Towards the optimization of a **Muon Collider Calorimeter**

Federico Nardi^{1,2}, Shahzaib Abbas³, Julien Donini⁴, Tommaso Dorigo^{5,6}, Jan Kieseler⁷

- ¹ Università degli Studi di Padova
- ² Université Clermont-Auvergne
- ³ Universitty of Karachi
- ⁴ LPCA Clermont
- ⁵ INFN, Sezione di Padova
- ⁶ LULEÅ University of Technology
- 7 **KIT**

Muon Collider LHC & Future Colliders

- Discovery of the Higgs -> 3 main directions
 - Precision Higgs measurements
 - High Luminosity -> Reach high enough sensitivity for BSM effects to be visible
 - High Energy -> Expand the phase space to explore for direct searches

Muon Collider LHC & Future Colliders

- Efforts to plan next phases of research
 - Snowmass (2021 US)
 - European Strategy for Particle • physics (2022)
- Probably lepton collider
 - Precision measurement phase
- FCC-ee and Muon Collider envisioned to be operational by 2045 (https://arxiv.org/abs/2201.07895)

Muon Collider Why a Muon Collider?

- Luminosity increases with center-mass energy •
 - Competitive with LINACs
 - Most 'physics-per-dollar' potential
- Lepton Collider: no pile-up effects
- Rather old concept (1980s), regained interest with the Snowmass Process
- **Higgs** Factory
 - $\sigma(\mu\mu \rightarrow H) \simeq 40000 \sigma (ee \rightarrow H)$
- **Dark Matter** portals
- New advanced cooling methods required to reduce transverse momentum of procuced muons

Muon Collider The BIB problem

- TeV-scale Muon Collider as strong candidate among proposed Future Colliders (no pile-up, access to DM portals, Higgs factory)
- Finite lifetime of the muon (2.2µs) implies a cloud of high-energy decay product along the beamline, which interferes with the instrumentation (Beam-Induced Background BIB)
- During preliminary Machine-Detector Interface design, a double-cone nozzle has been included to shield the detector from BIB radiation

Visualizations from FLUKA BIB simulation. Black: neutrons, other: photons

Muon Collder CRILIN: reference design

- Reference design chosen for our studies is CRILIN for the Electromagnetic Calorimeter (ECal)
- Array of 1x1x4.5cm³ PbF₂ voxels, arranged in a dodecahedron
- 5 layers per wedge
- Modular design, easy to modify and rearrange

Muon Collider BIB characterization

- Nozzle shields most radiation from endcaps, but area around interaction point remains unshielded
- BIB simulation at 1.5TeV center-ofmass energy. Energy deposits in ECal
- Still a considerable amount of energy deposited inside

Muon Collider Optimization Workflow

Testing a Reconstruction algorithm Object Condensation for reconstruction

Testing a Reconstruction algorithm Dataset Generation

- Starting from Geant4 simulations of monochromatic photons in Crilin geometry
- Uniformly distributed in energy and transverse angle
- Developed code to produce overlay events superimposing BIB at 1.5TeV center-mass energy
- At low photon energies first layers of the shower are lost in BIB

Testing a Reconstruction Algorithm Performance evaluation 10.0 GeV 1.0

- Trained algorithm for 500 epochs on uniformly distributed energies
- Tested on 10k photons of single-point energies
- Plotted predicted primary energy per energy point
- Fitted distribution to a CrystalBall function

Testing a Reconstruction Algorithm Performance evaluation

- Adapted GravNet architecture for reconstruction in granular calorimeters) arXiv:1902.07987
- Same analysis performed with and without timing information
- Compared with framework reconstruction made with Pandora+ParticleFlow on same data
- Significant improvement in resolution
- Time information does not seem to make a difference

12

- Starting from 1.5 TeV Geant4 simulation
- Restricted to a single wedge due to cylindrical symmetry
- Neglecting transverse component (x) for the same reason

