

Neural Networks for inter-crystal scatter recovery in semi-monolithic PET detectors

Karol Brzezinski¹, Antonio J. González², José María Benlloch², and Gabriela Llosá¹
Instituto de Física Corpuscular (IFIC), CSIC-UV, Spain.
Instituto de Instrumentación para Imagen Molecular (i3M), Centro mixto CSIC – Universitat Politècnica de València, Spain.

4th MODE Workshop on Differentiable Programming for Experiment Design, 23-25 Sept 2024, Valencia (Spain)

September 25 2024

Overview

- Inter-crystal scatter (ICS) in positron emission tomography (PET)
- IMAS PET scanner
- Brain-dedicated 4D-PET scanner
- Neural network trained on 3D spatial and energy resolution
- Neural network trained on light distribution
- Conclusions

Inter-crystal scatter (ICS) in PET

PET scanner sensitivity may be improved by including ICS events

¤ Associated with multiple possible lines of response (LORs)

¤ Tend to degrade spatial resolution

 $\ensuremath{\mathtt{x}}$ various methods of ICS recovery have been developed

IMAS and 4D-PET scanners

PET scanners based on semi-monolithic LYSO crystals

» Developed by i3M (CSIC–UPV)

¤ Based on continuous LYSO crystals segmented in one direction into sections called slabs

IMAS and 4D-PET scanners

PET scanners based on semi-monolithic LYSO crystals

¤ Developed by i3M (CSIC–UPV)

¤ Based on continuous LYSO crystals segmented in one direction into sections called slabs

<u>Semi-monolithic</u> combine the benefits of pixelated and continuous configurations

IMAS Total-body scanner

IMAS and 4D-PET scanners

PET scanners based on semi-monolithic LYSO crystals

» Developed by i3M (CSIC–UPV)

¤ Based on continuous LYSO crystals segmented in one direction into sections called slabs

IMAS simulations & ICS ordering via NN

GATE (Based on Geant4)

¤ Two models for spatial and energy blurring:
 ¤ Enhanced specular reflector (ESR)
 ¤ ESR + Retroreflector (RR)

Resolution	ESR	ESR + RR
DOI (FWHM)	3.4 mm	3.8 mm
Along slab (FWHM)	2.5 mm	2.9 mm
Energy (at 511 keV)	13%	10%

Only ICS events involving two slabs were considered for ordering

NN training features

- ¤ Deposited energy
- ¤ Position along slab
- ^a Separation between slabs

NN architecture

- ¤ Python3 using Keras and Tensorflow
- ¤ Two hidden layers of 16 neurons each
- ¤ 'ReLU' activation function, input+hidden nodes
- ¤ 'sigmoid' activation function on output node
- ¤ 'Adam' optimizer
- ¤ 'binary_crossentropy' loss function

4D-PET simulations & ICS ordering via NN

GATE (Based on Geant4)

¤ Exact slab identification assumed

Resolution	
DOI (FWHM)	3.4 mm
Along slab (FWHM)	2.7 mm
Energy (at 511 keV)	10.2%

 $\tt m$ ICS recovery: same NN as with IMAS

ICS in light sharing crystal pairs

Photoelectric or Compton scatter?

- ^a Optical photon simulation (GATE)
 - Slabs optically isolated using ESR
 - BC-630 coupling to photosensor
- **NN trained on light distribution** in 8x8 SiPM (summed in both dimensions for 1x16 array)
 Input and one hidden layer: 16 neurons each

ICS ordering in IMAS & 4D-PET detectors

Number of slabs

¤ 26% (IMAS) and 29% (4D-PET) of all events are two-slab ICS events Accuracy of ICS ordering (%)

Blurring model	IMAS	4D-PET
No blurring	79	80
ESR	73	73
ESR + RR	72	-

Prior to image reconstruction, the NN assigns the correct LOR in ICS events with 72-73% accuracy.

¤ Outperforms DOI method (~67%).

ICS in light-sharing crystal pairs in 4D-PET

Results

» NN trained on light distribution to identify PE vs ICS: Accuracy 98%

¤ Optical model still needs validation

Future work

¤ Use the NN for predicting first event directly

Examples of light distribution for single-slab interactions

Conclusions

» NNs are expected to have the ability of integrating Compton scattering kinematics, Klein–Nishina probabilities, optical photon transport and detector response for the benefit of ICS recovery in PET.

» NN trained on 3D spatial and energy information was developed to find primary event in ICS.

¤ NN was tested on simulation data from two PET detectors based on semimonolithic crystals.

¤ ICS ordering accuracy was 72-73% depending on the detector and blurring model used.

¤ Imaging studies in progress.

¤ A second NN is being developed for identifying ICS in light sharing detector pairs.

¤ An AI approach to ICS recovery has shown the potential for improved PET image quality, which may extend to enhancing diagnostic capabilities and patient outcomes.

This work is supported by the Imagen Molecular de Alta Sensibilidad **(IMAS)** project launched by the Conselleria de Sanitat Universal i Salut Publica of the Goverment of Valencia Region, announced in the BOE 328, December 28, 2020, cofounded at 50% by the ERDF. We thank financial support from Generalitat Valenciana through the program Equipamiento e Infraestructuras FEDER 2021-22 IDIFEDER/2021/004

This project has received funding from the European Research Council under the European Union Horizon 2020 research and innovation program No. 695536 "**4D-PET**"

karol.brzezinski@ific.uv.es

