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Several natural computational challenges in NN

  random matrix  composed by    -dim random rows A ∈ RP×N P N xμ
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•Inversion (learning): given   and the labels ,  find any set of 
weights  such that , assuming such  exists.

•Teacher-student:  given  and the labels  for 
uniformly sampled , find any  such that 

A ∈ RP×N y ∈ {−1,1}P

W ∈ {−1,1}N yA(W) = y W

A ∈ RP×N ŷ = yA(W) ∈ {−1,1}P

W ∈ {−1,1}N W′ ∈ {−1,1}N yA(W′ ) = ŷ
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• Collision finding: given , find any two  such that    
      (unexplored so far).

A ∈ RP×N W ≠ W′ ∈ {−1,1}N

yA(W) = yA(W′ )



Plank of the talk

• Local entropy in non convex Neural Networks

•The Overlap Gap Property (OGP) and limiting performance of stable algorithms

• Random functions and post-quantum cryptography

• Collision Robust Hash function from random NN and their OGP transition



Training large deep neural network is in principle a non-convex hard 
computational problem.

Evidence about learning huge data sets with largely overparametrized networks:

1. Algorithmically easy for  relatively simple algorithms (e.g. gradient 
based algorithms)

2. Lead to solutions which have good generalisation properties

3. “Benign” overfitting even in presence of noise!



{(xµ, yµ)}µ=1,...,M
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Training set:

Multilayer Neural Network

xµ !
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Introduction: arti)cial neural networks for
machine learning

�µ $ (WK · �K(xµ)) yµ
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pre-activations at layer K

Given an input vector of size , the network  computes an output  by alternating layers of linear 
transformations with non-linear activation functions. 

N
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Energy function and surrogate energy functions

- Energy = “0-1 loss”: number of errors on the training set (not differentiable)

Mean Square error

Cross-entropy: softmax

LNE =
X

µ

(1� �(ŷµ, yµ))
<latexit sha1_base64="EVroPaEmlVfHoyibAINqQDdJ/mc="></latexit>

- Surrogate differentiable energies

�µ $ (WK · �K(xµ)) yµ
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Simplest non convex neural device : 1-hidden layer, i.i.d. random associations

↵ =
# patterns

# weights
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control parameter:
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{(x̄µ, yµ)} µ = 1, ..., P = ↵N
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yµ = ±1 (i.i.d. p = 1/2)
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xµ
`i = ±1 (i.i.d. p = 1/2)

Ñ ⌘ N
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i = 1, ..., Ñ
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y = sign(
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training set:

Non convex also for K=1

Results generalise to networks with continuous weights



In the large N, P limit (with 𝛼 ≡ P/N fixed):

•  the space of solution splits into separated states of vanishing entropy  (Gardner, Derrida, (1988); Krauth, Mézard (1989));
•  ∀𝛼 > 0 typical solutions are isolated (Huang, Kabashima (2014)); 

•  Rigorous Proofs: Abbe, Li, Sly (2021), Perkins, Xu (2021), Nakajima, Sun (2022). 

Statistical physics of binary neural networks (~1990)

- 1-rsb freezing at finite T (REM like)

- Correlations are present (non REM like)

- Critical capacity given by the RS zero entropy condition

- Local search algorithm fail to find solutions for any extensive number of patterns. 
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FIG. 3: Learning of αn pseudo-random patterns curves for
the binary perceptron for different values of γ0 (n = 104 + 1,
20 samples). The running time scales with γ0 roughly as
1/(1−γ0). Inset: evolution of Qtand Et vs. time t for various
kinds of two-layer network topologies, i.e. n = 37, α = 0.5 and
K ∈

˘

30, 31, . . . , 36
¯

. Note that the number of errors E goes
to 0 in all cases.

giving a simple closed expression in the quantities {mt
i}.

The resulting equation is not asymptotically equivalent
to BP anymore (although the approximation itself has an
error of O

(

n−1/2
)

it participates in a sum of n terms),
but nonetheless gives comparable (just slightly worse) al-
gorithmic performances. Of particular interest are the
corresponding equations for γ0 = 0 (full reinforcement)
which take a simple additive form if written in terms of
the local fields ht

i:

ht+1
i =

∑

t′≤t

∑

b

ξb
i√
n

ut
b ∼ hτ+1

i = hτ
i +

ξb
i√
n

uτ
bτ

(6)

where us
b = f

(

∑

k ̸=i
ξb

k√
n

tanhhs
k, 1

n

∑

k ̸=i tanh2 hs
k

)

and

t scales as αnτ . By choosing at time τ one pattern ξbτ

from the set Ξ, Eq. 6 implements a sequential learning
protocol, still leading to an extensive memory capacity
(around αmax ≃ .5 for the binary perceptron).

The simplicity of Eq. 6 represents a proof-of-concept
of how highly non-trivial learning can take place by
message-passing between simple devices disposed over
the network itself. This fact could shed some light on
the biological treatment of information in neural systems.
Work is in progress along this line [23].

This work has been supported by the EC, MTR
2002-00319 ’STIPCO’ and FP6 IST consortium ’EVER-
GROW’. We thank the ISI Foundation for hospitality.

[1] D.O. Hebb, Organization of Behavior (New York: Wi-
ley, 1949) ;P. Dayan, L.F. Abbott, Theoretical Neuro-
science: Computational and Mathematical Modeling of
Neural Systems (MIT Press, 2001)

[2] J. Hertz, A. Krogh, R.G. Palmer, Introduction to the
Theory of Neural Computation (Addison-Wesley, Red-
wood City etc., 1991)

[3] N. Brunel, V. Hakim, P. Isope, J.-P. Nadal, B. Barbour,
Neuron 43, 745-757 (2004)

[4] G.J. Mitchison, R.M. Durbin, Biological Cybernetics 60,
345-356 (1989)

[5] J.H. Kim, J.R. Roche, J. Comput. System Sci. 56, 223–
252 (1998)

[6] A. Engel, C. van den Broeck, Statistical mechanics of
learning (Cambridge University Press, 2001).

