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Calculation of Derivatives

Where are Derivatives Needed?
Optimization:

unbounded: min f (x), f : Rn → R
bounded: min f (x), f : Rn → R, c(x) = 0, c : Rn → Rm, h(x) ≤ 0, h : Rn → Rl

Solution of nonlinear equation systems, i.e., F (x) = 0, F : Rn → Rn

Newton method requires F ′(x) ∈ Rn×n

Simulation of complex system
definition
integration of differential equations using implicit methods

Sensitivity analysis

Real-time control

ML, e.g., Stochastic Gradient Descent, Adam, . . .
target functions quite often nonsmooth!
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Calculation of Derivatives

Frequent Situation
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Calculation of Derivatives

Computing Derivatives
Given:

Description of functional relation as
formula y = F (x) ⇒ explicit expression y ′ = F ′(x)
computer program ⇒ ?

Task:

Computation of derivatives taking
requirements on exactness
computational effort

into account
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Calculation of Derivatives

Algorithmic Differentiation (AD)
aka Automatic Differentiation

= Differentiation of computer programs implementing F : Rn 7→ Rm

Main Products:

Quantitative dependence information (local):

Weighted and directed partial derivatives

Error and condition number estimates . . .

Lipschitz constants, interval enclosures . . .

Qualitative dependence information (regional):

Sparsity structures, degrees of polynomials

Ranks, eigenvalue multiplicities . . .

Assumption: F differentiable in a neighbourhood of current argument x
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Introduction to AD

The “Hello-World”-Example of AD

Lighthouse

qu
ay

y1 =
ν tan(ω t)
γ − tan(ω t)

and y2 =
γ ν tan(ω t)
γ − tan(ω t)
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Introduction to AD

Evaluation Procedure (Lighthouse)

y1 =
ν tan(ω t)
γ − tan(ω t)

y2 =
γ ν tan(ω t)
γ − tan(ω t)

=⇒

v−3 = x1 = ν
v−2 = x2 = γ
v−1 = x3 = ω
v0 = x4 = t
v1 = v−1 ∗ v0 ≡ φ1(v−1, v0)
v2 = tan(v1) ≡ φ2(v1)
v3 = v−2 − v2 ≡ φ3(v−2, v2)
v4 = v−3 ∗ v2 ≡ φ4(v−3, v2)
v5 = v4/v3 ≡ φ5(v4, v3)
v6 = v5 ∗ v−2 ≡ φ6(v5, v−2)
y1 = v5
y2 = v6
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Introduction to AD

Function Evaluation in ML
Typical function evaluation (deep neural net):

Propagation of one data point:

x = x (1) → x̃ (1) = W (1)x (1) + b(1) → x (2) = ρ(x̃ (1))

→ x̃ (2) = W (2)x (2) + b(2) → x (3) = ρ(x̃ (2))
→ · · ·
→ y = W (k )x (k ) + b(k )

Empirical risk, loss function, ...

f (x1≤i≤M ) = 1
M

M∑
i=1

l(yi (xi ), yNN
i )

Stochastic gradient descent requires

∇W 1,b1,...,W k ,bk l(yi (xi ), yNN
i )

for one i ∈ {1, . . . ,M}
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Introduction to AD Forward Mode of AD

Forward mode AD = Tangents/Sensitivities

x

F

y

ẏ (t) =
∂

∂t
F (x(t)) = F ′(x(t)) ẋ(t) ≡ Ḟ (x , ẋ)
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ẏ (t) =
∂

∂t
F (x(t)) = F ′(x(t)) ẋ(t) ≡ Ḟ (x , ẋ)
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Introduction to AD Forward Mode of AD

Forward Mode (Lighthouse)

v−3 = x1 = ν
v−2 = x2 = γ
v−1 = x3 = ω
v0 = x4 = t

v1 = v−1 ∗ v0

v2 = tan(v1)
v3 = v−2 − v2

v4 = v−3 ∗ v2

v5 = v4/v3

v6 = v5 ∗ v−2

y1 = v5
y2 = v6

v̇−3 = ẋ1
v̇−2 = ẋ2
v̇−1 = ẋ3
v̇0 = ẋ4

v̇1 = v̇−1 ∗ v0 + v−1 ∗ v̇0

v̇2 = v̇1/ cos(v1)2

v̇3 = v̇−2 − v̇2

v̇4 = v̇−3 ∗ v2 + v−3 ∗ v̇2

v̇5 = (v̇4 − v̇3 ∗ v5) ∗ (1/v3)
v̇6 = v̇5 ∗ v−2 + v5 ∗ v̇−2

ẏ1 = v̇5
ẏ2 = v̇6
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ẏ2 = v̇6

A. Walther Derivative-based optimization in Physics 10 / 38 4th MODE Workshop 2024



Introduction to AD Forward Mode of AD

Complexity (Forward Mode)

tang c ± ∗ ψ
MOVES 1 + 1 3 + 3 3 + 3 2 + 2
ADDS 0 1 + 1 0 + 1 0 + 0
MULTS 0 0 1 + 2 0 + 1
NLOPS 0 0 0 1 + 1

