

Derivative-based Optimization for Applications in Physics

Andrea Walther Institut für Mathematik Humboldt-Universität zu Berlin and ZIB

Keynote Lecture 4th MODE Workshop on Differentiable Programming for Experimental Design September 24, 2024

Outline

Calculation of Derivatives

- 2 Introduction to Algorithmic Differentiation
 - Forward Mode of AD
 - Backpropagation aka Reverse Mode AD

Applications in Physics

- Identification of Parameters for Piezoceramics
- Optimization for Nano-optics
- Sensitivities Near Exceptional Points

• Optimization:

unbounded:	$\min f(x),$	$f:\mathbb{R}^n o \mathbb{R}$		
bounded:	$\min f(x),$	$f:\mathbb{R}^n ightarrow\mathbb{R}$,	$c(x) = 0, c : \mathbb{R}^n \to \mathbb{R}^m,$	$h(x) \leq 0, h : \mathbb{R}^n o \mathbb{R}^l$

• Optimization:

unbounded: min f(x), $f : \mathbb{R}^n \to \mathbb{R}$ bounded: min f(x), $f : \mathbb{R}^n \to \mathbb{R}$, $c(x) = 0, c : \mathbb{R}^n \to \mathbb{R}^m$, $h(x) \le 0, h : \mathbb{R}^n \to \mathbb{R}^l$

• Solution of nonlinear equation systems, i.e., F(x) = 0, $F : \mathbb{R}^n \to \mathbb{R}^n$ Newton method requires $F'(x) \in \mathbb{R}^{n \times n}$

• Optimization:

unbounded: min f(x), $f : \mathbb{R}^n \to \mathbb{R}$ bounded: min f(x), $f : \mathbb{R}^n \to \mathbb{R}$, $c(x) = 0, c : \mathbb{R}^n \to \mathbb{R}^m$, $h(x) \le 0, h : \mathbb{R}^n \to \mathbb{R}^l$

- Solution of nonlinear equation systems, i.e., F(x) = 0, $F : \mathbb{R}^n \to \mathbb{R}^n$ Newton method requires $F'(x) \in \mathbb{R}^{n \times n}$
- Simulation of complex system
 - definition
 - integration of differential equations using implicit methods

• Optimization:

unbounded: min f(x), $f : \mathbb{R}^n \to \mathbb{R}$ bounded: min f(x), $f : \mathbb{R}^n \to \mathbb{R}$, $c(x) = 0, c : \mathbb{R}^n \to \mathbb{R}^m$, $h(x) \le 0, h : \mathbb{R}^n \to \mathbb{R}^l$

- Solution of nonlinear equation systems, i.e., F(x) = 0, $F : \mathbb{R}^n \to \mathbb{R}^n$ Newton method requires $F'(x) \in \mathbb{R}^{n \times n}$
- Simulation of complex system
 - definition
 - integration of differential equations using implicit methods
- Sensitivity analysis
- Real-time control

• Optimization:

unbounded: min f(x), $f : \mathbb{R}^n \to \mathbb{R}$ bounded: min f(x), $f : \mathbb{R}^n \to \mathbb{R}$, $c(x) = 0, c : \mathbb{R}^n \to \mathbb{R}^m$, $h(x) \le 0, h : \mathbb{R}^n \to \mathbb{R}^h$

- Solution of nonlinear equation systems, i.e., F(x) = 0, $F : \mathbb{R}^n \to \mathbb{R}^n$ Newton method requires $F'(x) \in \mathbb{R}^{n \times n}$
- Simulation of complex system
 - definition
 - integration of differential equations using implicit methods
- Sensitivity analysis
- Real-time control
- ML, e.g., Stochastic Gradient Descent, Adam, ... target functions quite often nonsmooth!

Frequent Situation

4th MODE Workshop 2024

Computing Derivatives

Description of functional relation as

- formula $y = F(x) \implies$ explicit expression y' = F'(x)
- computer program \Rightarrow ?

Computing Derivatives

Description of functional relation as

- formula $y = F(x) \implies$ explicit expression y' = F'(x)
- computer program \Rightarrow ?

Task:

Computation of derivatives taking

- requirements on exactness
- computational effort
- into account

aka Automatic Differentiation

= Differentiation of computer programs implementing $F : \mathbb{R}^n \mapsto \mathbb{R}^m$

aka Automatic Differentiation

= Differentiation of computer programs implementing $F : \mathbb{R}^n \mapsto \mathbb{R}^m$

Main Products:

- Quantitative dependence information (local):
 - Weighted and directed partial derivatives
 - Error and condition number estimates
 - Lipschitz constants, interval enclosures ...

aka Automatic Differentiation

= Differentiation of computer programs implementing $F : \mathbb{R}^n \mapsto \mathbb{R}^m$

Main Products:

- Quantitative dependence information (local):
 - Weighted and directed partial derivatives
 - Error and condition number estimates
 - Lipschitz constants, interval enclosures ...
- Qualitative dependence information (regional):
 - Sparsity structures, degrees of polynomials
 - Ranks, eigenvalue multiplicities

aka Automatic Differentiation

= Differentiation of computer programs implementing $F : \mathbb{R}^n \mapsto \mathbb{R}^m$

Main Products:

- Quantitative dependence information (local):
 - Weighted and directed partial derivatives
 - Error and condition number estimates
 - Lipschitz constants, interval enclosures ...
- Qualitative dependence information (regional):
 - Sparsity structures, degrees of polynomials
 - Ranks, eigenvalue multiplicities ...

Assumption: F differentiable in a neighbourhood of current argument x

4th MODE Workshop 2024

4th MODE Workshop 2024

Evaluation Procedure (Lighthouse)

$$y_{1} = \frac{\nu \tan(\omega t)}{\gamma - \tan(\omega t)} \implies y_{2} = \frac{\gamma \nu \tan(\omega t)}{\gamma - \tan(\omega t)}$$

$$y_{2} = \frac{\gamma \nu \tan(\omega t)}{\gamma - \tan(\omega t)}$$

$$y_{2} = \frac{\gamma \nu \tan(\omega t)}{\gamma - \tan(\omega t)}$$

$$y_{3} = v_{-2} - v_{2} \equiv \varphi_{3}(v_{-2}, v_{2})$$

$$v_{4} = v_{-3} * v_{2} \equiv \varphi_{4}(v_{-3}, v_{2})$$

$$v_{5} = v_{4}/v_{3} \equiv \varphi_{5}(v_{4}, v_{3})$$

$$\frac{v_{6} = v_{5} * v_{-2} \equiv \varphi_{6}(v_{5}, v_{-2})}{y_{1} = v_{5}}$$