[7] S.B. Laughlin, T.J. Sejnowski, Science 301, 1870-1874
(2003); A.M. Zador, L.E. Dobrunz, Neuron 19, 1-4
(1997)

[8] D.H. O’Connor, G.M. Wittenberg, S. S.-H. Wang, Proc.
Natl. Acad. Sci. USA 102, 9679-9684 (2005); C.C.H. Pe-
tersen, R.C. Malenka, R.A. Nicoll, J.J. Hopfield, Proc.
Natl. Acad. Sci. USA 95, 4732-4737 (1998)
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FIG. 2: BP entropy vs. α for single problem instances of size
n = 3465 for K = 1, 3, 5, 7. The analytic result for K = 1
and K ≫ 1 for n → ∞ are also plotted for comparison. The
upper inset shows Qt vs. t of the analytical DE prediction
(dashed line) vs. simulations over a system of size 105 + 1 at
α = 0.6 without reinforcement (data in perfect agreement to
the prediction) and with reinforcement (γ0 = 0). The bottom
inset shows the fraction of errors E/n vs t for both cases.
In the latter case we can see that Qt

→ 0 as the solution is
reached.

of pattern a. The fixed point of these equations provide
the information we are seeking for. Solving the equa-
tions by iteration proved itself to be an efficient tech-
nique, fully distributed, which is known as a message-
passing method (the components of the vectors u and h
can be thought as messages running along edges of the
factor graph, see Fig. 1). From the fixed point we may
compute the list of all probability marginals P (wi = ±1)
together with global quantities of interest such as the en-
tropy (normalized logarithm of the size of the set W ). As
expected from the statistical mechanics results [11], the
entropy is monotonically decreasing with α and vanishes
at αc ∼ 0.833 for n large enough. Similar results can be
derived for multilayer networks as shown in Fig. 2. The
BP equations can be adapted in a straightforward way
to networks of arbitrary topology, even if the notation is
slightly more encumbered. In general this network will be
formed by connecting several perceptron sub-units. The
corresponding factor graph can be recovered trivially as
in Fig. 1, by just replicating every perceptron for each
pattern, and adding a set of auxiliary units to represent
the output of every perceptron sub-unit of the network.
It will suffice then to derive a set of slightly more general
BP equations for the perceptron which we omit for the
sake of brevity. We have studied analytically the dynam-
ical behaviour of the BP algorithm in the large n limit by
the so called density evolution (DE) technique (see e.g.
[20] for details on DE). In the upper inset of Figure 2
we can see the comparison of numerical simulations of
large single instances with the analytical prediction of
the quantity Q = 1− 1

αn2

∑

i

∑

a m2
i→a at every iteration

step. In the spirit of [16], a way of using the informa-

tion provided by BP is to “decimate” the problem. This
approach is indeed feasible and leads to optimal assign-
ments. However here we focus on a much more efficient
and fully distributed version [21] of the algorithm. The
idea is to introduce an extra term into Eqs. 1-3 enforc-
ing hi = ±∞ at a fixed point, and use wi = sign (hi) as
a solution. This term is introduced stochastically (with
probability 0 at the first iteration and probability 1 at
t = ∞) to improve convergence. We will replace Eq. 3
with Eqs. 4,5:

ht+1
i =

1√
n

∑

b

ξb
i u

t
b→i +

{

0 w.p. γt

ht
i w.p. 1 − γt

(4)

ht+1
i→a = ht+1

i −
1√
n

ξa
i ut

a→i (5)

We will use γt = γt
0 for 0 ≤ γ0 ≤ 1 (though other choices

are also possible). Choosing γ0 = 1 clearly gives back
the original BP set of equations, Eqs. 1-3. We note that
a similar inertia term γht

i (constant γ) was introduced
in [22], which would correspond to average the one in
Eq. 4. Note also that the extra term for γt = 0 corre-
sponds to adding an external field equal to the local field
computed in the last step. Remembering that “fixing” a
variable as in the standard decimation procedure is equiv-
alent to adding an external field of infinite intensity, one
can think of this procedure as a sort of smooth decimation
in which all variables (not only the most polarized ones)
get an external field, but the intensity is proportional
to their polarization. Numerical experiments of learning
randomly generated patterns have been carried out on
systems of various sizes (up to n = 106), with different
choices of K and with different topologies (overlapping
and tree–like). Some are reported in Fig. 3. An easy
to use version of the code is made available at [23]. It is
not hard to think how the same algorithm could be made
effective also in presence of faulty contacts and hetero-
geneous discrete synaptic values. (which need not to be
identified a priori as the message-passing procedure, dis-
tributed over the same graph, could incorporate defects
by modifying accordingly the messages). Even for the
limit case of continuous synapses the process converge to
optimal solutions in a wide range of α.

Experiments have been performed using an improved
version of Eqs. 1-3: Using further linearizations like
in [20] one can obtain a new set of equations that are
equivalent to Eqs. 1-3 up to an error of O

(

n−1/2
)

, hav-
ing two main implementation advantages: memory re-
quirements of just O (n) (in addition to the set of pat-
terns which amounts to αn2 bits), and needing just O (n)
(slow) hyperbolic function computations in addition to
O

(

n2
)

elementary (fast) floating point operations. BP
equations can also be simplified by approximating mk→b

by mk in Eqs. 1-3 (without correction terms), giving a
simple closed expression in the quantities {mt

i}. The re-
sulting equation is not asymptotically equivalent to BP

s

𝛼 = P/N

freezing

E0

𝛼c=0.83

Results from statistical physics

Equilibrium results (binary perceptron)

In the large N, P limit (with a ⌘ P/N fixed):
the space of solution splits into separated clusters of vanishing entropy
(Krauth, Mézard (1989));
8a > 0 solutions are isolated (Huang, Kabashima (2014));
Rigorous Proofs: Abbe, Li, Sly (2021), Perkins, Xu (2021).

↵↵c

dmin = O(N) SAT PHASE UNSAT PHASE

This contradicts empirical evidence!

Enrico M. Malatesta Generalization and local entropy 10 / 32

What has early Stat. Mech. brought to the field? 
•  Phase transitions 
•  Probabilities in large dimensions 
•  Dynamics 
•  New algorithms for convex perceptrons 
•  …

Learning in the  K=1 binary perceptron 
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V. CONCLUSION

We give an analytic expression of the Franz-Parisi potential for the binary perceptron problem. This potential
describes the entropy landscape of solutions in the vicinity of a reference equilibrium solution, and its shape is
independent of the choice of the reference point. Solving the saddle-point equations, we find that the concavity of the
curve changes at some distance, leading to a minimal distance below which there doesnot exist solutions satisfying
the distance constraint. Furthermore, this minimal distance increases with the constraint density, implying that the
problem is extremely hard because the solution space is composed of isolated solutions (point-like clusters) with the
property that to go from one solution to another solution, one should flip an extensive number (proportional to N)
of synaptic weights.
Our analysis establishes a refined picture of the organization structure of the solution space for the binary perceptron

problem, which is helpful for understanding the glassy behavior of local search heuristics [9, 13, 14], which may have
some connections with recent studies of constrained glasses [28], and furthermore, is expected to shed light on design
of efficient algorithms for large-scale neuromorphic devices. The analytic analysis presented in this paper also offers
a basis for possible rigorous mathematical (probabilistic) analysis of the entropy landscape [29], and has potentially
applications for studying the solution space structure of other hard problems in information processing, e.g., spike
time-based neural classifiers [30–32].
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Appendix A: Derivation of constrained free energy