OPS(F ′(x)ẋ) ≤ c OPS(F (x))

with c ∈ [2,5/2] platform dependent
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Introduction to AD Forward Mode of AD

Forward Mode AD for ML

Typical function evaluation (deep neural net):

x = x (1) → x̃ (1) = W (1)x (1) + b(1) → x (2) = ρ(x̃ (1)) . . . → y = W (k )x (k ) + b(k )

Attention: Optimization variables W and b ⇒ AD computes Ẇ and ḃ!

x = x (1) →x̃ (1) = W (1)x (1) + b(1) → x (2) = ρ(x̃ (1))
˙̃x (1) = Ẇ (1)x (1) + ḃ(1) → ẋ (2) = ρ′(x̃ (1)) ˙̃x (1)

x = x (1) → →x̃ (2) = W (2)x (2) + b(2) → x (3) = ρ(x̃ (2))
˙̃x (2) = Ẇ (2)x (2) + W (2)ẋ (2) + ḃ(2) → ẋ (3) = ρ′(x̃ (3)) ˙̃x (3)

→· · ·
→y = W (k )x (k ) + b(k )

→ẏ = Ẇ (k )x (k ) + W (k )ẋ (k ) + ḃ(k )
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Introduction to AD Backpropagation/Reverse Mode AD

Reverse Mode AD = Discrete Adjoints

x

F

y

x̄ ≡ ȳ⊤F ′(x) = ∇x ⟨ ȳ⊤F (x) ⟩ ≡ F̄ (x , ȳ )
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Introduction to AD Backpropagation/Reverse Mode AD

Reverse Mode (Lighthouse)
v−3 = x1; v−2 = x2; v−1 = x3; v0 = x4;

v1 = v−1 ∗ v0;
v2 = tan(v1);

v3 = v−2 − v2;
v4 = v−3 ∗ v2;

v5 = v4/v3;
v6 = v5 ∗ v−2;

y1 = v5; y2 = v6;
v̄5 = ȳ1; v̄6 = ȳ2;

v̄5 += v̄6∗v−2; v̄−2 += v̄6∗v5;
v̄4 += v̄5/v3; v̄3 −= v̄5∗v5/v3;

v̄−3 += v̄4∗v2; v̄2 += v̄4∗v−3;
v̄−2 += v̄3; v̄2 −= v̄3;

v̄1 += v̄2/ cos2(v1);
v̄−1 += v̄1∗v0; v̄0 += v̄1∗v−1;

x̄4 = v̄0; x̄3 = v̄−1; x̄2 = v̄−2; x̄1 = v̄−3;
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Introduction to AD Backpropagation/Reverse Mode AD

Complexity (Reverse Mode)

grad c ± ∗ ψ
MOVES 1 + 1 3 + 6 3 + 8 2 + 5
ADDS 0 1 + 2 0 + 2 0 + 1
MULTS 0 0 1 + 2 0 + 1
NLOPS 0 0 0 1 + 1

OPS(ȳ⊤F ′(x)) ≤ c OPS(F (x)), MEM(ȳ⊤F ′(x)) ∼ OPS(F (x))

with c ∈ [3,4] platform dependent

Remarks:
Cost for gradient calculation independent of n
Memory requirement may cause problem! ⇒ Checkpointing
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Introduction to AD Backpropagation/Reverse Mode AD

Reverse Mode AD for ML
Typical function evaluation (deep neural net):

x = x (1) → x̃ (1) = W (1)x (1) + b(1) → x (2) = ρ(x̃ (1))

→ x̃ (2) = W (2)x (2) + b(2) → x (3) = ρ(x̃ (2))
→ · · ·
→ y = W (k )x (k ) + b(k )

With ȳ = 1 one obtains

W̄ (k )= [x (k )], x̄ (k ) = W (k ), b̄(k ) = 11 , . . .