4th MODE Workshop 2024

Function Evaluation in ML

Typical function evaluation (deep neural net):

Propagation of one data point:

$$\begin{aligned} x &= x^{(1)} \to \tilde{x}^{(1)} = W^{(1)}x^{(1)} + b^{(1)} &\to x^{(2)} = \rho(\tilde{x}^{(1)}) \\ &\to \tilde{x}^{(2)} = W^{(2)}x^{(2)} + b^{(2)} &\to x^{(3)} = \rho(\tilde{x}^{(2)}) \\ &\to \cdots \\ &\to v = W^{(k)}x^{(k)} + b^{(k)} \end{aligned}$$

Function Evaluation in ML

Typical function evaluation (deep neural net):

Propagation of one data point:

$$\begin{aligned} x &= x^{(1)} \to \tilde{x}^{(1)} = W^{(1)} x^{(1)} + b^{(1)} &\to x^{(2)} = \rho(\tilde{x}^{(1)}) \\ &\to \tilde{x}^{(2)} = W^{(2)} x^{(2)} + b^{(2)} &\to x^{(3)} = \rho(\tilde{x}^{(2)}) \\ &\to \cdots \\ &\to y = W^{(k)} x^{(k)} + b^{(k)} \end{aligned}$$

Empirical risk, loss function, ...

$$f(x_{1\leq i\leq M})=\frac{1}{M}\sum_{i=1}^M I(y_i(x_i),y_i^{NN})$$

4th MODE Workshop 2024

Function Evaluation in ML

Typical function evaluation (deep neural net):

Propagation of one data point:

$$\begin{aligned} x &= x^{(1)} \to \tilde{x}^{(1)} = W^{(1)} x^{(1)} + b^{(1)} &\to x^{(2)} = \rho(\tilde{x}^{(1)}) \\ &\to \tilde{x}^{(2)} = W^{(2)} x^{(2)} + b^{(2)} &\to x^{(3)} = \rho(\tilde{x}^{(2)}) \\ &\to \cdots \\ &\to y = W^{(k)} x^{(k)} + b^{(k)} \end{aligned}$$

Empirical risk, loss function, ...

$$f(x_{1 \le i \le M}) = \frac{1}{M} \sum_{i=1}^{M} I(y_i(x_i), y_i^{NN})$$

Stochastic gradient descent requires

$$\nabla_{W^1,b^1,\ldots,W^k,b^k} I(y_i(x_i),y_i^{NN})$$

OF WOR

4th MODE Workshop 2024

Berlin Mathematics Research Center

$$\dot{y}(t) = \frac{\partial}{\partial t}F(x(t)) = F'(x(t))\dot{x}(t) \equiv \dot{F}(x,\dot{x})$$

Berlin Mathematics Research Center

Forward Mode (Lighthouse)

<i>V</i> _3	=	$X_1 = \nu$
<i>V</i> _2	=	$X_2 = \gamma$
<i>V</i> _1	=	$X_3 = \omega$
V ₀	=	$X_4 = t$
<i>V</i> ₁	=	<i>V</i> ₋₁ * <i>V</i> ₀
<i>V</i> ₂	=	$tan(v_1)$
V_3	=	$V_{-2} - V_2$
V_4	=	<i>V</i> ₋₃ * <i>V</i> ₂
V_5	=	v_4/v_3
<i>V</i> 6	=	<i>V</i> ₅ * <i>V</i> ₋₂
<i>Y</i> 1	=	<i>V</i> 5
y 2	=	<i>V</i> 6

Berlin Mathematics Research Center

		Forwar	rd Moo	de (l	_ighthou	se)
<i>V</i> _3	=	$X_1 = \nu$	<i>∨</i> _3	=	<i>x</i> ₁	
V_2	=	$x_2 = \gamma$	<i>∨</i> _2	=	Х ₂	
<i>V</i> _1	=	$X_3 = \omega$	\dot{V}_{-1}	=	х ₃	
<i>V</i> ₀	=	$x_4 = t$	i∕₀	=	Х ₄	
<i>V</i> ₁	=	<i>V</i> ₋₁ * <i>V</i> ₀				
<i>V</i> ₂	=	$tan(v_1)$				
<i>V</i> 3	=	$V_{-2} - V_2$				
<i>V</i> ₄	=	<i>V</i> ₋₃ * <i>V</i> ₂				
<i>V</i> 5	=	v_4/v_3				
<i>V</i> 6	=	<i>V</i> ₅ * <i>V</i> ₋₂				
<i>Y</i> 1	=	<i>V</i> 5				
y 2	=	<i>V</i> 6				

ITAY

4th MODE Workshop 2024

		Forwar	d Moo	de (l	Lighthouse)
<i>V</i> _3	=	$X_1 = \nu$	<i>∨</i> _3	=	х ₁
V_2	=	$x_2 = \gamma$	<i>∨</i> _2	=	x ₂
<i>V</i> _1	=	$x_3 = \omega$	\dot{V}_{-1}	=	× 3
<i>V</i> ₀	=	$x_4 = t$	\dot{v}_0	=	<i>x</i> ₄
<i>V</i> ₁	=	<i>V</i> ₋₁ * <i>V</i> ₀	ν̈́1	=	$\dot{V}_{-1} * V_0 + V_{-1} * \dot{V}_0$
<i>V</i> ₂	=	$tan(v_1)$			
<i>V</i> 3	=	$v_{-2} - v_2$			
<i>V</i> ₄	=	<i>V</i> ₋₃ * <i>V</i> ₂			
<i>V</i> 5	=	v_4/v_3			
<i>V</i> 6	=	$V_5 * V_{-2}$			
<i>y</i> ₁	=	<i>V</i> 5			
y 2	=	<i>V</i> 6			

4th MODE Workshop 2024

Berlin Mathematics Research Center

Forward Mode (Lighthouse)

OTDT-UNIL WDT-UNIL BERLIN

Berlin Mathematics Research Center

Berlin Mathematics Research Center

4th MODE Workshop 2024

tang	С	±	*	ψ
MOVES	1 + 1	3 + 3	3 + 3	2 + 2
ADDS	0	1 + 1	0 + 1	0 + <mark>0</mark>
MULTS	0	0	1 + <mark>2</mark>	0 + 1
NLOPS	0	0	0	1 + 1

Complexity (Forward Mode)

