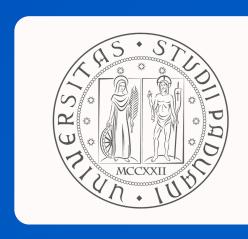
Neuromorphic Readout for Homogeneous Hadron Calorimeters

Enrico Lupi^{1,2}, Tommaso Dorigo^{1,3}, Abhijit Das⁴, Abhishek⁵, Alexander Schilling⁶, Anders Mikkelsen⁴, Andrea De Vita^{1 2}, Fredrik Sandin³, Jan Kieseler⁷, Joseph Willmore¹, Max Aehle⁶, Muhammad Awais^{1 3}, Nicholas R. Gauger⁶, Ralf Keidel⁶, Tobias Kortus⁶, Xuan-Tung Nguyen^{1 6}

¹ Istituto Nazionale Fisica Nucleare, Sezione di Padova, Italy - ² University of Padova, Italy ³Luleå University of Technology, Sweden - ⁴Lund University, Sweden - ⁵National Institute of Science and Research, India ⁶University of Kaiserslautern-Landau, Germany - ⁷Karlsruhe Institute of Technology, Germany

Objective


Investigating the **readout of light signals** from hadronic showers in a homogeneous calorimeter by a network of nanowires.

We aim to offer:

Neuromorphic Computing

Computing approach that mimics the structure and function of the human brain using artificial neurons and synapses. [1]

Studies new **software** and **hardware** solutions to achieve:

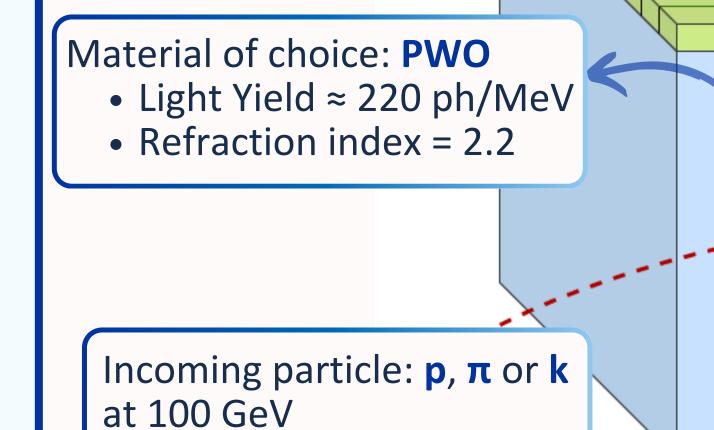
generation of informative high-level primitives

using neuromorphic computing.

higher speed

 significantly lower energy consumption compared to traditional methods. [2]

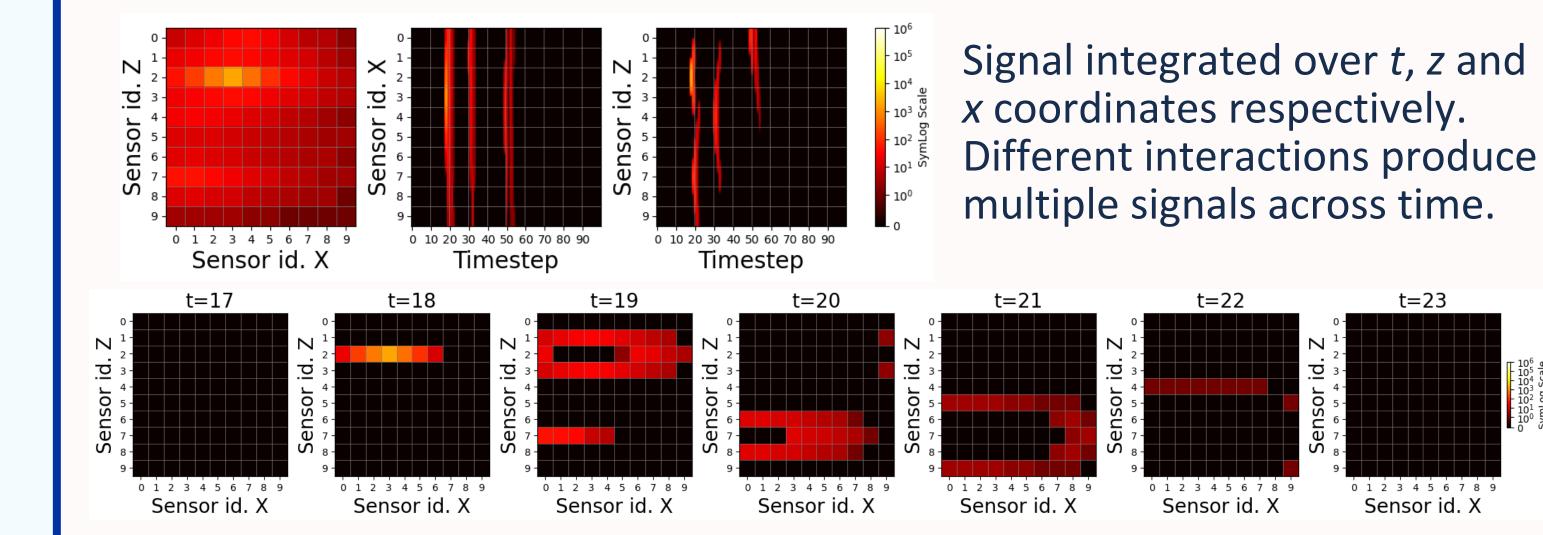
Detector Configuration



- Arranged in a 10 x 10 x 10 matrix
- Size: 3 cm x 3 cm x 12 cm

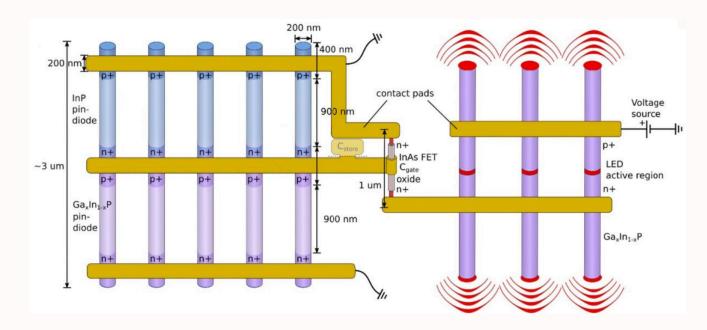
Here is a schematic view of one cubelet...

Segmented readout: **10 x 10 light sensors grid** on the upper face of each cubelet. Sensors are blind to the light coming from other cubelets (all other sides are reflective)


Simple assumption: All deposited energy is converted into **photons** which travel **isotropically** in all directions

Light Signals

September 23-25, 2024


Photons are collected for a total of 20 ns and the signal is discretized into 100 bins. Here is how one example event looks like:

Successive frames that show how the photons produced in the first two interactions in the event above propagate inside the detector.

Outlook

- First ever attempt to use neuromorphic solutions for calorimetry readout!
- Development of multi-nanowire **photodetector** for physical readout [3]

• Employ **Spiking Neural Network** for: precise measurement of shower energy particle species identification

References: [1] C. Mead. (1990). "Neuromorphic electronic systems." Proceedings of the IEEE, doi:10.1109/5.58356 "Neuromorphic computing" available at www.humanbrainproject.eu. URL consulted on Sept. 19, 2024 [2]

Conference Indico Page

10⁶ 10⁵ 10³ 10² 10¹ 10⁰ 10⁰ 10⁰ 0