¯̃x (2) = ρ′(x (2)) ∗ x̄ (3), W̄ (2)= x (2) ∗ ¯̃x (2), x̄ (2) = W (2) ∗ ¯̃x (2), b̄(2) = ¯̃x (2)

¯̃x (1) = ρ′(x (1)) ∗ x̄ (2), W̄ (1)= x (1) ∗ ¯̃x (1), x̄ (1) = W (1) ∗ ¯̃x (1), b̄(1) = ¯̃x (1)

very simple to implement!
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Introduction to AD Backpropagation/Reverse Mode AD

Historical Development of AD
J. Nolan 1953 → J. M. Thames et al. 1975 →
L. M. Beda et al. 1959 → D. D. Warner 1975 →
A. Gibbons 1960 → W. Miller 1975 ←
J. W. Hanson et al. 1962 → J. Joss 1980 →
R. E. Wengert 1964 → G. Kedem 1980 ←
R. D. Wilkins 1964 → B. Speelpenning 1980 ←
G. Wanner 1965 → L. B. Rall 1980 →
R. Bellman et al. 1965 → W. Baur, V. Strassen 1983 ←
Y. F. Chang 1967 → R. Kalaba et al. 1983 →
S. Linnainma 1970 ← M. Iri et al. 1984 ←
D. Barton et al. 1971 → K. W. Kim et al. 1984 ←
G. M. Ostrowski 1971 ← J. W. Sawyer 1984 ←
R. E. Pugh 1972 → E. M. Oblow et al. 1985 ↔
W. Stacey 1973 ← L. C. W. Dixon et al. 1986 →
P. Werbos 1974 ← · · ·

Rumelhart at al. (1986) made backpropagation famous in ML
A. Walther Derivative-based optimization in Physics 17 / 38 4th MODE Workshop 2024
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P. Werbos 1974 ← · · ·

Rumelhart at al. (1986) made backpropagation famous for neural nets
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Introduction to AD Backpropagation/Reverse Mode AD

Overview AD Theory and Tools
Differentiation of computer programmes with working accuracy
(Griewank, Kulshreshtha, Walther 2012)

Forward mode: OPS(F ′(x)ẋ) ≤ c OPS(F ), c ∈ [2,5/2]
Reverse mode: OPS(ȳ⊤ F ′(x)) ≤ c OPS(F ), c ∈ [3,4]

= discrete analogon to sensitivity equation
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MEM(ȳ⊤ F ′(x)) ∼ OPS(F ),

=⇒ Gradients are cheap ∼ Function costs!!

Combination: OPS(ȳ⊤F ′′(x)ẋ) ≤ c OPS(F ), c ∈ [7,10]
Consistent derivative information!

AD-Tools: ADOL-C, CoDiPack, Tapenade, INTLAB, ADiMat . . .
General purpose tools: FEniCS, SU2, PyTorch, TensorFlow, . . .

(Griewank, Walther 2008), (Naumann 2012), www.autodiff.org
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Introduction to AD Backpropagation/Reverse Mode AD

Automatic Differentiation by
OverLoading in C++

ADOL-C version 2.7, available at COIN-OR since 2009, open source (GPL or ECL)

based on operator overloading, trace as internal representation

general-purpose AD tool with focus on functionalities

interfaces to ColPack (Purdue University) and Ipopt (COIN-OR)

current developments
Julia interface ADOLC.jl
exploitation of fixed-point structure for second-order derivatives
generalized derivatives for nonsmooth functions
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Applications in Physics Parameter Identification Piezoceramics

Piezoelectricity
Fundamental properties:

Transformation of mechanical energy into electrical energy
Transformation of electrical energy into mechanical energy

Piezo igniter

Used in wide range of applications:
Pressure Sensors, Ultrasonic Cleaning,
Ultrasound Imaging, Piezoelectric Speakers,
Electronic Toothbrushes, Instrument Pickups,
Microphones, Piezoelectric Igniters,
Electricity Generation, Tennis Racquets, . . .
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Applications in Physics Parameter Identification Piezoceramics

The Considered Setting

https://www.piceramic.de/de/produkte/piezokeramische-bauelemente/scheiben-staebe-und-zylinder/piezoelektrische-scheiben-1206710/

Piezoceramics come in many shapes and sizes
here: disk shaped ceramics (very popular, cheap(er) simulation)

Thanks to Benjamin Jurgelucks and Veronika Schulze!
Cooperation with Measurement Engineering Group, Prof. Henning, Univ Paderborn

Here: Consider only small loads⇒ Disregard thermal effects
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Applications in Physics Parameter Identification Piezoceramics

Inverse Problem - State of the Art

Sensitivity too small for some parameter
(using conventional methods or data provided by manufacturer)
Up to 20% error not uncommon