4th MODE Workshop 2024

A. Walther

tang	С	±	*	ψ
MOVES	1 + 1	3 + 3	3 + <mark>3</mark>	2 + 2
ADDS	0	1 + 1	0 + 1	0 + <mark>0</mark>
MULTS	0	0	1 + <mark>2</mark>	0 + 1
NLOPS	0	0	0	1 + 1

Complexity (Forward Mode)

with $c \in [2, 5/2]$ platform dependent

4th MODE Workshop 2024

A. Walther

Forward Mode of AD

Forward Mode AD for ML

Typical function evaluation (deep neural net):

$$x = x^{(1)} \to \tilde{x}^{(1)} = W^{(1)}x^{(1)} + b^{(1)} \to x^{(2)} = \rho(\tilde{x}^{(1)}) \quad \dots \quad \to y = W^{(k)}x^{(k)} + b^{(k)}$$

Attention: Optimization variables W and $b \Rightarrow AD$ computes \dot{W} and $\dot{b}!$

Forward Mode of AD

Forward Mode AD for ML

Typical function evaluation (deep neural net):

$$x = x^{(1)} \to \tilde{x}^{(1)} = W^{(1)}x^{(1)} + b^{(1)} \to x^{(2)} = \rho(\tilde{x}^{(1)}) \quad \dots \quad \to y = W^{(k)}x^{(k)} + b^{(k)}$$

Attention: Optimization variables W and $b \Rightarrow AD$ computes \dot{W} and $\dot{b}!$

$$\begin{aligned} x &= x^{(1)} \to \tilde{x}^{(1)} = W^{(1)} x^{(1)} + b^{(1)} &\to x^{(2)} = \rho(\tilde{x}^{(1)}) \\ \dot{\tilde{x}}^{(1)} &= \dot{W}^{(1)} x^{(1)} + \dot{b}^{(1)} &\to \dot{x}^{(2)} = \rho'(\tilde{x}^{(1)}) \dot{\tilde{x}}^{(1)} \end{aligned}$$

Forward Mode of AD

Forward Mode AD for ML

Typical function evaluation (deep neural net):

.

$$x = x^{(1)} \rightarrow \tilde{x}^{(1)} = W^{(1)}x^{(1)} + b^{(1)} \rightarrow x^{(2)} = \rho(\tilde{x}^{(1)}) \quad \dots \quad \rightarrow y = W^{(k)}x^{(k)} + b^{(k)}$$

Attention: Optimization variables W and $b \Rightarrow AD$ computes \dot{W} and $\dot{b}!$

$$\begin{split} \mathbf{x} &= \mathbf{x}^{(1)} \to \tilde{\mathbf{x}}^{(1)} = \mathbf{W}^{(1)} \mathbf{x}^{(1)} + \mathbf{b}^{(1)} \quad \to \mathbf{x}^{(2)} = \rho(\tilde{\mathbf{x}}^{(1)}) \\ & \dot{\tilde{\mathbf{x}}}^{(1)} = \dot{\mathbf{W}}^{(1)} \mathbf{x}^{(1)} + \dot{\mathbf{b}}^{(1)} \quad \to \dot{\mathbf{x}}^{(2)} = \rho'(\tilde{\mathbf{x}}^{(1)}) \dot{\tilde{\mathbf{x}}}^{(1)} \\ & \to \tilde{\mathbf{x}}^{(2)} = \mathbf{W}^{(2)} \mathbf{x}^{(2)} + \mathbf{b}^{(2)} \quad \to \mathbf{x}^{(3)} = \rho(\tilde{\mathbf{x}}^{(2)}) \\ & \dot{\tilde{\mathbf{x}}}^{(2)} = \dot{\mathbf{W}}^{(2)} \mathbf{x}^{(2)} + \mathbf{W}^{(2)} \dot{\mathbf{x}}^{(2)} + \dot{\mathbf{b}}^{(2)} \quad \to \dot{\mathbf{x}}^{(3)} = \rho'(\tilde{\mathbf{x}}^{(3)}) \dot{\tilde{\mathbf{x}}}^{(3)} \\ & \to \cdots \\ & \to \mathbf{y} = \mathbf{W}^{(k)} \mathbf{x}^{(k)} + \mathbf{b}^{(k)} \\ & \to \dot{\mathbf{y}} = \dot{\mathbf{W}}^{(k)} \mathbf{x}^{(k)} + \mathbf{W}^{(k)} \dot{\mathbf{x}}^{(k)} + \dot{\mathbf{b}}^{(k)} \end{split}$$

Reverse Mode AD = Discrete Adjoints

Reverse Mode AD = Discrete Adjoints

Reverse Mode AD = Discrete Adjoints

 $\bar{\mathbf{x}} \equiv \bar{\mathbf{y}}^{\top} F'(\mathbf{x}) = \nabla_{\mathbf{x}} \langle \bar{\mathbf{y}}^{\top} F(\mathbf{x}) \rangle \equiv \bar{F}(\mathbf{x}, \bar{\mathbf{y}})$

4th MODE Workshop 2024

A. Walther

Reverse Mode (Lighthouse)

$$\begin{array}{c} v_{-3} = x_1; \quad v_{-2} = x_2; \quad v_{-1} = x_3; \quad v_0 = x_4; \\ v_1 = v_{-1} * v_0; \\ v_2 = \tan(v_1); \\ v_3 = v_{-2} - v_2; \\ v_4 = v_{-3} * v_2; \\ v_5 = v_4/v_3; \\ v_6 = v_5 * v_{-2}; \\ y_1 = v_5; \quad y_2 = v_6; \\ \hline v_5 = \bar{y}_1; \quad \bar{v}_6 = \bar{y}_2; \\ \bar{v}_5 + \bar{v}_6 * v_{-2}; \quad \bar{v}_{-2} + \bar{v}_6 * v_5; \\ \bar{v}_4 + \bar{v}_5/v_3; \quad \bar{v}_3 - \bar{v}_5 * v_5/v_3; \\ \bar{v}_{-3} + \bar{v}_4 * v_2; \quad \bar{v}_2 + \bar{v}_4 * v_{-3}; \\ \bar{v}_{-2} + \bar{v}_3; \bar{v}_2 - \bar{v}_3; \\ \bar{v}_1 + \bar{v}_2/\cos^2(v_1); \\ \bar{v}_{-1} + \bar{v}_1 * v_0; \bar{v}_0 + \bar{v}_1 * v_{-1}; \\ \bar{x}_4 = \bar{v}_0; \quad \bar{x}_3 = \bar{v}_{-1}; \quad \bar{x}_2 = \bar{v}_{-2}; \quad \bar{x}_1 = \bar{v}_{-3}; \end{array}$$