In the current context, for a reference equilibrium configuration J at temperature T ′, one is interested in the free
energy of a perturbed system (with the constraint that the configuration w at temperature T should satisfy a prefixed
overlap with J), leading to the constrained free energy [20]:

F (T, T ′, x) =

〈
1

Z(T ′)

∑

J

e−β′E(J) ln
∑

w

e−βE(w)+xJ·w

〉

ξ

, (A1)

where Z(T ′) =
∑

J
e−β′E(J) and x is the coupling field to control the overlap (or distance) between two configurations,

i.e., p ≡ J ·w/N . We are interested in the ground state, then we set both inverse temperatures equal and make them
tend to infinity. Substituting the definition of energy cost of the problem, and using e−βΘ(−u) = Θ(u) in the zero
temperature limit, we have

F (x) =

〈
1

Z(T ′)

∑

J

Θ

(
1√
N

N∑

i=1

Jiξ
µ
i

)

ln
∑

w

Θ

(
1√
N

N∑

i=1

wiξ
µ
i

)

exJ·w
〉

ξ

. (A2)

To evaluate the typical value of F (x), we resort to the replica method [4], by using two mathematical identi-
ties: lnZ = limm→0

∂Zm

∂m and Z−1 = limn→0 Zn−1. Introducing n unconstrained replicas Ja(a = 1, . . . , n) and m
constrained replicas wγ(γ = 1, . . . ,m), we rewrite F (x) as:

F (x) = lim
n→0
m→0

∂

∂m

〈
∑

{Ja,wγ}

∏

µ

[
∏

a,γ

Θ(uµ
a)Θ(vµγ )

]

ex
∑

γ,i J
1

i w
γ
i

〉

ξ

, (A3)

where uµ
a ≡

∑
i J

a
i ξ

µ
i /

√
N and vµγ ≡

∑
iw

γ
i ξ

µ
i /

√
N . To proceed, we define the following overlap matrixes: Qab ≡

Ja · Jb/N , Paγ ≡ Ja · wγ/N and Rγη ≡ wγ · wη/N , which characterize the following disorder averages ⟨uµ
au

µ
b ⟩ =

Qab,
〈
uµ
av

µ
γ

〉
= Paγ and

〈
vµγ v

µ
η

〉
= Rγη. By inserting delta functions for these definitions and using their integral
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FIG. 1: (Color online) Entropy landscape of solutions in the binary perceptron problem. Iterations of the saddle-point equations
are always converged to produce the data points. The error bars give statistical errors and are smaller than or equal to the
symbol size. (a) Franz-Parisi potential as a function of the normalized Hamming distance. The behavior of the coupling field
with the distance is shown in the inset for α = 0.7, for which an observed maximum implies the change of the concavity of
the entropy curve (this also holds for other finite values of α). (b) Minimal distance versus the constraint density. Within
the minimal distance, there are no solutions satisfying the distance constraint from the reference equilibrium solution. (c)
Schematic illustration of the weight space based on results of (a) and (b). The points indicate the equilibrium solutions of
weights. αs ≃ 0.833 is the storage capacity after which the solution space is typically empty. dmin is the actual Hamming
distance without normalization.

becomes very small for the less constrained case (small constraint density). This explains why a simple local search
algorithm can find a solution when either N or α is small [8–10, 13–15]. As α increases, the minimal distance grows
rapidly, as a consequence, any algorithms working by local move (each time a few weights are flipped) should find
increasing difficulty to identify a solution (especially at a very large N), which holds even for reinforced message
passing algorithms [11]. In other words, an extensive energy or entropic barrier should be overcome. The energy
landscape is always valleys dominated (valleys are metastable states with positive energy cost). These metastable
states are much more numerous than the frozen ground states [26]. Local algorithms will get trapped by these
metastable states with high probability.
We thus conclude that, at variance with random K-SAT or Q-coloring problems [2], the solution space of the

binary perceptron problem is simple in the sense that it is made of isolated solutions instead of well separated
clusters of exponentially many close-by solutions. This picture is consistent with evidences reported in previous
studies [17, 18, 27]. Moreover, non-convergence of the iteration of the saddle-point equations was not observed, which
may be related to the simple structure of the solution space. In fact, below the storage capacity, the replica symmetric
solution is stable without any need to introduce replica symmetry breaking scenario for this problem [3, 19]. Our
quenched computation of the Franz-Parisi potential reveals that, synaptic weights to realize the random classification
task are organized into point-like clusters (zero internal entropy) far apart from each other (see Fig. 1 (c)), with the
result that in the thermodynamic limit, an exponential computation time is required to reach a finite fixed α [9, 16].

dmin(↵) ⇠ O(N)

↵c =
Pmax

N
' 0.83

dmin(↵) ⇠ O(N)
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with � = 0.6, MC is started at y0 = 1 and run with a cooling rate of fy = 1.001, to ensure

convergence to a solution.

We performed extensive simulations and studied the scaling properties of EdMC in con-

trast to simulated annealing. Figure 2 is a log-log plot of the number of iterations nE=0 to

reach a solution obtained for increasing N at ↵ = 0.3. A least squares fit(nE=0 / N2.84) con-

firms the evident power law behaviour. Note that even with an extremely low cooling rate fy
convergence to a zero energy vector w̃ is not guaranteed: simulated annealing often gets stuck

in local minima, even at low loading(↵ ⇠ 0.3), especially in high dimensionality(N ? 103).

The power scaling of simulated annealing has to be confronted with the almost linear be-

haviour of zero temperature EdMC, which is reported in Figure 3. The situation is similar

at ↵ = 0.6: here standard Monte Carlo is uncapable of reaching a zero energy configu-

ration, and gets sistematically trapped in low energy states(our MC is terminated after

ntrap = 100.000⇥N rejected spin flips). In Figure 4 we show the scaling of MC and EdMC

iterations at ↵ = 0.6, also comparing the number of EdMC necessary to reach the aver-

age minimal energy of standard Monte Carlo. Note the clear sub-linear behaviour of the

latter(light blue curve) and the striking difference in orders of magnitudes.
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Golf course for any 𝛂 ? Efficient learning impossible ?

