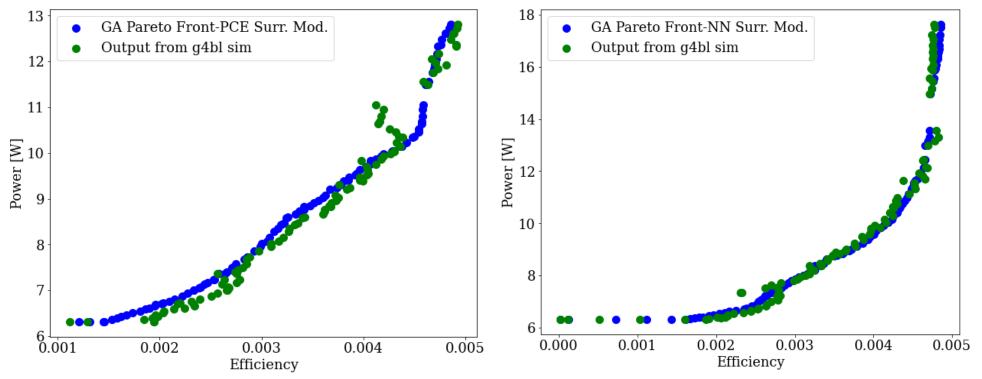






Surrogate model based NSGA-II¹ performance

Optimization to maximize Injection Efficiency/minimize Power Dissipation



- 10³ speed up for PCE Surr and 10⁴ speed up for NN Surr
- Agreement within 5% vs 2% for PCE/NN based GA performance for average injection efficiency of 0.35%

15

Summary

- PSI muEDM experiment will be most precise muon EDM measurement to date → setup needs to be carefully optimized
- Running simulations iteratively is bottleneck in optimization process
- Orders of magnitude speed up can be achieved by replacing physics simulation by surrogate model
- Genetic algorithm NSGA-II used to run multi-objective optimization
- PCE and NN surrogate models based GA investigated;
 ~10³ speed up for PCE, ~10⁴ for NN
- Plan to expand into Bayesian optimization where higher dimensional input space can be implemented with straightforward uncertainty quantification techniques

Acknowledgments

The muEDM Collaboration (Spring meeting 2024)

- Computational resources: PSI Local High Performance Computing cluster, Merlin6, Siyuan-1 cluster supported by the Center for High Performance Computing at Shanghai Jiao Tong University and the Euler cluster operated by the High Performance Computing group at ETH Zürich.
- Accelerator Modeling and Advanced Simulations (AMAS) group at PSI: A. Adelmann, S. Heinekamp and P. Juknevicius
- NN surrogate starting point: A. Holmberg Bachelor's Thesis ETH Zurich 2021

Project funded by

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Federal Department of Economic Affairs, Education and Research EAER State Secretariat for Education, Research and Innovation SERI

Extra

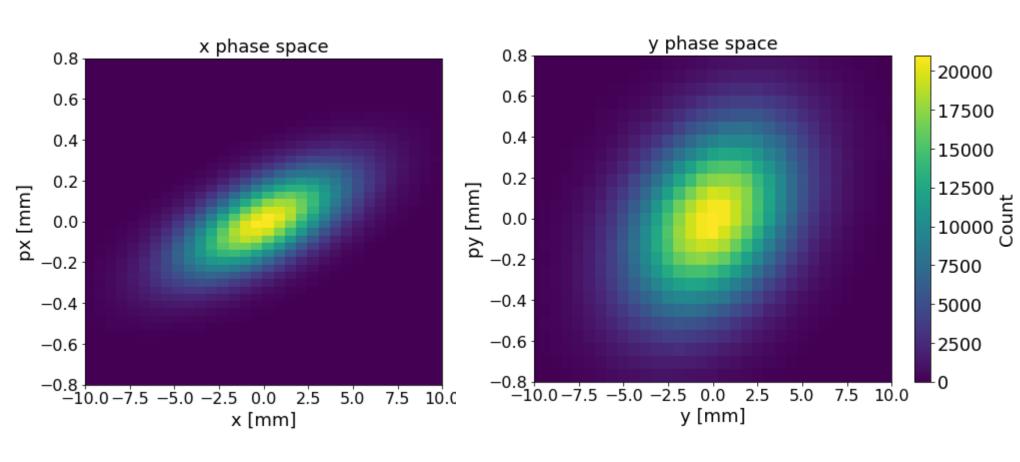
Polynomial Chaos Orthogonal Basis

The correspondence of the types of Wiener-Askey polynomial chaos and their underlying random variables $(N \ge 0 \text{ is a finite integer}).$

	Random variables ζ	Wiener–Askey chaos $\{\Phi(\zeta)\}$	Support
Continuous	Gaussian	Hermite-chaos	$(-\infty,\infty)$
	gamma	Laguerre-chaos	$[0,\infty)$
	beta	Jacobi-chaos	[a,b]
	uniform	Legendre-chaos	[a,b]
Discrete	Poisson	Charlier-chaos	$\{0,1,2,\dots\}$
	binomial	Krawtchouk-chaos	$\{0,1,\ldots,N\}$
	negative binomial	Meixner-chaos	$\{0,1,2,\dots\}$
	hypergeometric	Hahn-chaos	$\{0,1,\ldots,N\}$

(Xiu and Karniadakis, 2002)

Total phase space after collimation



Neural Net hyperparameters

def init (self, input dimension, output dimension, n hidden layers, neurons, regularization param, regularization exp): super(net, self), init () # Number of input dimensions n self.input dimension = input dimension # Number of output dimensions m self.output dimension = output dimension # Number of neurons per layer self.neurons = neurons # Number of hidden layers self.n hidden layers = n hidden layers # Activation function self.activation = nn.LeakyReLU() self.regularization param = regularization param self.regularization exp = regularization exp self.input layer = nn.Linear(self.input dimension, self.neurons) self.hidden layers = nn.ModuleList([nn.Linear(self.neurons, self.neurons) for in range(n hidden layers)]) self.output layer = nn.Linear(self.neurons, self.output dimension) self.dropout = nn.Dropout(0.1)

Neural Net activation function

6-d optimization parameter bounds

```
bounds = {"T_Offset": [80, 98],

"BPI": [0.35,0.80],

"CC_Len": [88, 150],

"CC_Ir": [40, 84],

"CC_Thick":[7,15],

"CC_Pos":[166,241]}
```