Berlin Mathematics Research Center

Complexity (Reverse Mode)

grad	C	±	*	ψ
MOVES	1 + 1	3 + <mark>6</mark>	3 + <mark>8</mark>	2 + 5
ADDS	0	1 + <mark>2</mark>	0 + <mark>2</mark>	0 + 1
MULTS	0	0	1 + <mark>2</mark>	0 + 1
NLOPS	0	0	0	1 + 1

4th MODE Workshop 2024

A. Walther

Complexity (Reverse Mode)

grad	С	±	*	ψ
MOVES	1+1	3 + <mark>6</mark>	3 + <mark>8</mark>	2 + <mark>5</mark>
ADDS	0	1 + <mark>2</mark>	0 + <mark>2</mark>	0 + 1
MULTS	0	0	1 + <mark>2</mark>	0 + 1
NLOPS	0	0	0	1 + 1

$$\longrightarrow \mathsf{OPS}(\bar{\boldsymbol{y}}^{\top} \boldsymbol{F}'(\boldsymbol{x})) \leq c \, \mathsf{OPS}(\boldsymbol{F}(\boldsymbol{x})), \qquad \mathsf{MEM}(\bar{\boldsymbol{y}}^{\top} \boldsymbol{F}'(\boldsymbol{x})) \sim \mathsf{OPS}(\boldsymbol{F}(\boldsymbol{x}))$$

with $c \in [3, 4]$ platform dependent

Complexity (Reverse Mode)

grad	С	±	*	ψ
MOVES	1+1	3 + <mark>6</mark>	3 + <mark>8</mark>	2 + <mark>5</mark>
ADDS	0	1 + <mark>2</mark>	0 + <mark>2</mark>	0 + 1
MULTS	0	0	1 + <mark>2</mark>	0 + 1
NLOPS	0	0	0	1 + 1

$$\longrightarrow \mathsf{OPS}(\bar{y}^{\top}F'(x)) \leq c \mathsf{OPS}(F(x)), \qquad \mathsf{MEM}(\bar{y}^{\top}F'(x)) \sim \mathsf{OPS}(F(x))$$

with $c \in [3, 4]$ platform dependent

Remarks:

- Cost for gradient calculation independent of n
- Memory requirement may cause problem! ⇒ Checkpointing

4th MODE Workshop 2024

A. Walther

Typical function evaluation (deep neural net):

$$\begin{aligned} x &= x^{(1)} \to \tilde{x}^{(1)} = W^{(1)} x^{(1)} + b^{(1)} &\to x^{(2)} = \rho(\tilde{x}^{(1)}) \\ &\to \tilde{x}^{(2)} = W^{(2)} x^{(2)} + b^{(2)} &\to x^{(3)} = \rho(\tilde{x}^{(2)}) \\ &\to \cdots \\ &\to y = W^{(k)} x^{(k)} + b^{(k)} \end{aligned}$$

Typical function evaluation (deep neural net):

$$\begin{aligned} x &= x^{(1)} \to \tilde{x}^{(1)} = W^{(1)} x^{(1)} + b^{(1)} &\to x^{(2)} = \rho(\tilde{x}^{(1)}) \\ &\to \tilde{x}^{(2)} = W^{(2)} x^{(2)} + b^{(2)} &\to x^{(3)} = \rho(\tilde{x}^{(2)}) \\ &\to \cdots \\ &\to y = W^{(k)} x^{(k)} + b^{(k)} \end{aligned}$$

With $\bar{y} = 1$ one obtains

$$\bar{W}^{(k)} = [x^{(k)}], \qquad \bar{x}^{(k)} = W^{(k)}, \qquad \bar{b}^{(k)} = 11 , \dots$$

4th MODE Workshop 2024

OF WOH

Typical function evaluation (deep neural net):

$$\begin{aligned} x &= x^{(1)} \to \tilde{x}^{(1)} = W^{(1)} x^{(1)} + b^{(1)} &\to x^{(2)} = \rho(\tilde{x}^{(1)}) \\ &\to \tilde{x}^{(2)} = W^{(2)} x^{(2)} + b^{(2)} &\to x^{(3)} = \rho(\tilde{x}^{(2)}) \\ &\to \cdots \\ &\to y = W^{(k)} x^{(k)} + b^{(k)} \end{aligned}$$

With $\bar{y} = 1$ one obtains

$$\begin{split} \bar{W}^{(k)} &= [x^{(k)}], \qquad \bar{x}^{(k)} = W^{(k)}, \qquad \bar{b}^{(k)} = 11 \qquad , \dots \\ \bar{x}^{(2)} &= \rho'(x^{(2)}) * \bar{x}^{(3)}, \qquad \bar{W}^{(2)} = x^{(2)} * \bar{\bar{x}}^{(2)}, \qquad \bar{x}^{(2)} = W^{(2)} * \bar{\bar{x}}^{(2)}, \qquad \bar{b}^{(2)} = \bar{\bar{x}}^{(2)} \\ \bar{\bar{x}}^{(1)} &= \rho'(x^{(1)}) * \bar{x}^{(2)}, \qquad \bar{W}^{(1)} = x^{(1)} * \bar{\bar{x}}^{(1)}, \qquad \bar{x}^{(1)} = W^{(1)} * \bar{\bar{x}}^{(1)}, \qquad \bar{b}^{(1)} = \bar{\bar{x}}^{(1)} \end{split}$$

OF WOH

Typical function evaluation (deep neural net):

$$\begin{aligned} x &= x^{(1)} \to \tilde{x}^{(1)} = W^{(1)} x^{(1)} + b^{(1)} &\to x^{(2)} = \rho(\tilde{x}^{(1)}) \\ &\to \tilde{x}^{(2)} = W^{(2)} x^{(2)} + b^{(2)} &\to x^{(3)} = \rho(\tilde{x}^{(2)}) \\ &\to \cdots \\ &\to y = W^{(k)} x^{(k)} + b^{(k)} \end{aligned}$$

With $\bar{y} = 1$ one obtains

$$\begin{split} \bar{W}^{(k)} &= [x^{(k)}], \qquad \bar{x}^{(k)} = W^{(k)}, \qquad \bar{b}^{(k)} = 11 \qquad , \dots \\ \bar{\bar{x}}^{(2)} &= \rho'(x^{(2)}) * \bar{x}^{(3)}, \qquad \bar{W}^{(2)} = x^{(2)} * \bar{\bar{x}}^{(2)}, \qquad \bar{x}^{(2)} = W^{(2)} * \bar{\bar{x}}^{(2)}, \qquad \bar{b}^{(2)} = \bar{\bar{x}}^{(2)} \\ \bar{\bar{x}}^{(1)} &= \rho'(x^{(1)}) * \bar{x}^{(2)}, \qquad \bar{W}^{(1)} = x^{(1)} * \bar{\bar{x}}^{(1)}, \qquad \bar{x}^{(1)} = W^{(1)} * \bar{\bar{x}}^{(1)}, \qquad \bar{b}^{(1)} = \bar{\bar{x}}^{(1)} \end{split}$$

very simple to implement!