However other algorithms find solution efficiently!

Sampling from the Gibbs distribution is 
not a good algorithm (as expected)



• Typical global minima are isolated (mutual distance of O(N))

• Glassy landscape: exponentially many local minima

• Learning should be hopeless

The learning problem is predicted to be typically computationally difficult

This contradicts empirical evidence!
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which are found by the simplified algorithms are typically
not isolated; rather, they belong (with high probability at
large N) to large connected clusters of solutions. More
precisely: 1) from a given solution W̃ , a random walk
process over neighboring configurations in the space of
solutions can reach distances of order N from the start-
ing point; 2) the number of solutions at a distance of
order N from W̃ grows exponentially with N (this can
be estimated from the analysis of the recurrence relations
on the average growth factor of the number of solutions
at varying distances, and using the random walk pro-
cesses for sampling the local properties relevant to those
relations) .

Furthermore, we used BP (without reinforcement)
with an additional Franz-Parisi potential [15] to estimate
the entropy of the solutions at varying distance from a
reference solution W̃ obtained from a heuristic solver,
and found that the results do not match the predictions
of the equilibrium analysis [10], see Fig. 1.

We also extended the equilibrium analysis [10] to the
teacher-student scenario, and found that: 1) the qual-
itative picture is the same as for the classification sce-
nario, i.e. typical solutions are isolated for all values of
↵ - even when adding a non-zero stability constraint; 2)
the teacher device is also isolated, and it is in fact indis-
tinguishable from all other typical solutions except for
the generalization error; 3) the results of estimates ob-
tained from BP are consistent with the analytical calcu-
lation when using the teacher as a reference point, but
not when using a solution provided by a heuristic solver
(see inset in Fig. 1). Finally, the generalization error for
solutions found algorithmically is lower than what would
be expected for a typical solution (see Fig. 3).

Large deviation analysis.—These empirical results sug-
gest that the heuristic algorithms do not operate in the
regime described by calculations performed at thermody-
namic equilibrium, but rather in a large-deviation regime,
to which the usual statistical tools are effectively blind
[16].

We found theoretical evidence that this is indeed the
case by studying the following free energy function:

F (d, y) = � 1

Ny
log

0

B@
X

{W̃}
X⇠

⇣
W̃

⌘
N
⇣
W̃ , d

⌘y
1

CA (1)

where N
⇣
W̃ , d

⌘
=
P

{W} X⇠ (W ) �
⇣
W · W̃ ,N (1� 2d)

⌘

counts the number of solutions W at normalized Ham-
ming distance d from a reference solution W̃ (� is the
Kronecker delta symbol), and y has the role of an in-
verse temperature. This free energy describes a system
in which each configuration W̃ is constrained to be a solu-
tion, and has an energy E

⇣
W̃

⌘
= � logN

⇣
W̃ , d

⌘
which

favors configurations surrounded by an exponential num-
ber of other solutions.

In the limit y ! 1, provided the ground state is
unique, we obtain the entropy of the surrounding solu-
tions:

S (d) = �F (d,1) =
1

N
logN

⇣
W̃

?
, d

⌘
(2)

where W̃
? is the optimal reference solution, i.e. the one

which is surrounded by most other solutions at the given
distance d. Therefore, if an exponentially large cluster of
solutions exists, we expect that S (d) > 0 in a neighbor-
hood of d = 0 (as opposed to the case of typical W̃ ).

We computed eq. (1) by the replica method in the so
called replica-symmetric (RS) Ansatz, and derived an ex-
pression for the y ! 1 case. The analysis of the scaling
of the order parameters with y confirms that the ground
state is indeed unique. We also found that in this limit
the constraint that W̃ is a solution becomes irrelevant.

The resulting expression for the entropy S (d) in the
generalization scenario is:

S (d) = � (1� q) q̂

2
� �q q̂

2
� q �q̂

2
� (1� 2d) Ŝ �RR̂+

+

ˆ 1

�1
Dz0 max

⇢
max
z1

(A+) ,max
z1

(A�)

�
+

+ 2↵

ˆ 1

�1
Dz0 H

 
z0

Rp
q �R2

!
max
z1

(B) (3)

where A± = � z2
1
2 +log

⇣
2 cosh

⇣
z1
p
�q̂ + z0

p
q̂ ± Ŝ + R̂

⌘⌘

and B = � z2
1
2 + log

⇣
H

⇣
z1

p
�q+z0

p
qp

1�q

⌘⌘
. We used the

standard notation Dz = e�
x2
2p

2⇡
dz to indicate a Gaussian

measure, and H (x) =
´1
x Dz. The quantities q, �q, R,

q̂, �q̂, R̂ and Ŝ are order parameters to be determined
by saddle-point equations, thus yielding a system of 7
coupled equations. q and R have a simple interpretation
in terms of the typical overlap between two solutions and
between a solution and the teacher, respectively. R can
thus be used to predict the generalization error pe.

The classification scenario can be obtained by setting
R = R̂ = 0 in expression (3), and solving for the remain-
ing system of 5 equations.

The solution to these systems of equations displays a
number of noteworthy properties (Fig. 2):

1. The classification (with ↵ < ↵c) and generalization
(with ↵ < ↵TS) cases are qualitatively very similar.

2. The system has a solution yielding S (d) > 0 for
all values of d for ↵ 2 [0,↵U ], where ↵U ' 0.755
in the classification case and ↵U ' 1.085 in the
generalization case. For ↵ � ↵U , there exists a
critical value dmin such that the system has no so-
lutions for d < dmin. Both dmin and S (dmin) are
strictly positive right after ↵U . This suggests that
a large cluster of solutions exists up to at least

Local entropy measure: large deviation 1-RSB techniques

Ed(W̃ )
.
= � logN (W̃ , d)

Bias the statistical measure towards dense (wide, flat) regions (large deviation analysis)

"local entropy” (the log of the number of 
solutions in hypersphere of radius d) 

Learning in rare in High Local Entropy regions  
(wide flat minima)
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same picture also holds for complex architectures trained
on real-world benchmarks.

In a more general sense, these findings highlight the in-
adequacy of a standard equilibrium analysis when used to
describe the practically relevant properties of a prototypi-
cal complex system. There’s no reason to believe that this
scenario is specific to this particular family of problems;
our work could provide a general methodology to detect,
analyze and exploit this kind of occurrences. [Also, to
bring world peace.]

