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The usual chain
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arXiv:1909.09193

What happened here?

Physics
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Our simulation is fantastic
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•High fidelity simulation of particles interacting with matter 
•Carefully validated 

•Validity also spans orders of magnitude 
•Not* differentiable

http://arxiv.org/abs/2108.02803

A particle being stopped in dense material
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Complexity of the Problem
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arXiv:1909.09193
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A few quantities Many pixels, detector elements, hits A few quantities
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Make Wider Steps?
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Very complex surrogate model
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Very complex surrogate model
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Trade off between computing resources and surrogate model simplicity
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The type of approach

6



Jan Kieseler

Calorimeters
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•Complex showers 
•So far designs relatively simple 
•Good place to invest in systematic gradient-based optimisation

Absorb/stop Detect (sensors)

Absorb/stop and detect

Better physics performance

Much cheaper
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The simulation and reconstruction
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Et

Ep

Sensor 1

Sensor 2

Sensor N

…

  e.g. single valueEt :  approx. Gaussian distribution 
(narrow = better)

Ep/Et :

Full Geant4: all standard physics
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A diffusion model as a surrogate
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https://scholar.harvard.edu/binxuw/classes/machine-learning-scratch/materials/foundation-diffusion-generative-models
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Adding conditioning
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Etrue

θ0
θ...

xt

θN
Noise estimate

t

Conditions

https://scholar.harvard.edu/binxuw/classes/machine-learning-scratch/materials/foundation-diffusion-generative-models

•Sampling over time steps 
( ) in principle slow 
•Very low-dimensional problem 

here 
• Fast enough and very easy to 

train

O(100)
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A pipeline
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Single particles 
(Photons and hadrons) 

E = [1,20] GeV

Full Geant4 Simulation ( ) 
• Layer material* 
• Layer thicknesses

θ Simple DNN reconstruction 
• Has access to θ

Objective: 

L =
(Ep − Et)2

Et

Simple diffusion model (DNN) 
• One input (noise) and one final output (E) 
• Conditioned on , θ Et
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Training
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1.

2.

Single particles 
(Photons and hadrons) 

E = [1,20] GeV

Full Geant4 Simulation ( ) 
• Layer material* 
• Layer thicknesses

𝒩(θ, σ) Simple DNN reconstruction 
• Has access to ̂θ

Objective: 

L =
(Ep − Et)2

Et

Simple diffusion model (DNN) 
• One input (noise) and one final output (E) 
• Conditioned on , ̂θ Et

Sample specific  
: ‘reasonable’ values 
Local surrogate

̂θ
σ
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Optimisation
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• Input normalisations are kept fixed after first training iteration 
•Reconstruction and diffusion models are refined on the new data, not trained from scratch 
‣ Transfer-learning significantly reduces the amount of simulation resources needed *
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Single particles 
(Photons and hadrons) 

E = [1,20] GeV

Full Geant4 Simulation ( ) 
• Layer material* 
• Layer thicknesses

𝒩(θ, σ) Simple DNN reconstruction 
• Has access to ̂θ

Objective: resolution 

L =
(Ep − Et)2

Et

3. Optimise  with 
SGD (Adam)

̂θ

Stop if θs − θ > σ

+ constraints (length, cost)
Simple diffusion model (DNN) 
• One input (noise) and one final output (E) 
• Conditioned on , ̂θ Et
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Sanity check
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•Photons: 1-20 GeV, uniform 
•Absorber Pb: 1cm 
•Active PbWO4 : 1cm 
•Constraint: depth of 25 cm

Response: Ep/Et − 1

E
ve

nt
s

Step 1 Step 4

Expected best solution

1 cm 1 cm

25 cm0 cm
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It works
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Step

Th
ic

kn
es

s 
[c

m
]

Lo
ss

Flattens

Final configuration 

25 cm0 cm
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A look at discrete parameters: Material
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Material with long X0 Material with short X0

e.g. polystyrene 
cheap 

low resolution

e.g. polystyrene 
expensive 

high resolution
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The problem with discrete parameters
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Generative models 
have trouble modelling this

∇

PbWO4 Polystyrene
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The output as a function of the discrete parameter
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•We can use the strong tendency of DNNs to “interpolate everything” to effectively model (gradients on) discrete parameters

∇
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Cost in objective function
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• Implement also the material cost into the objective function using a smoother dependence

∇

C
os

t

PbWO4 Polystyrene

Smoothen by hand
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Does it work?
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• 3 x (absorber + sensor) 

•Different particles 
(electromagnetic and hadronic) 
‣ Short showers 
‣ Deep showers 

•All with energies between 1 and 20 GeV 

•Material cost <50k CHF 
• Length <180 cm 

•Start with a horrible configuration 
‣ e.g. no photon will actually reach the first sensor

Absorbers

Sensors
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Yes.
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•Different particles 
(electromagnetic and hadronic) 
‣ Short showers 
‣ Deep showers 

•All with energies between 1 and 20 GeV 

•Material cost <50k CHF 
• Length <180 cm 

•Start with a horrible configuration 

•After a few hundred iterations: a very reasonable configuration 
with significantly better performance (and close to real-world 
detector designs)
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Summary
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An end-to-end surrogate avoids creating a differentiable model for the 
complex, high dimensional intermediate detector-level state 

It smoothes out non-differentiable operations in the simulation  
(and reconstruction) 

In the (simplified) setting of calorimeters, it seems to work well 

The dependence on discrete parameters can be modelled in an effective 
manner 

More detailed studies ongoing - stay tuned

I have omitted many physics and technical details - please feel free to ask


