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Several natural computational challenges in NN

A € RN random matrix composed by P N-dim random rows x* A :



Several natural computational challenges in NN

A € RPN random matrix composed by P N-dim random rows x* A =

.Inversion (learning): given A € R and the labelsy € {—1,1}", find any set of
weights W € {—1,1}" such that yA(W) =y, assuming such W exists.

.Teacher-student: given A € R™ and the labels § = ya(W) e (—1,1 VY for
uniformly sampled W € {—1,1}", find any W € {—1,1}" such that y,(W) = §



Several natural computational challenges in NN

A € RPN random matrix composed by P N-dim random rows x* A =

.Inversion (learning): given A € R and the labelsy € {—1,1}", find any set of
weights W € {—1,1}" such that yA(W) =y, assuming such W exists.

.Teacher-student: given A € R™ and the labels § = ya(W) e (—1,1 VY for
uniformly sampled W € {—1,1}", find any W € {—1,1}" such that y,(W) = §

. Collision finding: given A € R find any two W # W’ € {—1,1}" such that
yA(W) — yA(W’) (unexplored so far).



Plank of the talk

» Local entropy in non convex Neural Networks
*The Overlap Gap Property (OGP) and limiting performance of stable algorithms
- Random functions and post-quantum cryptography

* Collision Robust Hash function from random NN and their OGP transition



Training large deep neural network is in principle a non-convex hard
computational problem.

Evidence about learning huge data sets with largely overparametrized networks:
1. Algorithmically easy for relatively simple algorithms (e.g. gradient
based algorithms)
2. Lead to solutions which have good generalisation properties

3. “Benign” overfitting even in presence of noise!



Given an input vector of size /N, the network computes an output by alternating layers of linear
transformations with non-linear activation functions.

Training set: {(l"u, y'u)},uzl,...,M

compare

gﬂ'< with >y:u

pre-activations at layer K

yH = argmax (WKUV (WK_ld ( .o (WQd (Wlaz“)))))

/ ~ N O 7

output weights Input
(label) (matrices) (vector)




Energy function and surrogate energy functions

- Energy = “0-1 loss”: number of errors on the training set (not differentiable)

LNE = Z(l —0(y",y"))

I3
- Surrogate differentiable energies
Mean Square error Lrise = Z(AM — AM)Z
I3
Cross-entropy: softmax Lop = — Z<AZ“ — log Z exXp VAZ)
L k

N



Simplest non convex neural device : 1-hidden layer, i.i.d. random associations

N
T, = sign(z Wyt
i=1

training set: {(z",y")} n=1,..,P=aN

$ZL = x1 (Zld D = 1/2)

y“’ = x1 (Zld P = 1/2)

+# patterns
# weights

control parameter: & =

Non convex also for K=1

Results generalise to networks with continuous weights



Learning in the K=1 binary perceptron
In the large N, P limit (with & = P/N fixed):

» the space of solution splits into separated states of vanishing entropy (Gardner, Derrida, (1988); Krauth, Mézard (1989));
- va > 0 typical solutions are isolated (Huang, Kabashima (2014));

 Rigorous Proofs: Abbe, Li, Sly (2021), Perkins, Xu (2021), Nakajima, Sun (2022).
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Geometry of the space of solutions:

Franz-Parisi potential: entropy at distance d, sampling from typical solution J
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The learning problem is predicted to be typically computationally difficult

- Typical global minima are isolated (mutual distance of O(N))
 Glassy landscape: exponentially many local minima

» Learning should be hopeless

This contradicts empirical evidence!
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Local entropy measure: large deviation 1-RSB techniques

Bias the statistical measure towards dense (wide, flat) regions (large deviation analysis)
N (W, d) — Z{W} Xe(W)o (W .W.N (1 — Qd)) # solution at distance d

Xg (W) — hm 6_5£NE(W> indicator function
B—00

~

Ed (W) = — log N (W, d) "local e.ntro.py” (the log of the nu.mber of
solutions in hypersphere of radius d)

(I)(Wa B,7v) =In Z e PLNE(W)—vd(W,W)
{W}

"local free entropy”

C. Baldassi, A. Ingrosso, C. Lucibello, L. Saglietti, and R. Zecchina Phys. Rev. Lett. 115, 128101 (2015)
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Check the existence of subdominant dense regions of solutions in the Binary Perceptron

Finite temperature version (not only zero error states) : free local entropy

Y2 (W,5,7)
/
Find T/ that maximises the local free entropy the: argmin W(@(W,ﬁ,v))
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How to connected the results with the “traditional” maximum margin studies ?