Alternative approaches:
Use multiple differently shaped piezoceramics
⇒ Leads to inconsistent datasets
Use additional measuremens of surface displacement
⇒ Very expensive and still low sensitivity
Low sensitivity parameters are excluded from parameter identification

Goal: Identify all parameters using a single piezoceramic and impedance measurements
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Applications in Physics Parameter Identification Piezoceramics

AD-enabled Optimization of the Electrodes
Fully covering electrodes

Thanks to B. Jurgelucks
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Applications in Physics Parameter Identification Piezoceramics

AD-enabled Optimization of the Electrodes
Triple-ring electrodes

Thanks to B. Jurgelucks
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Applications in Physics Parameter Identification Piezoceramics

Real Measurements

Photo by S. Olfert
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Applications in Physics Parameter Identification Piezoceramics

Appropriate Version of
AD-enabled Gauss-Newton Method

Outer iteration steps
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None of the 10 (!) parameters diverges
To the best of our knowledge this has not been possible with only one piezoceramic
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Applications in Physics Optimization for Nano-optics

Optical Nano-Structures

State of the art: Nano-structures are used to confine light

Simple example: Bow-tie antenna
metallic nano structure
two triangles and gap
Size: 100 nm (< λlight!)

intensity enhancement in gap
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Applications in Physics Optimization for Nano-optics

Possible Configurations

Simple setting:
different structure

“simple” excitation

pure metal

extremely short dephasing

Advanced setting:
fixed structure

sophisticated excitation

add resonances in semiconductors

longer dephasing
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Applications in Physics Optimization for Nano-optics

Test Case: Quantum Wire
Cooperation with T. Meier, M. Reichelt, Dep. Physik, Uni Paderborn

Generic configuration:

←− adaptable light puls E(t)

←− metal aperture with air hole

←− quantum wire

←− electron distribution?

Light puls:

with E(t) =
∑

Ai exp
(
−

(
t−ti
δti

)2
)

cos(ωi t + ϕi )

Parameter: Ai , ϕi , ωi , ti ⇒ up to 120!
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Applications in Physics Optimization for Nano-optics

Mathematical Formulation

State equation:
∂

∂t
p =

i
ℏ

(ϵ0 − ϵ1)p +
i
ℏ

E(t) · d (n0 − n1)

∂

∂t
n0 =

2
ℏ

Im [E(t) · d p∗]

∂

∂t
n1 = −2

ℏ
Im [E(t) · d p∗]

1 = n1 + n0

⇒ Three complex-valued coupled differential equations
⇒ p, n0 and n1 distributed in space.
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∂

∂t
n1 = −2

ℏ
Im [E(t) · d p∗]

1 = n1 + n0

Target:
Maximize energy at given time and given place with constant energy

= Maximize emitted radiation

Irad =
∣∣ω2P(ω)

∣∣2
=

∣∣ω2 2 Re(d p)
∣∣2
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Applications in Physics Optimization for Nano-optics

Function Evaluation of Irad (f (g(x)))

x[]← (phase[], amplitude[], width[], point[])

for time=0 to Tfinal do
if (time >= Tobs && time < Tobs+dt)

eval_time_step1(x,int_tar)
else

eval_time_step2(x,int_tar)
end if

end for

eval_target(int_tar,fitness)

scenarios:
# independents ∈ {20,60,120} ⇒ Reverse mode!
# time steps ∈ {16000,32000,160000} ⇒ Checkpointing!
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Applications in Physics Optimization for Nano-optics

Quantum Wire: Optimization
So far: Genetic algorithms

Now: L-BFGS and efficient gradient computation
ADOL-C coupled with hand-coded adjoints
Checkpointing (160 000 time steps!!)

⇒ TIME(gradient)/TIME(target function) < 7 despite of checkpointing!
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Applications in Physics Optimization for Nano-optics

Quantum Wire: Comparison
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Applications in Physics Sensitivities Near Exceptional Points

Photonic Nano-Resonators

Joint work with F. Binkowski, J. Kullig, F. Betz, L. Zschiedrich, J. Wiersig, S. Burger

Applications:
probing single molecules with ultrahigh sensitivity
designing nanoantennas with a tailored directivity
large spontaneous emission rate or realizing efficient single-photon sources

Furter aspects:
computed by solving the source-free Maxwell’s equations

sensitivities of resonances are of interest for
better understanding of the underlying physical effects
an efficient optimization of corresponding photonic devices
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Applications in Physics Sensitivities Near Exceptional Points