- Set up a simple DNN trained on the dataset
- For a coordinate pair (z,y) predict a BIB flux density value
- Decent performance on validation data

×	prediction truth
Ning Vič (Raj
2000	
• ×	prediction truth
• ×	
^ •	ĕ,
20	00
×	prediction truth
₹ • x	
^ 🗙	•
2000	
×	prediction truth
*	•
	~
2000	×
×	prediction truth
×	
×	••
2000	0

Development of Surrogates Signal generator

Development of Surrogates Shower generator

- Developed a simple Geant4 application to simulate monochromatic photons in a block of PbF2
- Generated a datased of 40k monochromatic showers as 2D images
- Each generated event is bootstrap average of 100 Geant4 events

- 1
- 0

Development of Surrogates Shower generator

- Very basic model to generate a radial shower
- Suboptimal, but describes the core of the shower well enough
- Normalization enforced to match energy of primary photon

Pipeline Implementation Generator module

- Developed a generator module implementing the overlay of BIB and shower generators
- Using Tensorflow and ensuring differentiability of operations
- Evaluate the deposits on a grid with arbitrary spacing
- Currently working on implementing reconstructor in the pipeline

Pipeline Implementation Current Status

Summary

- Developed all necessary surrogates to run pipeline
- Need to fix the final details to launch optimization cycle
- Come up with a sensible loss, to model also material cost
- Target is to present a proof of concept. Further
- Improve surrogate accuracy
- Generalize to higher center-of-mass energies

Summary

- Work ongoing, developed all necessary surrogates to run pipeline
- Need to fix the final details to launch optimization cycle
- Come up with a sensible loss, to model also material cost
- Target is to present a proof of concept. Further
- Improve surrogate accuracy
- Generalize to higher center-of-mass energies

Testing a Reconstruction Algorithm Dataset Generation - A few notes

- Applied timing cut on BIB to reduce background
- Restricted to a [-250, 250]ps window
- Implemented basic digitization:
 - Time for each cell assigned to first registered hit; energy then integrated over the whole window
 - Gaussian smearing of 20ps

- Most importantly, we need to be able to interpolate when modifying the geometry
- Tested inference on intra-layer
 values to check consistency

Development of Surrogates Shower generator

- Fitted the transverse energy distribution for 20 bins along the zaxis
- Model the fitted coefficients as function of z, as well as the primary energy (see backup for plots)
- Image for a 50GeV photon

Evolution of fitted parameters along z, for 25, 75 and 150 GeV

Energy dependence of z-coefficients

33

140	
145	

Pipeline Implementation Optimization skeleton

- **Concept**: Representing geometry as a 3D grid of voxel centroids
- Optimize grid spacing parameters

[dx, dy, dz]

• **Example**: Maximize reconstruction performance of distribution parameters

 $sigma_x = 100$. $sigma_y = 120$. $sigma_z = 100$.

Pipeline Implementation Optimization skeleton

- **Distribution**: 3D gaussian centered in 0 and with $\sigma_x = \sigma_z \neq \sigma_y$
- Evaluated on each grid point
- Superimposed with random noise on each voxel

S	igma	_X	=	100.
S	igma	_у	=	120.
S	igma	Ζ	_	100.

Pipeline Implementation Optimization skeleton

- Reconstruction: Use maximumlikelihood estimators to infer the gaussian parameters μ, σ
- Evaluating loss: MSE for gaussian parameters + regularizer to prevent spacing to collapse towards degeneracy

$$\sum_{i=x,y,z} (\widehat{\mu_i} - \mu_i)^2 + (\widehat{\sigma_i} - \sigma_i)^2 + \frac{1}{\Delta x_i^2}$$

Minimization of loss and identification of ideal parameters

Final spacing: [0.47563136 0.5433373 0.44885612]

Object Reconstruction Lighter Version

- Kept GNN core architecture
- Adapted end part to produce one scalar output
- Infer energy of primary photon in presence of BIB
- Simplify loss to speed up clustering replaced by simple MSE

resence of BIB

Counts