P
Solutions with margin «: Xe.r(Wik) = H O (ytol . — k)
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High margin solutions are less but tend to be much closer to each other!

The lines change from solid to dashed when the entropy of solutions becomes negative, i.e. when K = Knax
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A wide flat minima arises by the coalescence of (atypical) high margin minima!
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Unveiling the structure of wide flat minima in neural networks Binary perceptron: efficient algorithms can find solutions in
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Algorithmic follow-up

Local free entropy: o(W,~, B) = log Z e~ BLNE(W')—=Fd(W,W’)
W/
Large-deviation partition function: Z(y,v,B,8) = Z o~ B Lne(W)+y ¢(W,7,5)
%4

Interaction

/

Assume y integer: Z(y,~v, B, B) = Z o~ B LNE(W)=B34_ Lne(Wa)—3F 320 d(W,W,)

W{W,} / \

center y (real) replicas




Local entropy algorithms

e | ocal Entropy driven or replicated Simulated Annealing

e Replicated Message-Passing (Beliet Propagation)

e Replicated Stochastic Gradient Descent (SGD)

e Entropy-SGD: Langevin dynamics to estimate local entropy

e Replicated Greedy Algorithms
- Sharpness Aware Minimization
e Stochastic weights +gradient on the probabilities

e Quantum Annealing delocalization mechanism for finding NN ground
states



some known algorithms for DNNs
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Similar analytical results hold for 1-hidden layer NN with continuous weights
and for overparametrized NN

High Local Entropy regions « Wide Flat Minima (WFM)

Analytical Results: Rare Wide Flat Minima (WFM) exist in non-convex
networks with continuous weights storing random patterns.

Analytical/numerical results: they have good generalisation properties

(Baldassi, Pittorino, Zecchina, PNAS 2019)



Classical overfitting problem

Overtitting under control in DNNs !

eyxror —

Ls(h) trainina

Lp(h)  test

Lp(h) — Ls(h)  generalization

size/

Using stochastic gradient descent (SGD), trained networks of
increasing size on MNIST until convergence.

| Training error
at convergence.

1 Test error at
convergence
and for early

stopping.

8 16 32 64 128 256 512 1K 2K 4K

size hidden layers (Neyshabur, Tomioka, and Srebro, 2014)



Random Feature Model Neal, 1996; Balcan, Blum, Vempala 20086;
Rahimi, Recht; 2008; Bach, 2016

Nonlinear (random) projection of the data (from dimension D to N)

 Interpolation does not necessarily lead to poor generalization, as
long as you go “deep” enough in the interpolation regime

* Reconciling the modern practice with a statistical point-of-view

» Explicit analysis for Linear Models

under-fitting over-fitting

under-parameterized

over-parameterized

. Test risk Test risk
'_;g ' '_;g “classical” “modern”
'O':': O’:‘: regime interpolating regime
\ : L]
D ~ o Training risk ~ Training risk:
~]/[ 1 "I/l sweet spot\:. ~ — _ o -~ - _ _ Eltirp_ola_ti(in ihr_cs&olii L
X; =0 | —F= E F kiX} Complexity of H Complexity of H
D k=1 (a) U-shaped “‘bias-variance” risk curve (b) “double descent” risk curve

Belkin, Rakhlin, Tsybakov, 2018

e Connection with the Hidden Manifold Model

Goldt, Mezard, Krzakala, Zdeborova, 2020
Montanari, Mei, 2019



Test / Train Error
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Geometric and algorithmic phase transitions on non-convex overparametrized NN

Overparametrized Regime

Inout: D — o0

N — o
Non-convex :

D Classifier j
> < 1 :

N v :

(D intrinsic dimension of the data)

projection
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Analytics vs Numerics in large scale DNNs

PNAS | January 7,2020 | vol. 117 | no.1 | 161-170

Shaping the learning landscape in neural networks
around wide flat minima

Carlo Baldassi*®"*®, Fabrizio Pittorino®‘, and Riccardo Zecchina®®'?