Berlin Mathematics Research Center

O D T-UNILL

Introduction to AD

Backpropagation/Reverse Mode AD

Historical Development of AD

J. Nolan	1953 $ ightarrow$	J. M. Thames et al.	1975 $ ightarrow$
L. M. Beda et al.	1959 $ ightarrow$	D. D. Warner	1975 $ ightarrow$
A. Gibbons	1960 \rightarrow		
J. W. Hanson et al.	1962 \rightarrow	J. Joss	1980 $ ightarrow$
R. E. Wengert	1964 $ ightarrow$		
R. D. Wilkins	1964 $ ightarrow$		
G. Wanner	1965 $ ightarrow$	L. B. Rall	1980 $ ightarrow$
R. Bellman et al.	1965 \rightarrow		
Y. F. Chang	1967 \rightarrow	R. Kalaba et al.	1983 $ ightarrow$
D. Barton et al.	1971 $ ightarrow$		
R. E. Pugh	1972 $ ightarrow$		
		L. C. W. Dixon et al.	1986 $ ightarrow$

Berlin Mathematics Research Center

A. Walther

 \rightarrow \rightarrow

 $\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow$

 \leftarrow

. . .

Historical Development of AD

J. Nolan	1953
L. M. Beda et al.	1959
A. Gibbons	1960
J. W. Hanson et al.	1962
R. E. Wengert	1964
R. D. Wilkins	1964
G. Wanner	1965
R. Bellman et al.	1965
Y. F. Chang	1967
S. Linnainma	1970
D. Barton et al.	1971
G. M. Ostrowski	1971
R. E. Pugh	1972
W. Stacey	1973
P. Werbos	1974

J. M. Thames et al.	1975	\rightarrow
D. D. Warner	1975	\rightarrow
W. Miller	1975	\leftarrow
J. Joss	1980	\rightarrow
G. Kedem	1980	\leftarrow
B. Speelpenning	1980	\leftarrow
L. B. Rall	1980	\rightarrow
W. Baur, V. Strassen	1983	\leftarrow
R. Kalaba et al.	1983	\rightarrow
M. Iri et al.	1984	\leftarrow
K. W. Kim et al.	1984	\leftarrow
J. W. Sawyer	1984	\leftarrow
L. C. W. Dixon et al.	1986	\rightarrow

. . .

Historical Development of AD

J. Nolan	1953	\rightarrow
L. M. Beda et al.	1959	\rightarrow
A. Gibbons	1960	\rightarrow
J. W. Hanson et al.	1962	\rightarrow
R. E. Wengert	1964	\rightarrow
R. D. Wilkins	1964	\rightarrow
G. Wanner	1965	\rightarrow
R. Bellman et al.	1965	\rightarrow
Y. F. Chang	1967	\rightarrow
S. Linnainma	1970	\leftarrow
D. Barton et al.	1971	\rightarrow
G. M. Ostrowski	1971	\leftarrow
R. E. Pugh	1972	\rightarrow
W. Stacey	1973	\leftarrow
P. Werbos	1974	\leftarrow

J. M. Thames et al.	1975	\rightarrow
D. D. Warner	1975	\rightarrow
W. Miller	1975	\leftarrow
J. Joss	1980	\rightarrow
G. Kedem	1980	\leftarrow
B. Speelpenning	1980	\leftarrow
L. B. Rall	1980	\rightarrow
W. Baur, V. Strassen	1983	\leftarrow
R. Kalaba et al.	1983	\rightarrow
M. Iri et al.	1984	\leftarrow
K. W. Kim et al.	1984	\leftarrow
J. W. Sawyer	1984	\leftarrow
E. M. Oblow et al.	1985	\leftrightarrow
L. C. W. Dixon et al.	1986	\rightarrow

Historical Development of AD

4th MODE Workshop 2024

J. Nolan	1953	\rightarrow	J. M. Thames et al.	1975	\rightarrow
L. M. Beda et al.	1959	\rightarrow	D. D. Warner	1975	\rightarrow
A. Gibbons	1960	\rightarrow	W. Miller	1975	\leftarrow
J. W. Hanson et al.	1962	\rightarrow	J. Joss	1980	\rightarrow
R. E. Wengert	1964	\rightarrow	G. Kedem	1980	\leftarrow
R. D. Wilkins	1964	\rightarrow	B. Speelpenning	1980	\leftarrow
G. Wanner	1965	\rightarrow	L. B. Rall	1980	\rightarrow
R. Bellman et al.	1965	\rightarrow	W. Baur, V. Strassen	1983	\leftarrow
Y. F. Chang	1967	\rightarrow	R. Kalaba et al.	1983	\rightarrow
S. Linnainma	1970	\leftarrow	M. Iri et al.	1984	\leftarrow
D. Barton et al.	1971	\rightarrow	K. W. Kim et al.	1984	\leftarrow
G. M. Ostrowski	1971	\leftarrow	J. W. Sawyer	1984	\leftarrow
R. E. Pugh	1972	\rightarrow	E. M. Oblow et al.	1985	\leftrightarrow
W. Stacey	1973	\leftarrow	L. C. W. Dixon et al.	1986	\rightarrow
P. Werbos	1974	\leftarrow			

OT DT-UN WN F

Rumelhart at al. (1986) made backpropagation famous for neural nets

 Differentiation of computer programmes with working accuracy (Griewank, Kulshreshtha, Walther 2012)

• Differentiation of computer programmes with working accuracy (Griewank, Kulshreshtha, Walther 2012)

٠

Forward mode: $OPS(F'(x)\dot{x}) \leq cOPS(F), c \in [2, 5/2]$

• Differentiation of computer programmes with working accuracy (Griewank, Kulshreshtha, Walther 2012)

٠

Forward mode: $OPS(F'(x)\dot{x}) \leq cOPS(F), c \in [2, 5/2]$

= discrete analogon to sensitivity equation

 Differentiation of computer programmes with working accuracy (Griewank, Kulshreshtha, Walther 2012)

٠

Forward mode: $OPS(F'(x)\dot{x}) \leq cOPS(F), c \in [2, 5/2]$ Reverse mode: $OPS(\bar{y}^{\top}F'(x)) \leq cOPS(F), c \in [3, 4]$ $MEM(\bar{v}^{\top}F'(x)) \sim OPS(F)$

 Differentiation of computer programmes with working accuracy (Griewank, Kulshreshtha, Walther 2012)

٠

= discrete analogon to adjoint equation

• Differentiation of computer programmes with working accuracy (Griewank, Kulshreshtha, Walther 2012)

 \implies Gradients are cheap \sim Function costs!!

