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Introduction
• Many detectors of particle physics experiments suffer from event pileups and need reliable algorithms for the separation of close-in-time signals.

One possible solution is applying machine learning methods.
• Autoencoders are widely used for timeseries data description. The desired output can be a modified version of the input data with preserved

dimensions. It contains all the information about each individual pulse and turns it into a case of supervised learning.
• Explainability methods (xAI) can provide a deeper look into the network mechanisms. Different approaches can be taken, and the results aid to

developing even more accurate models.

Modified autoencoder
Signal simulation
The generated events for training have a fixed
length of 1024 ns and include several pulses
(with a predefined maximum number). Each
pulse has a 10 ns rise time and 300 ns fall time.
Each pulse is assigned a random arrival time and
has an amplitude above 20 mV with the ampli-
tudes following a Gaussian distribution with a
200 mV mean value and σ=200 mV. Noise is
added, taken as white noise – gaussian distribu-
tion with 10 mV mean.

A(t) = A0 (e
−(t−t0)

τ1 − e
−(t−t0)

τ2 ), t ≥ t0, (1)
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Modified autoencoder networks
The network architecture consists of three con-
volutional layers, followed by three deconvolu-
tional layers with the same parameters in reverse
order. The last layer is a deconvolutional layer
with a single filter.
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The introduced modification uses labels for each
event with the same length as the data. All of
the values are set to 0, except for the signal ar-
rival positions. On those, the value is set to the
amplitude of the signal.
Post-processing
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Unlike the labels, the output of the network has
non-zero values on the positions before and af-
ter the main signal arrival prediction. The post-
processing of the result includes defining a merg-
ing window, within which all non-zero values are
merged into the central (maximum) one.

Network performance
Most of the missed events are either less than 10 ns away from another event, or with amplitudes,
smaller than 50 mV. For each recognised pulse, the accuracy for the arrival time prediction is of the
order of 0.5 ns. The predicted amplitude value has lower values than the truth.
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Explainability investigation and upscaling
Five different explainability methods were tested on the predictions of the modified autoencoder
networks. Plotting the layers output is important for testing the efficiency of different architectures.
The integrated gradients, vanilla saliency and SmoothGrad methods don’t show promising results,
so the study is concentrated on the results of applying the occlusion senstitivity method.

In the case of occlusion sensitivity, different parts of the signal are masked to find the most important
regions in the data, without which the algorithm cannot identify the pulse. Results show that the
network needs the signal rise and the next 18 values in order to achieve the lowest possible loss.

Two types of events of
events emerge: either
the loss reaches a min-
imal value and remains
constant or it rises after
reaching the minimum.
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This points that the exact arrival time of the signal within the 1 ns
bin is important for the prediction. Instead of merging into the
central bin, the arrival time was determined as a weighted average:

tarrival =

∑
Aiti∑
Ai

(2)

Upsampled models were developed where the output is 4 times larger than the input, allowing for
0.25 ns precision in the arrival time position. This results in a close to 0 deviation of the predicted
from the true value, compared to an average of 0.6 ns for non-upsampled models.

Conclusion
Convolutional neural networks with modified autoencoder architectures can successfully separate
close-in-time signals in particle detector data. Applying upsampled models can sufficiently improve
the accuracy of arrival time reconstruction which can be of great importance for experiments with
big event pileups.
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