The model.—The single layer binary neural network
(perceptron) maps vectors of N inputs ⇠ 2 {�1, 1}N to
binary outputs as ⌧ (W, ⇠) = sign (W · ⇠), where W 2
{�1, 1}N is the vector of synaptic weights. Given ↵N

input patterns ⇠
µ with µ 2 {1, . . . ,↵N} and their cor-

responding desired outputs �
µ 2 {�1, 1}↵N , and defin-

ing X⇠ (W ) =
Q↵N

µ=1 ⇥ (�µ
⌧ (W, ⇠

µ)), where ⇥ (x) is the
Heaviside step function, the learning problem is that of
finding W such that ⌧ (W, ⇠

µ) = �
µ for all µ, i.e. such

that X⇠ (W ) = 1. The entries ⇠
µ
i are random unbiased

i.i.d. variables. There are two main scenarios of inter-
est for the distribution of the desired outputs �

µ: 1)
the classification (or storage) case, in which they are
i.i.d. random variables, and 2) the generalization (or
teacher-student) scenario, in which they are provided by
a “teacher” device, i.e. another perceptron with synap-
tic weights W

T . In the classification scenario, the typi-
cal problem is solvable with probability 1 in the limit of
large N up to ↵c = 0.833 [5], after which the probability
of finding a solution drops to zero. ↵c is called the ca-
pacity ; we also use this term for the maximum value of
↵ for which a solution can be found by a specific algo-
rithm. In the teacher-student scenario, the problem has
multiple solutions up to ↵TS = 1.245, after which there
is a first-order transition and only one solution is possi-
ble: the teacher itself [2, 6]. One additional quantity of
interest in this scenario is the generalization error rate
pe =

1
⇡ arccos

�
1
NW ·WT

�
, which is the probability that

⌧ (W, ⇠
?) = ⌧

�
W

T
, ⇠

?
�

when ⇠
? is a previously unseen

input.
Simplified algorithms.—Only a handful of algorithms

are currently believed to be able to solve the classification
problem and achieve a non-zero capacity in the limit of
large N in a sub-exponential running time; they are all,
to some extent, heuristic, and only numerical evidence
(although with N as large as 106) is available to support
the claims. The first such algorithm is a modified version
of Belief Propagation (BP), a message passing algorithm
which differs from standard BP by an additional “rein-
forcement” term, which can reach a capacity of at least
↵ ' 0.74 [11]. Two more algorithms, called SBPI [12]
and CP+R [13], were derived as crude simplifications of
the reinforced BP scheme: compared to the latter, they
have drastically reduced requirements (only employing
finite discrete quantities and simple, local and on-line
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Figure 1. (Color online) Numerical evidence of the ex-
istence of clusters of solutions. Entropy at a given dis-
tance from a reference solution W̃ , in the classification case
at ↵ = 0.4. From bottom to top: (magenta) theoretical pre-
diction for a typical W̃ ; (blue) numerical estimate based on a
random walks on connected solutions starting from one pro-
vided by SBPI, with N = 1001; (red) estimate from Belief
Propagation using a solution from SBPI, with N = 10001;
(green) theoretical curve for the optimal W̃ ? as computed
from eq. (3); (dotted black) upper bound (↵ = 0 case, all
configurations are solutions). The random-walk points un-
derestimate the number of solutions since they only consider
connected clusters; the BP curve is lower than the optimal
because in the latter W̃ is optimized as a function of the
distance, while in the former it is fixed. Inset : comparison
between a typical solution and one found with SBPI, in the
teacher-student case at ↵ = 0.5 with N = 1001. Larger po-
tentials correspond to smaller distances. Top points (red):
SBPI reference solution, entropy computed by BP; bottom
curve (magenta): theoretical prediction for a typical solution;
bottom points (purple): BP results using the teacher as ref-
erence.

update schemes), making them appealing for practical
implementations, at the cost of achieving a slightly lower
capacity (↵ ' 0.69). Yet another algorithm, based on a
Max-Sum scheme, can be shown to have similar charac-
teristics [14]. All these algorithms have typical solving
times which scale almost linearly with the size of the
input. A qualitatively similar scenario holds in the gen-
eralization case, where all these algorithms fail to find
any solution in a finite window starting at a value of ↵
between 1 and 1.1, and ending at ↵TS or beyond.

Two issues arise from these results: 1) the failure of
the reinforced BP algorithm to reach the maximal ca-
pacity of ↵c ' 0.833 patterns, and 2) the effectiveness of
the utterly-simplified algorithms SBPI and CP+R, which
strikingly contrasts the picture provided by standard sta-
tistical analyses.

We investigated these issues through numerical exper-
iments, and found evidence that, in fact, the solutions

 = 1 iff all patterns are  correctly classified
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same picture also holds for complex architectures trained
on real-world benchmarks.

In a more general sense, these findings highlight the in-
adequacy of a standard equilibrium analysis when used to
describe the practically relevant properties of a prototypi-
cal complex system. There’s no reason to believe that this
scenario is specific to this particular family of problems;
our work could provide a general methodology to detect,
analyze and exploit this kind of occurrences. [Also, to
bring world peace.]

The model.—The single layer binary neural network
(perceptron) maps vectors of N inputs ⇠ 2 {�1, 1}N to
binary outputs as ⌧ (W, ⇠) = sign (W · ⇠), where W 2
{�1, 1}N is the vector of synaptic weights. Given ↵N

input patterns ⇠
µ with µ 2 {1, . . . ,↵N} and their cor-

responding desired outputs �
µ 2 {�1, 1}↵N , and defin-

ing X⇠ (W ) =
Q↵N

µ=1 ⇥ (�µ
⌧ (W, ⇠

µ)), where ⇥ (x) is the
Heaviside step function, the learning problem is that of
finding W such that ⌧ (W, ⇠

µ) = �
µ for all µ, i.e. such

that X⇠ (W ) = 1. The entries ⇠
µ
i are random unbiased

i.i.d. variables. There are two main scenarios of inter-
est for the distribution of the desired outputs �

µ: 1)
the classification (or storage) case, in which they are
i.i.d. random variables, and 2) the generalization (or
teacher-student) scenario, in which they are provided by
a “teacher” device, i.e. another perceptron with synap-
tic weights W

T . In the classification scenario, the typi-
cal problem is solvable with probability 1 in the limit of
large N up to ↵c = 0.833 [5], after which the probability
of finding a solution drops to zero. ↵c is called the ca-
pacity ; we also use this term for the maximum value of
↵ for which a solution can be found by a specific algo-
rithm. In the teacher-student scenario, the problem has
multiple solutions up to ↵TS = 1.245, after which there
is a first-order transition and only one solution is possi-
ble: the teacher itself [2, 6]. One additional quantity of
interest in this scenario is the generalization error rate
pe =