٠

Overview AD Theory and Tools

 Differentiation of computer programmes with working accuracy (Griewank, Kulshreshtha, Walther 2012)

Forward mode: $OPS(F'(x)\dot{x}) \leq cOPS(F), c \in [2, 5/2]$ Reverse mode: $OPS(\bar{y}^{\top}F'(x)) \leq cOPS(F), c \in [3, 4]$ $MEM(\bar{y}^{\top}F'(x)) \sim OPS(F), c \in [3, 4]$

- \implies Gradients are cheap \sim Function costs!!
- Combination: $OPS(\bar{y}^{\top}F''(x)\dot{x}) \leq cOPS(F), c \in [7, 10]$
- Consistent derivative information!

٠

Overview AD Theory and Tools

• Differentiation of computer programmes with working accuracy (Griewank, Kulshreshtha, Walther 2012)

Forward mode: $OPS(F'(x)\dot{x}) \leq cOPS(F), c \in [2, 5/2]$ Reverse mode: $OPS(\bar{y}^{\top}F'(x)) \leq cOPS(F), c \in [3, 4]$ $MEM(\bar{y}^{\top}F'(x)) \sim OPS(F), c \in [3, 4]$

- \implies Gradients are cheap \sim Function costs!!
- Combination: $OPS(\bar{y}^{\top}F''(x)\dot{x}) \leq cOPS(F), c \in [7, 10]$
- Consistent derivative information!
- AD-tools: ADOL-C, CoDiPack, Tapenade, INTLAB, ADiMat, ...
- General purpose tools: FEniCS, SU2, PyTorch, TensorFlow, ...

٠

Overview AD Theory and Tools

• Differentiation of computer programmes with working accuracy (Griewank, Kulshreshtha, Walther 2012)

Forward mode: $OPS(F'(x)\dot{x}) \leq cOPS(F), c \in [2, 5/2]$ Reverse mode: $OPS(\bar{y}^{\top}F'(x)) \leq cOPS(F), c \in [3, 4]$ $MEM(\bar{y}^{\top}F'(x)) \sim OPS(F), c \in [3, 4]$

- \implies Gradients are cheap \sim Function costs!!
- Combination: $OPS(\bar{y}^{\top}F''(x)\dot{x}) \leq cOPS(F), c \in [7, 10]$
- Consistent derivative information!
- AD-tools: ADOL-C, CoDiPack, Tapenade, INTLAB, ADiMat, ...
- General purpose tools: FEniCS, SU2, PyTorch, TensorFlow, ...

(Griewank, Walther 2008), (Naumann 2012), www.autodiff.org

Backpropagation/Reverse Mode AD

Automatic Differentiation by OverLoading in C++

- ADOL-C version 2.7, available at COIN-OR since 2009, open source (GPL or ECL)
- based on operator overloading, trace as internal representation

Automatic Differentiation by OverLoading in C++

- ADOL-C version 2.7, available at COIN-OR since 2009, open source (GPL or ECL)
- based on operator overloading, trace as internal representation
- general-purpose AD tool with focus on functionalities
- interfaces to ColPack (Purdue University) and Ipopt (COIN-OR)

4th MODE Workshop 202

A. Walther

Automatic Differentiation by OverLoading in C++

- ADOL-C version 2.7, available at COIN-OR since 2009, open source (GPL or ECL)
- based on operator overloading, trace as internal representation
- general-purpose AD tool with focus on functionalities
- interfaces to ColPack (Purdue University) and Ipopt (COIN-OR)
- current developments
 - Julia interface ADOLC.jl
 - exploitation of fixed-point structure for second-order derivatives
 - generalized derivatives for nonsmooth functions

Piezoelectricity

Fundamental properties:

- Transformation of mechanical energy into electrical energy
- Transformation of electrical energy into mechanical energy

Piezoelectricity

Fundamental properties:

- Transformation of mechanical energy into electrical energy
- Transformation of electrical energy into mechanical energy

Used in wide range of applications: Pressure Sensors, Ultrasonic Cleaning, Ultrasound Imaging, Piezoelectric Speakers, Electronic Toothbrushes, Instrument Pickups, Microphones, Piezoelectric Igniters, Electricity Generation, Tennis Racquets, ...

4th MODE Workshop 202

Berlin Mathematics Research Center

Parameter Identification Piezoceramics

The Considered Setting

4th MODE Workshop 2024

https://www.piceramic.de/de/produkte/piezokeramische-bauelemente/scheiben-staebe-und-zylinder/piezoelektrische-scheiben-1206710/

 Piezoceramics come in many shapes and sizes here: disk shaped ceramics (very popular, cheap(er) simulation)

Parameter Identification Piezoceramics

https://www.piceramic.de/de/produkte/piezokeramische-bauelemente/scheiben-staebe-und-zylinder/piezoelektrische-scheiben-1206710/

- Piezoceramics come in many shapes and sizes here: disk shaped ceramics (very popular, cheap(er) simulation)
- Thanks to Benjamin Jurgelucks and Veronika Schulze!
 Cooperation with Measurement Engineering Group, Prof. Henning, Univ Paderborn

21/38

Parameter Identification Piezoceramics

https://www.piceramic.de/de/produkte/piezokeramische-bauelemente/scheiben-staebe-und-zylinder/piezoelektrische-scheiben-1206710/

- Piezoceramics come in many shapes and sizes here: disk shaped ceramics (very popular, cheap(er) simulation)
- Thanks to Benjamin Jurgelucks and Veronika Schulze!
 Cooperation with Measurement Engineering Group, Prof. Henning, Univ Paderborn
- Here: Consider only small loads ⇒ Disregard thermal effects Nonlinear effects ⇒ DFG research group NEPTUN

Inverse Problem - State of the Art

 Sensitivity too small for some parameter (using conventional methods or data provided by manufacturer) Up to 20% error not uncommon