Published as a conference paper at ICLR 2021

ENTROPIC GRADIENT DESCENT ALGORITHMS
AND WIDE FLAT MINIMA
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Deep Networks on Toroids: Removing Symmetries Reveals the Structure of
Flat Regions in the Landscape Geometry
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VGG16 on Cifari0

= - , L...

e | eft Panel: Unnormalized

e Right Panel: Normalized

e Left Points: RSGD (finds flatter minima)

e Right Points: unaligned/aligned SGD with adversarial

initialization

Difference is only visible after symmetry removal



The quite expensive Google experiments

(Y. Jiang, B.Neyshabur, H. M. D.Krishnan, S.Bengio, 2019)
e [rained more than 10,000 models over two image classification datasets (CIFAR-10, Street View House Numbers).
® [raining under all combination of hyperparameters and optimization resulted in a large pool of models.

® or any such model, we considered 40 complexity measures®™.
Findings:
“... the relative success of sharpness-based and optimization-based complexity

measures for predicting the generalization gap can provoke further study of
these measures.”

*complexity measure in machine learning: a quantity that monotonically relates to some aspect of generalization. Typically it depends on the trained
model and the training adata, but should not have access to a validation set. [ ower complexity should often imply smaller generalization gap.



Our aim is to use random Neural Network models to build cryptographic
system, based on what we know about the geometry of solutions.



The Overlap Gap Property (OGP)

OGP Definition: In high-dimensional optimization problems, the solution space exhibits
a "gap" structure.
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The Overlap Gap Property (OGP)

OGP Definition: In high-dimensional optimization problems, the solution space exhibits
a "gap" structure.
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This scenario has to be studied for collisions



The Overlap Gap Property (OGP) D. Gamarnik, 2018

Theorem: (OGP and Stable algorithms), informal statement:

Let P be a combinatorial optimization problem exhibiting OGP.

It a stable algorithm is applied to solve P, then under typical conditions the algorithm will
fail to find an optimal solution with high probability.

Generalised to multi-OGP: 2-OGP = y-OGP (y-OGP is sufficient)

Intuition: if there is OGP a small perturbation can result in a large change in the output, then
the algorithm cannot be stable.



t £(o,¢)

Landscape exhibiting the OGP: Solutions are split into
clusters, with diameter of each cluster smaller than the
distance between any pair clusters.

V{4 > U9

Landscape not exhibiting the OGP: diameter of one cluster
IS larger than distance between one pair of clusters.

from D. Gamarnik, PNAS 2018
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O Clust ~ XALG

from D. Gamarnik, PNAS 2018



What is a Stable Algorithm?

- Definition: it refers to an algorithm whose output does not change significantly when small,
random perturbations are made to its input. The algorithm is robust to minor changes or noise
In the input, meaning its performance or result is not highly sensitive to such perturbations.

Examples:

- Gradient Descent
- SVMs

- PCS
- Convex Optimization Algorithms (Interior-Point Methods or Simplex Method)

- Low degree polynomials (hence message-passing)
- QAOA



Post-Quantum Cryptography (PQC)

PQC: Cryptographic algorithms designed to be secure against attacks by quantum computers.

Quantum computers can break widely-used cryptographic systems (e.g., RSA, ECC) by leveraging
algorithms like Shor's algorithm.

- Lattice-based Cryptography: Utilizes hard problems in lattice structures, such as Learning With Errors (LWE).

» Code-based Cryptography: Based on the difficulty of decoding random linear codes, such as McEliece
cryptosystem.

- Hash-based Cryptography: Relies on the security of hash functions, used for digital signatures.

 Multivariate Cryptography: Solves systems of multivariate polynomial equations, considered hard for guantum
computers.



Ajtai’s Function and high-dimensional Lattice problems

Lattice Problem: Consider a lattice £ definedas £ = {B -z : z € Z"}, where B is a (random) basis matrix.
Ajtai's function is related to the shortest vector problem (SVP) in this lattice.

Ajtai's Theorem:

Worst-Case to Average-Case Reduction: Ajtai showed that there exists an algorithmic function f(x) that

maps a random instance of a lattice problem (like SVP) to a generic solution in polynomial time if and only
if the corresponding worst-case problem is solvable in polynomial time.

Hardness Guarantee: The function f(x) in Ajtai's theorem ensures that if an efficient algorithm solves the average case of this
function, then it can also solve the hardest instances of the problem.

Generating Hard Instances of Lattice Problems
Extended abstract
M. Ajtai
IBM Almaden Research Center

(1996)



Explicit case: Short Integer Solution (SIS) Problem

Find a short vectorx € Z" suchthat A - x =0 mod g for a given random matrix A.
This problem is hard under Ajtai's worst-case to average-case reduction.