1
⇡ arccos

�
1
NW ·WT

�
, which is the probability that

⌧ (W, ⇠
?) = ⌧
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W

T
, ⇠
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when ⇠
? is a previously unseen

input.
Simplified algorithms.—Only a handful of algorithms

are currently believed to be able to solve the classification
problem and achieve a non-zero capacity in the limit of
large N in a sub-exponential running time; they are all,
to some extent, heuristic, and only numerical evidence
(although with N as large as 106) is available to support
the claims. The first such algorithm is a modified version
of Belief Propagation (BP), a message passing algorithm
which differs from standard BP by an additional “rein-
forcement” term, which can reach a capacity of at least
↵ ' 0.74 [11]. Two more algorithms, called SBPI [12]
and CP+R [13], were derived as crude simplifications of
the reinforced BP scheme: compared to the latter, they
have drastically reduced requirements (only employing
finite discrete quantities and simple, local and on-line
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Figure 1. (Color online) Numerical evidence of the ex-
istence of clusters of solutions. Entropy at a given dis-
tance from a reference solution W̃ , in the classification case
at ↵ = 0.4. From bottom to top: (magenta) theoretical pre-
diction for a typical W̃ ; (blue) numerical estimate based on a
random walks on connected solutions starting from one pro-
vided by SBPI, with N = 1001; (red) estimate from Belief
Propagation using a solution from SBPI, with N = 10001;
(green) theoretical curve for the optimal W̃ ? as computed
from eq. (3); (dotted black) upper bound (↵ = 0 case, all
configurations are solutions). The random-walk points un-
derestimate the number of solutions since they only consider
connected clusters; the BP curve is lower than the optimal
because in the latter W̃ is optimized as a function of the
distance, while in the former it is fixed. Inset : comparison
between a typical solution and one found with SBPI, in the
teacher-student case at ↵ = 0.5 with N = 1001. Larger po-
tentials correspond to smaller distances. Top points (red):
SBPI reference solution, entropy computed by BP; bottom
curve (magenta): theoretical prediction for a typical solution;
bottom points (purple): BP results using the teacher as ref-
erence.

update schemes), making them appealing for practical
implementations, at the cost of achieving a slightly lower
capacity (↵ ' 0.69). Yet another algorithm, based on a
Max-Sum scheme, can be shown to have similar charac-
teristics [14]. All these algorithms have typical solving
times which scale almost linearly with the size of the
input. A qualitatively similar scenario holds in the gen-
eralization case, where all these algorithms fail to find
any solution in a finite window starting at a value of ↵
between 1 and 1.1, and ending at ↵TS or beyond.

Two issues arise from these results: 1) the failure of
the reinforced BP algorithm to reach the maximal ca-
pacity of ↵c ' 0.833 patterns, and 2) the effectiveness of
the utterly-simplified algorithms SBPI and CP+R, which
strikingly contrasts the picture provided by standard sta-
tistical analyses.

We investigated these issues through numerical exper-
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tic weights W
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cal problem is solvable with probability 1 in the limit of
large N up to ↵c = 0.833 [5], after which the probability
of finding a solution drops to zero. ↵c is called the ca-
pacity ; we also use this term for the maximum value of
↵ for which a solution can be found by a specific algo-
rithm. In the teacher-student scenario, the problem has
multiple solutions up to ↵TS = 1.245, after which there
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are currently believed to be able to solve the classification
problem and achieve a non-zero capacity in the limit of
large N in a sub-exponential running time; they are all,
to some extent, heuristic, and only numerical evidence
(although with N as large as 106) is available to support
the claims. The first such algorithm is a modified version
of Belief Propagation (BP), a message passing algorithm
which differs from standard BP by an additional “rein-
forcement” term, which can reach a capacity of at least
↵ ' 0.74 [11]. Two more algorithms, called SBPI [12]
and CP+R [13], were derived as crude simplifications of
the reinforced BP scheme: compared to the latter, they
have drastically reduced requirements (only employing
finite discrete quantities and simple, local and on-line

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.005 0.01 0.015 0.02 0.025

en
tro

py
 !

distance from reference solution W

Franz-Parisi potential
0 0.5 1 1.5 2 2.5 3

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4

typical W
algorithmic W [RW]
algorithmic W [BP]

optimal W
upper bound

Figure 1. (Color online) Numerical evidence of the ex-
istence of clusters of solutions. Entropy at a given dis-
tance from a reference solution W̃ , in the classification case
at ↵ = 0.4. From bottom to top: (magenta) theoretical pre-
diction for a typical W̃ ; (blue) numerical estimate based on a
random walks on connected solutions starting from one pro-
vided by SBPI, with N = 1001; (red) estimate from Belief
Propagation using a solution from SBPI, with N = 10001;
(green) theoretical curve for the optimal W̃ ? as computed
from eq. (3); (dotted black) upper bound (↵ = 0 case, all
configurations are solutions). The random-walk points un-
derestimate the number of solutions since they only consider
connected clusters; the BP curve is lower than the optimal
because in the latter W̃ is optimized as a function of the
distance, while in the former it is fixed. Inset : comparison
between a typical solution and one found with SBPI, in the
teacher-student case at ↵ = 0.5 with N = 1001. Larger po-
tentials correspond to smaller distances. Top points (red):
SBPI reference solution, entropy computed by BP; bottom
curve (magenta): theoretical prediction for a typical solution;
bottom points (purple): BP results using the teacher as ref-
erence.

update schemes), making them appealing for practical
implementations, at the cost of achieving a slightly lower
capacity (↵ ' 0.69). Yet another algorithm, based on a
Max-Sum scheme, can be shown to have similar charac-
teristics [14]. All these algorithms have typical solving
times which scale almost linearly with the size of the
input. A qualitatively similar scenario holds in the gen-
eralization case, where all these algorithms fail to find
any solution in a finite window starting at a value of ↵
between 1 and 1.1, and ending at ↵TS or beyond.

Two issues arise from these results: 1) the failure of
the reinforced BP algorithm to reach the maximal ca-
pacity of ↵c ' 0.833 patterns, and 2) the effectiveness of
the utterly-simplified algorithms SBPI and CP+R, which
strikingly contrasts the picture provided by standard sta-
tistical analyses.