Inverse Problem - State of the Art

- Sensitivity too small for some parameter (using conventional methods or data provided by manufacturer) Up to 20% error not uncommon
- Alternative approaches:
 - Use multiple differently shaped piezoceramics
 - \Rightarrow Leads to inconsistent datasets
 - Use additional measuremens of surface displacement
 - \Rightarrow Very expensive and still low sensitivity
 - Low sensitivity parameters are excluded from parameter identification

Inverse Problem - State of the Art

- Sensitivity too small for some parameter (using conventional methods or data provided by manufacturer) Up to 20% error not uncommon
- Alternative approaches:
 - Use multiple differently shaped piezoceramics
 - \Rightarrow Leads to inconsistent datasets
 - Use additional measuremens of surface displacement
 - \Rightarrow Very expensive and still low sensitivity
 - Low sensitivity parameters are excluded from parameter identification

Goal: Identify all parameters using a single piezoceramic and impedance measurements

AD-enabled Optimization of the Electrodes

Fully covering electrodes

4th MODE Workshop 2024

Thanks to B. Jurgelucks

AD-enabled Optimization of the Electrodes

Triple-ring electrodes

4th MODE Workshop 2024

Thanks to B. Jurgelucks

23 / 38

Real Measurements

4th MODE Workshop 2024

A. Walther

24/38

Appropriate Version of AD-enabled Gauss-Newton Method

- None of the 10 (!) parameters diverges
- To the best of our knowledge this has not been possible with only one piezoceramic

Optical Nano-Structures

State of the art: Nano-structures are used to confine light

Simple example: Bow-tie antenna

- metallic nano structure
- two triangles and gap
- Size: 100 nm (< λ_{light} !)
- intensity enhancement in gap

Possible Configurations

Simple setting:

different structure

- "simple" excitation
- pure metal
- extremely short dephasing

Simple setting:

o different structure

- "simple" excitation
- pure metal
- extremely short dephasing

Advanced setting:

fixed structure

Simple setting:

different structure

- "simple" excitation
- pure metal
- extremely short dephasing

Advanced setting:

fixed structure

sophisticated excitation

Simple setting:

different structure

- "simple" excitation
- pure metal
- extremely short dephasing

Advanced setting:

fixed structure

- sophisticated excitation
- add resonances in semiconductors

Simple setting:

different structure

- "simple" excitation
- pure metal
- extremely short dephasing

Advanced setting:

fixed structure

- sophisticated excitation
- add resonances in semiconductors

4th MODE Workshop 2024

longer dephasing

Test Case: Quantum Wire

Cooperation with T. Meier, M. Reichelt, Dep. Physik, Uni Paderborn

Generic configuration:

 $\exists \downarrow \downarrow \downarrow \downarrow \downarrow \leftarrow$ adaptable light puls E(t)

Test Case: Quantum Wire

Cooperation with T. Meier, M. Reichelt, Dep. Physik, Uni Paderborn

Generic configuration:

Test Case: Quantum Wire

Cooperation with T. Meier, M. Reichelt, Dep. Physik, Uni Paderborn

Generic configuration:

 $\begin{array}{ccc} \blacksquare & \longleftarrow & \text{adaptable light puls } E(t) \\ \blacksquare & \longleftarrow & \text{metal aperture with air hole} \\ \blacksquare & \longleftarrow & \text{quantum wire} \end{array}$

Test Case: Quantum Wire

Cooperation with T. Meier, M. Reichelt, Dep. Physik, Uni Paderborn

Generic configuration:

- adaptable light puls E(t)
- metal aperture with air hole
- quantum wire
- \leftarrow electron distribution?

Test Case: Quantum Wire

Cooperation with T. Meier, M. Reichelt, Dep. Physik, Uni Paderborn

Generic configuration:

- adaptable light puls E(t)
- metal aperture with air hole
- ← quantum wire
- \leftarrow electron distribution?

Light puls:

with
$$E(t) = \sum A_i \exp\left(-\left(\frac{t-t_i}{\delta t_i}\right)^2\right) \cos(\omega_i t + \phi_i)$$

Berlin Mathematics Research Center

Test Case: Quantum Wire

Cooperation with T. Meier, M. Reichelt, Dep. Physik, Uni Paderborn

Generic configuration:

- adaptable light puls E(t)
- \leftarrow metal aperture with air hole
- ← quantum wire
- \leftarrow electron distribution?

Light puls:

with
$$E(t) = \sum A_i \exp\left(-\left(\frac{t-t_i}{\delta t_i}\right)^2\right) \cos(\omega_i t + \phi_i)$$

Parameter: $A_i, \phi_i, \omega_i, t_i \Rightarrow$ up to 120!

Mathematical Formulation

State equation:

$$\frac{\partial}{\partial t} \rho = \frac{i}{\hbar} (\epsilon_0 - \epsilon_1) \rho + \frac{i}{\hbar} \mathbf{E}(t) \cdot \mathbf{d} (n_0 - n_1)$$

$$\frac{\partial}{\partial t} n_0 = \frac{2}{\hbar} \mathrm{Im} [\mathbf{E}(t) \cdot \mathbf{d} \rho^*]$$

$$\frac{\partial}{\partial t} n_1 = -\frac{2}{\hbar} \mathrm{Im} [\mathbf{E}(t) \cdot \mathbf{d} \rho^*]$$

$$1 = n_1 + n_0$$

 \Rightarrow Three complex-valued coupled differential equations p, n_0 and n_1 distributed in space.

Mathematical Formulation

State equation:

$$\frac{\partial}{\partial t} p = \frac{i}{\hbar} (\epsilon_0 - \epsilon_1) p + \frac{i}{\hbar} \mathbf{E}(t) \cdot \mathbf{d} (n_0 - n_1)$$

$$\frac{\partial}{\partial t} n_0 = \frac{2}{\hbar} \operatorname{Im} [\mathbf{E}(t) \cdot \mathbf{d} p^*]$$

$$\frac{\partial}{\partial t} n_1 = -\frac{2}{\hbar} \operatorname{Im} [\mathbf{E}(t) \cdot \mathbf{d} p^*]$$

$$1 = n_1 + n_0$$

Target:

Maximize energy at given time and given place with constant energy

Mathematical Formulation

State equation:

$$\frac{\partial}{\partial t} \rho = \frac{i}{\hbar} (\epsilon_0 - \epsilon_1) \rho + \frac{i}{\hbar} \mathbf{E}(t) \cdot \mathbf{d} (n_0 - n_1)$$

$$\frac{\partial}{\partial t} n_0 = \frac{2}{\hbar} \operatorname{Im} [\mathbf{E}(t) \cdot \mathbf{d} \rho^*]$$

$$\frac{\partial}{\partial t} n_1 = -\frac{2}{\hbar} \operatorname{Im} [\mathbf{E}(t) \cdot \mathbf{d} \rho^*]$$

$$1 = n_1 + n_0$$

Target:

Maximize energy at given time and given place with constant energy

= Maximize emitted radiation

$$I_{rad} = \left|\omega^2 P(\omega)\right|^2 = \left|\omega^2 2\operatorname{Re}(d\,p)\right|^2$$

Function Evaluation of $I_{rad}(f(g(x)))$

```
x[] \gets (phase[], amplitude[], width[], point[])
```

```
for time=0 to Tfinal do
    if (time >= Tobs && time < Tobs+dt)
        eval_time_step1(x,int_tar)
    else
        eval_time_step2(x,int_tar)
    end if
end for</pre>
```

eval_target(int_tar,fitness)

Function Evaluation of $I_{rad}(f(g(x)))$

```
x[] \leftarrow (phase[], amplitude[], width[], point[])
```

```
for time=0 to Tfinal do
    if (time >= Tobs && time < Tobs+dt)
        eval_time_step1(x,int_tar)
    else
        eval_time_step2(x,int_tar)
    end if
end for</pre>
```

eval_target(int_tar,fitness)

scenarios:

independents \in {20, 60, 120} \Rightarrow Reverse mode!

Function Evaluation of $I_{rad}(f(g(x)))$

```
x[] \leftarrow (phase[], amplitude[], width[], point[])
```

```
for time=0 to Tfinal do
    if (time >= Tobs && time < Tobs+dt)
       eval time step1(x,int tar)
    else
       eval time step2(x,int tar)
    end if
end for
```

eval target(int tar.fitness)

scenarios:

independents $\in \{20, 60, 120\}$ Reverse mode! \Rightarrow # time steps \in {16000, 32000, 160000} \Rightarrow

Checkpointing!

Quantum Wire: Optimization

So far: Genetic algorithms

Now: L-BFGS and efficient gradient computation

- ADOL-C coupled with hand-coded adjoints
- Checkpointing (160 000 time steps!!)
- \Rightarrow TIME(gradient)/TIME(target function) < 7 despite of checkpointing!

Quantum Wire: Optimization

So far: Genetic algorithms

Now: L-BFGS and efficient gradient computation

- ADOL-C coupled with hand-coded adjoints
- Checkpointing (160 000 time steps!!)

 \Rightarrow TIME(gradient)/TIME(target function) < 7 despite of checkpointing!

excite

at same position
at same time
with same energy

optimize •for **same** t_{opt} •different positions

Quantum Wire: Comparison

ITA

Photonic Nano-Resonators

Joint work with F. Binkowski, J. Kullig, F. Betz, L. Zschiedrich, J. Wiersig, S. Burger

Applications:

- probing single molecules with ultrahigh sensitivity
- designing nanoantennas with a tailored directivity
- large spontaneous emission rate or realizing efficient single-photon sources

Photonic Nano-Resonators

Joint work with F. Binkowski, J. Kullig, F. Betz, L. Zschiedrich, J. Wiersig, S. Burger

Applications:

- probing single molecules with ultrahigh sensitivity
- designing nanoantennas with a tailored directivity
- large spontaneous emission rate or realizing efficient single-photon sources

Furter aspects:

computed by solving the source-free Maxwell's equations

Photonic Nano-Resonators

Joint work with F. Binkowski, J. Kullig, F. Betz, L. Zschiedrich, J. Wiersig, S. Burger

Applications:

- probing single molecules with ultrahigh sensitivity
- designing nanoantennas with a tailored directivity
- large spontaneous emission rate or realizing efficient single-photon sources

Furter aspects:

- computed by solving the source-free Maxwell's equations
- sensitivities of resonances are of interest for
 - better understanding of the underlying physical effects
 - an efficient optimization of corresponding photonic devices

Exceptional points: spectral degeneracies (eigenfrequencies and eigenmodes coalesce)

 parametric fine-tuning is needed to achieve such non-Hermitian degeneracies ⇒ exceptional points (EPs)

Exceptional points: spectral degeneracies

(eigenfrequencies and eigenmodes coalesce)

- parametric fine-tuning is needed to achieve such non-Hermitian degeneracies
 ⇒ exceptional points (EPs)
- EPs have been connected to many interesting effects including
 - ultra-sensitive sensors
 - control of light transport
 - electromagnetically induced transparency
 - optical amplifiers,...

Exceptional points: spectral degeneracies

(eigenfrequencies and eigenmodes coalesce)

Calculation of EPs and Their Sensitivities

RPExpand Software for Riesz projection expansion of resonance phenomena by F. Betz, F. Binkowski, S. Burger

JCMSuite part of JCMWave (commercial software) based on FEM combined with efficient contour-integral method implements own AD approach

The Considered Setting

4th MODE Workshop 2024

ND T-UN

T

ITA

A. Walther

Eigenfrequencies and Their Sensitivities

ITAY

Derivative-based optimization in Physics

0.4968

0.4966

0.497

 R_1

0.4974

 $\times R$

0.4972

Conclusions

OR WORLD TO BUNNING SITAN

- Basics of Algorithmic Differentiation
 - Efficient evaluation of derivatives with working accuracy
 - Theory for basic modes complete, advanced AD?
 - Various tools/implementations available

Conclusions

OR WORLD TO BUNNING SITAN

- Basics of Algorithmic Differentiation
 - Efficient evaluation of derivatives with working accuracy
 - Theory for basic modes complete, advanced AD?
 - Various tools/implementations available
- Structure exploitation indispensable

Conclusions

- Basics of Algorithmic Differentiation
 - Efficient evaluation of derivatives with working accuracy
 - Theory for basic modes complete, advanced AD?
 - Various tools/implementations available
- Structure exploitation indispensable
- AD for applications in physics:
 - parameter identification for piezoceramics¹
 - optimized excitation of nano antenna²
 - sensitivities of exceptional points of nano-resonators³

1 e.g., L. Claes et al.: Inverse procedure for measuring piezoelectric material parameters using a single multi-electrode sample. J. Sensors and Sensor Systems 12 (1) (2023)

² e.g., M. Reichelt, A. Walther, T. Meier: Tailoring the high-harmonic emission in two-level systems and semiconductors by pulse shaping. JOSA B 29 (2) (2012)

³ F. Binkowski, J. Kullig, F. Betz, L. Zschiedrich, A. Walther, J. Wiersig, S. Burger: Computing eigenfrequency sensitivities near exceptional points, Phys. Rev. Research 6 (2) (2024)