Function Definition:

The SIS function could be formally written as

fA)={x:A-x=0 mod g, |x|| issmall}.

Observations:
- the hardness of these problems (and the functions derived from them) is believed to hold even against quantum
computers.
- not very efficient ...



Remark:

Post-Quantum Encryption Standards

NIST PQC Standardization: The National Institute of Standards and Technology (NIST) has just
approved a standard for PQC algorithms, with the first crypto system officially approved.

Open problem:

PQC algorithms may have larger key sizes and slower performance compared to traditional
algorithms. There is a need for efficient crypto systems.



Collision problem

these rare events should not exist!



Simplest non convex neural device : 1-hidden layer, i.i.d. random associations

. Wy, training set: 1(z",y")} p=1,...,P=aN
~ N | .
N=—1J. 1
K+ >\ :I?gz = x1 (ZZd P = 1/2)

y* =+1 (ii.d. p=1/2)

s 3 y = sign(p(h))
+1 T A=[x"x,.. . x"]
>/ 1 # patterns
control parameter:. & — :
" P +# welghts
=1,...N
(=1,...K

Non convex also for K=1 (perceptron)

Find W suchthat yA(W) =y with {W;==x1}, ie. sign(p( ) W,x") =y* Vpu



Simplest non convex neural device : 1-hidden layer, i.i.d. random associations

. Wy, training set: 1(z",y")} p=1,...,P=aN
~ N | .
N=—1J. 1
K+ >\ :I?gz = x1 (ZZd P = 1/2)

y* =+1 (ii.d. p=1/2)

s 3 y = sign(p(h))
+1 T A=[x"x,.. . x"]
>/ 1 # patterns
control parameter:. & — :
" P +# welghts
=1,...N
(=1,...K

Non convex also for K=1 (perceptron)

Find W suchthat yA(W) =y with {W;==x1}, ie. sign(p( ) W,x") =y* Vpu

@



Computational challenges in non-convex NN:

A € RN random matrix composed by P N-dim random rows x* A :

. Collision finding: given disorder A € R™" find anytwo W # W’ € {—1,1}" such
that y (W) = y,(W')  (unexplored so far).



Collision finding:

The input is simply the function y, itself, and the problem is to find a collision, defined as a pair of
distinct W # W’ such that y,(W) = y,(W').

Collision Resistant Hash Functions

Def.: A hash function family # = {h : X — Y} is said to be collision resistant, if for any polynomial-
time algorithm A( - ) and any constant ¢ > 0, it holds that,

Pr[h(x) =h(y) A x#y|(x,y) <A =0(n™).
A, hepH

where the randomness is taken over a uniform random choice of /4, and the random coins used by A.



The Generalised Binary Perceptron model(s)

y =sign (¢(h))
*

where i = iX; , w; are binary variables, and x is a /N-dimensional pattern

1
Jme"

In order to fit our model to a set of random inputs x* and labels y*, we need to impose that
the stability A* is larger than zero

1
Af(w) = yHp (\ﬁv Z wl-xl.”> > 0, forany u € [P].



Construction of a Hash Function Using a random NN

Random Function Generation: Generate a set of P = a/V random patterns

Input: Consider an input vector W from the space of possible inputs (e.g., a message or file).

Hash Function: The hash function based on the GRW model can be defined as follows.

y:BN—>BP

y1(x) = sign ((P (ﬁ Z Wl-xi(”))
wsnlo(35)



Some relevant examples of non-linearities

« p(h) =h standard binary perceptron model;

e p(h) =k — ‘h‘ and y¥ =1, symmetric perceptron;

e o(h)=(h—y)h(h+y) reversed wedge perceptron;

K
. @(h) = H (h + Ey) generalizalized reverse wedge perceptron, with K oscillations in [—7, 7].
=—K

P
Indicator function Xx(w; K) = H@ (A”(W)),

B — | — . X //t=1
P
xt~H4(0,1) and a=—.
L Ly L L ! N




The problem of Collisions

Givenx”, u=1,..., P, and xl.” ~ 4(0,1), find w) @ gt

1 1 ()
sgn qo( w(l)-x”) = sgn go( w(z)-x/“‘) Vu

Indicator function X _(¢):

i 1 1
Xele) = © (yﬂ(ﬂ <—W(1) -x”)) © (yﬂfﬂ (—W(z) -x”)) with ¢ = (wD, w?).
1200\ 7

Partition function of collisions is Z, = Jdc X, (c;x.) wheredc = dwDdw®.