We investigated these issues through numerical exper-
iments, and found evidence that, in fact, the solutions
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which are found by the simplified algorithms are typically
not isolated; rather, they belong (with high probability at
large N) to large connected clusters of solutions. More
precisely: 1) from a given solution W̃ , a random walk
process over neighboring configurations in the space of
solutions can reach distances of order N from the start-
ing point; 2) the number of solutions at a distance of
order N from W̃ grows exponentially with N (this can
be estimated from the analysis of the recurrence relations
on the average growth factor of the number of solutions
at varying distances, and using the random walk pro-
cesses for sampling the local properties relevant to those
relations) .

Furthermore, we used BP (without reinforcement)
with an additional Franz-Parisi potential [15] to estimate
the entropy of the solutions at varying distance from a
reference solution W̃ obtained from a heuristic solver,
and found that the results do not match the predictions
of the equilibrium analysis [10], see Fig. 1.

We also extended the equilibrium analysis [10] to the
teacher-student scenario, and found that: 1) the qual-
itative picture is the same as for the classification sce-
nario, i.e. typical solutions are isolated for all values of
↵ - even when adding a non-zero stability constraint; 2)
the teacher device is also isolated, and it is in fact indis-
tinguishable from all other typical solutions except for
the generalization error; 3) the results of estimates ob-
tained from BP are consistent with the analytical calcu-
lation when using the teacher as a reference point, but
not when using a solution provided by a heuristic solver
(see inset in Fig. 1). Finally, the generalization error for
solutions found algorithmically is lower than what would
be expected for a typical solution (see Fig. 3).

Large deviation analysis.—These empirical results sug-
gest that the heuristic algorithms do not operate in the
regime described by calculations performed at thermody-
namic equilibrium, but rather in a large-deviation regime,
to which the usual statistical tools are effectively blind
[16].

We found theoretical evidence that this is indeed the
case by studying the following free energy function:

F (d, y) = � 1

Ny
log

0

B@
X

{W̃}
X⇠

⇣
W̃

⌘
N
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W̃ , d
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1

CA (1)

where N
⇣
W̃ , d

⌘
=
P

{W} X⇠ (W ) �
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W · W̃ ,N (1� 2d)

⌘

counts the number of solutions W at normalized Ham-
ming distance d from a reference solution W̃ (� is the
Kronecker delta symbol), and y has the role of an in-
verse temperature. This free energy describes a system
in which each configuration W̃ is constrained to be a solu-
tion, and has an energy E

⇣
W̃

⌘
= � logN

⇣
W̃ , d

⌘
which

favors configurations surrounded by an exponential num-
ber of other solutions.

In the limit y ! 1, provided the ground state is
unique, we obtain the entropy of the surrounding solu-
tions:

S (d) = �F (d,1) =
1

N
logN

⇣
W̃

?
, d

⌘
(2)

where W̃
? is the optimal reference solution, i.e. the one

which is surrounded by most other solutions at the given
distance d. Therefore, if an exponentially large cluster of
solutions exists, we expect that S (d) > 0 in a neighbor-
hood of d = 0 (as opposed to the case of typical W̃ ).

We computed eq. (1) by the replica method in the so
called replica-symmetric (RS) Ansatz, and derived an ex-
pression for the y ! 1 case. The analysis of the scaling
of the order parameters with y confirms that the ground
state is indeed unique. We also found that in this limit
the constraint that W̃ is a solution becomes irrelevant.

The resulting expression for the entropy S (d) in the
generalization scenario is:

S (d) = � (1� q) q̂
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. We used the

standard notation Dz = e�
x2
2p

2⇡
dz to indicate a Gaussian

measure, and H (x) =
´1
x Dz. The quantities q, �q, R,

q̂, �q̂, R̂ and Ŝ are order parameters to be determined
by saddle-point equations, thus yielding a system of 7
coupled equations. q and R have a simple interpretation
in terms of the typical overlap between two solutions and
between a solution and the teacher, respectively. R can
thus be used to predict the generalization error pe.

The classification scenario can be obtained by setting
R = R̂ = 0 in expression (3), and solving for the remain-
ing system of 5 equations.

The solution to these systems of equations displays a
number of noteworthy properties (Fig. 2):

1. The classification (with ↵ < ↵c) and generalization
(with ↵ < ↵TS) cases are qualitatively very similar.

2. The system has a solution yielding S (d) > 0 for
all values of d for ↵ 2 [0,↵U ], where ↵U ' 0.755
in the classification case and ↵U ' 1.085 in the
generalization case. For ↵ � ↵U , there exists a
critical value dmin such that the system has no so-
lutions for d < dmin. Both dmin and S (dmin) are
strictly positive right after ↵U . This suggests that
a large cluster of solutions exists up to at least

Characteristic function:

Number of solutions within Hamming  distance        from a given weight vector         :  W̃d

A ·B =
NX

j=1

AjBj

...~⇠µ

Wi 2 {±1} , i = 1, ..., N

= lim
�!1

e��LNE(W )
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Check the existence of subdominant dense regions of solutions in the Binary Perceptron

Finite temperature version (not only zero error states) : free local entropy
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Large deviations results
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Figure 4. Local entropy profiles (with zero margin Ÿ = 0) of
typical maximum margin solutions (left panel) and its deriva-
tive (right panel) as a function of the distance. Di�erent val-
ues of – are displayed: for – = 0.71 and 0.727 the entropy is
monotonic, i.e. it has a unique maximum at large distances
(not visible). For – = –Õ

u ƒ 0.729 the local entropy starts to
be non-monotonic (its derivative with respect to the distance
develops a new zero). The entropy becomes negative at larger
– (i.e. Ÿ̃max(–) < Ÿ̃min(–)) in a given range of distances.

Therefore we can conclude that even if high-margin
solutions are completely isolated from each other, they
tend to be closer and to concentrate into the rare high
local entropy regions of solutions with lower (potentially
zero) margin. These results help to unravel the structure
of regions of high local entropy in neural networks: we
can see them as the union of the typical isolated con-
figurations having non-zero margin Ÿ̃; those are in turn
surrounded by solutions with smaller and smaller margin
Ÿ < Ÿ̃. We have also checked the validity of the Replica-
Symmetric approximation by considering a more general
ansatz for the Laplace computation, i.e. the so called one-
step Replica Symmetry Breaking scheme (see the SM for
additional details).

Dense cluster threshold. It has been previously dis-
cussed by using a large-deviation approach [14, 31] how
the geometrical structure of the high-local-entropy clus-
ter changes with the number of patterns –N . What
was found is that the geometrical structure of the clus-
ter remains connected up until a certain value –u above
which the cluster fractures. Numerical experiments show
also that this geometrical transition strongly a�ects the
behavior of algorithms: –u is conjectured to be an up-
per bound for the capacity of e�cient learning of algo-
rithms [19].