Behaviour of Sensitivities at EPs

Exceptional points: spectral degeneracies
(eigenfrequencies and eigenmodes coalesce)

parametric fine-tuning is needed to achieve such non-Hermitian degeneracies
⇒ exceptional points (EPs)

EPs have been connected to many interesting effects including
ultra-sensitive sensors
control of light transport
electromagnetically induced transparency
optical amplifiers,. . .
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Applications in Physics Sensitivities Near Exceptional Points

Behaviour of Sensitivities at EPs
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Applications in Physics Sensitivities Near Exceptional Points

Calculation of EPs and Their Sensitivities

RPExpand
Software for Riesz projection expansion of resonance phenomena
by F. Betz, F. Binkowski, S. Burger

JCMSuite
part of JCMWave (commercial software)
based on FEM combined with efficient contour-integral method
implements own AD approach
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Applications in Physics Sensitivities Near Exceptional Points

The Considered Setting
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Applications in Physics Sensitivities Near Exceptional Points

Eigenfrequencies and Their Sensitivities
x c/R

x R x R

x c/R

x c/R2x c/R2

(b)

(c) (d)

(a)
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Conclusions
Basics of Algorithmic Differentiation

Efficient evaluation of derivatives with working accuracy
Theory for basic modes complete, advanced AD?
Various tools/implementations available

Structure exploitation indispensable

AD for applications in physics:

parameter identification for piezoceramics1

optimized excitation of nano antenna2

sensitivities of exceptional points of nano-resonators3

1 e.g., L. Claes et al.: Inverse procedure for measuring piezoelectric material parameters using a single multi-electrode sample. J. Sensors and Sensor Systems 12 (1) (2023)

2 e.g., M. Reichelt, A. Walther, T. Meier: Tailoring the high-harmonic emission in two-level systems and semiconductors by pulse shaping. JOSA B 29 (2) (2012)

3 F. Binkowski, J. Kullig, F. Betz, L. Zschiedrich, A. Walther, J. Wiersig, S. Burger: Computing eigenfrequency sensitivities near exceptional points,Phys. Rev. Research 6 (2) (2024)

A. Walther Derivative-based optimization in Physics 38 / 38 4th MODE Workshop 2024



Conclusions
Basics of Algorithmic Differentiation

Efficient evaluation of derivatives with working accuracy
Theory for basic modes complete, advanced AD?
Various tools/implementations available

Structure exploitation indispensable

AD for applications in physics:

parameter identification for piezoceramics1

optimized excitation of nano antenna2

sensitivities of exceptional points of nano-resonators3

1 e.g., L. Claes et al.: Inverse procedure for measuring piezoelectric material parameters using a single multi-electrode sample. J. Sensors and Sensor Systems 12 (1) (2023)

2 e.g., M. Reichelt, A. Walther, T. Meier: Tailoring the high-harmonic emission in two-level systems and semiconductors by pulse shaping. JOSA B 29 (2) (2012)

3 F. Binkowski, J. Kullig, F. Betz, L. Zschiedrich, A. Walther, J. Wiersig, S. Burger: Computing eigenfrequency sensitivities near exceptional points,Phys. Rev. Research 6 (2) (2024)

A. Walther Derivative-based optimization in Physics 38 / 38 4th MODE Workshop 2024



Conclusions
Basics of Algorithmic Differentiation

Efficient evaluation of derivatives with working accuracy
Theory for basic modes complete, advanced AD?
Various tools/implementations available

Structure exploitation indispensable

AD for applications in physics:

parameter identification for piezoceramics1

optimized excitation of nano antenna2

sensitivities of exceptional points of nano-resonators3

1 e.g., L. Claes et al.: Inverse procedure for measuring piezoelectric material parameters using a single multi-electrode sample. J. Sensors and Sensor Systems 12 (1) (2023)

2 e.g., M. Reichelt, A. Walther, T. Meier: Tailoring the high-harmonic emission in two-level systems and semiconductors by pulse shaping. JOSA B 29 (2) (2012)

3 F. Binkowski, J. Kullig, F. Betz, L. Zschiedrich, A. Walther, J. Wiersig, S. Burger: Computing eigenfrequency sensitivities near exceptional points,Phys. Rev. Research 6 (2) (2024)

A. Walther Derivative-based optimization in Physics 38 / 38 4th MODE Workshop 2024


	Calculation of Derivatives
	Introduction to Algorithmic Differentiation
	Forward Mode of AD
	Backpropagation aka Reverse Mode AD

	Applications in Physics
	Identification of Parameters for Piezoceramics
	Optimization for Nano-optics
	Sensitivities Near Exceptional Points

	Conclusion