Geometric landscape collisions

Local entropy of collisions W , W5 :

In «/Vg(Wsz; d) = an'dwldwz X’g'(wl’ W,) 0 ( [(w D W@y (w, w(2))] )

where d [( (D N (w), w(z)] is a permutation invariant distance between two collisions.

Consider ¢, = (w(l) wc(lz)) and ¢;, = (w(l), w[gz)) with a # b.

)
1 >
_ (5) _ 4 7(s) _ (s) _ ﬂ(S)
d (¢, €,) = min Z d( =W, ) min Z AN Z ( Wi ) with p the overlap on the diagonal

ﬂEoS’z — JonS’z 1 | ab
of the overlap matrix g

2

1 & 1 1 1
=min— ) —(1—-——w®¥.w™ | = —max E <1— ) 1 —
D & ) ( N @ b ) 4 res, & T) = 51 =P

(thanks to the symmetry, we have that the overlap ql (1) = q2 2(2)’ and we can choose & to be the identity)






Free entropy qby(d) in the annealed approximation, i.e.

|
d) < p2(d)= lim — InE. N (d:x
$(@D < Fld) = Tim —CInE A (d)

Since y(d; X) is a non-negative and integer valued random variable, by Markov inequality we get

P(N (d;x) > 0) < E. N (d; x) = V0@

Ifd)f(d) <0 for a> aij(d) then P(,/Vy(d; x) > 0) — O for large N.

a > af]B(d) = no collisions at a fixed distance d to one another.

Note: that ag B(d) is only an upper bound to the true value (i.e. it might be that the true a. is lower than that).



Generalised Reverse Wedge model

K
p(h) = H (h + Ey) generalizalized reverse wedge perceptron, with K oscillations in [—7, 7].
[=—K

In the large K limit, the computation simplifies: lim ~ — 0, andnext K> 1
N—oo



Statistical physics of highly non-convex random systems and Crypto are very close
Spin glass theory used for crypto-systems design

These are just first steps, we conjecture we can prove CRH w.r.t. stable algorithms

Marco Benedetti, Andrej Bogdanov, Enrico Malatesta, Marc Mezard, Gianmarco
Perrupato, Alon Rosen, Nikolaj |. Schwartzbach , and Riccardo Zecchina



QA detour

Quantum Annealing for non convex learning devices

* Quantum annealing strategy: use quantum fluctuations (rather than
thermal fluctuations) to overcome energetic barriers

— Classical energy function + guantum perturbation, slowly send the
perturbation to zero

--------
4‘ .h
L' 4 5
X L 3
V. 2N
Y 2N
Y 4 L
\ ’ 1}

N
classical ({(}% }) —= T E 5L transverse field
part J J (send T to 0)

N -
L -
-~y o m =™

* Thus far: unclear If "true” QA really helps, compared to standard
annealing, In any relevant concrete scenario



QA detour

QA: Suzuki-Trotter transformation

* Partition function transformation — "effective" replicated classical
Hamiltonian (with infinite replicas, y— )

'—_--—--.-.
- i
> ~
" L 2

--------
........

“ .~

- ~

A A . NK
H.g ({a@}. ) = — E E ({a”}) — E E oot
J J, ' y J J ':' \/8 J 7 N /B
\,\ a=1 x"’ “\ a=1 j:]_ '/'
replicated A 7T / """""""""""""" '
classical Interaction
art ] -0 & vox I
P ¥ ~ = 1log coth ( 2-
2 (J

 Can be simulated with MCMC (finite y) — Quantum Simulated
Annealing (QSA)



Quantum annealing vs Robust ensemble

* Effective Hamiltonian after Suzuki-Trotter transformation: very similar
to the robust ensemble description...

original
factor graph

C. Baldassi, R. Zecchina, PNAS 2018

QA detour



QSA on binary neural networks study

* Analytical calculations + numerical experiments + comparison with
true QA in small instances

 Ends up In the dense states (exponential speed-up w.r.t. thermal
annealing — a ph?/sical device would work in ~0O(1)...)

DWave-like)
* QA lowers kinetic energy by delocalizing — favors dense
regions
0.18 i 0.025
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C. Baldassi, R. Zecchina, PNAS 2018

QA detour