As discussed in point 5 of the previous section, a simi-
lar situation occurs when considering typical high-margin
solutions. Let us define the value –Õ

u as the largest – for
which the “large-scale” phase exists. It is characterized
by the property Ÿ̃u(–Õ

u) = Ÿ̃max(–Õ
u). Beyond this value,

only the “isolated balls” phase (points 3 and 4 in the pre-
vious section) remains. Indeed, we found this –Õ

u to be
only slightly smaller than the upper bound –u derived
from the large-deviation analysis. Thus, –Õ

u can be used
to provide an easier estimate for the algorithmic upper
bound.

This is illustrated in Fig. 4, where we show some plots
of „F P (d; –, Ÿ̃max(–), Ÿ) (and its derivative with respect
to the distance) for several values of –. At – = –Õ

u ƒ 0.73
the derivative of the local entropy develops a new zero.
In this case –u ƒ 0.77.

The discrepancy between the two thresholds can be
mainly ascribed to the fact that in the derivation of –Õ

u

only typical (albeit high-margin) solutions are consid-
ered. (It is also possible that the approximations intro-
duced by the Replica-Symmetric Ansatz play a minor
role.) On the other hand, the fact that –u ¥ –Õ

u (which
we also checked in an alternative, planted model, the so-
called teacher-student scenario) suggests that maximally-
dense solutions are not too dissimilar and not too far from
maximum-margin solutions. To test this, we performed
numerical experiments by sampling solutions found with
the focusing-BP algorithm [19], which by design seeks
maximally dense solutions, and measured their average
local entropy using Belief Propagation (see SM for de-
tails). We found that its local entropy profile is only
slightly higher than that of the typical Ÿ̃max solutions, as
shown in Fig. 3. This also agrees with previous findings
concerning the distribution of stabilities of wide and flat
minimizers [16] and the impact of certain losses, such as
the cross-entropy [15], which induce a certain degree of
robustness during training.

Discussion and conclusions. The fracturing transition
that sets it when the curves become non-monotonic is
a complex phenomenon. This particular transition was
first observed in the aforementioned analysis of large de-
viations as a transition in –. The current scheme also
allows us to detect the same transition by observing the
space of solutions around typical solutions. In addition,
we can also observe a transition in k̃, where it intersects
the value k̃u(–), and a transition in k for fixed Ÿ̃ > Ÿ̃u (–),
(see points 4 and 5 in the previous section). These tran-
sitions can be understood as the appearance of a charac-
teristic distance identified by an entropic barrier beyond
which the solutions sparsify dramatically.

In conclusion we have shown that the dense clusters
of solutions which are accessed by algorithms in a non-
convex model of neural network coincide with regions of
the weight space where high-margin solutions coalesce.
While in these regions solutions with the same margin
remain mutually isolated, they are connected through
solutions of smaller margin. These results shed light
on accessibility and generalization properties, and hope-
fully can help in developing rigorous mathematical re-
sults for non-convex neural networks. We have verified
that similar phenomena take place in one-hidden-layer
neural networks with binary weights and generic acti-
vation function (we analyzed in particular ReLU and
sign activations, see SM Sec. III) and that numerical re-
sults on deeper networks corroborate the scenario (SM
Sec. IV). Also, we refer to the work [36] for an analysis
on a model with a non-trivial correlated pattern struc-
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Figure 2. Hamming distance between typical solutions as a
function of the margin imposed, for – = 0.2, 0.3, 0.4, 0.6
and 0.8 (from top to bottom). The lines change from solid to
dashed when the entropy of solutions becomes negative, i.e.
when Ÿ = Ÿmax as defined in the main text.

where we have dropped the dependence of Z on › and ‡
to lighten the notation. Indeed, Z is the partition func-
tion of a flat measure over the Ÿ-margin solutions, which
in turn is the zero-temperature limit of an equilibrium
Gibbs measure, with the number of violated patterns as
the energy. The corresponding Gibbs entropy of the so-
lutions can thus be obtained as

„(–, Ÿ) = lim
NæŒ

1
N

Èln ZÍ›,‡ (2)

where È. . . Í›,‡ denotes the average over random patterns
and labels. In the following, we can safely impose ‡µ = 1
for every µ = 1, . . . , P without loss of generality, since
we can perform the transformation ›µ

i æ ‡µ›µ
i , without

a�ecting the probability measure of the patterns. Since
we are considering a discrete model, the entropy has a
lower bound of 0. In the limit of large N the model
exhibits a sharp transition at the critical capacity –c(Ÿ),
defined as the maximum – with non-vanishing entropy:
„(–c(Ÿ), Ÿ) = 0. For – < –c(k) the probability that an
instance of the problem has a solution is 1, but it sharply
drops to zero above this threshold [25] (see also [21] for a
recent rigorous proof of the value for zero margin –c(0) ƒ
0.833).

Distances between typical solutions. We have com-
puted the entropy of solutions, given in equation (2) us-
ing the replica method. The details of the derivation are
given in the Supplemental Material (SM).

As displayed in Fig. 2, we find that the Hamming dis-
tance between solutions is a rapidly decreasing function
of the margin. As mentioned in the introduction, the en-
tropy is a decreasing function of the margin as well (see
the SM); this means that even if solutions with larger
margin are exponentially fewer, they are less dispersed.
The closest solutions are those with maximum margin

Ÿmax(–), defined as the largest Ÿ with non-vanishing en-
tropy: „(–, Ÿmax(–)) = 0.

Isolated and and non-isolated solutions. A key ques-
tion is how, below the critical capacity, the solutions are
arranged and how the structure of solution space a�ects
the performance of learning algorithms. As discussed by
Krauth and Mezard [25] and Huang and Kabashima [26]
the structure of typical solutions for Ÿ = 0 consists of
clusters of vanishing entropy (so called frozen-1RSB sce-
nario). In the whole phase below –c(Ÿ = 0), zero-margin
solutions are isolated, meaning that one has to flip an ex-
tensive number of weights in order to find the closest solu-
tion. This scenario was also recently confirmed in simple
one-hidden layer neural networks with generic activation
functions [16] and also rigorously for the symmetric per-
ceptron [27, 28]. This kind of landscape with point-like
solutions suggests that finding such solution should be a
hard optimization problem; however, this is contrary to
the numerical evidence given by simple algorithms such
as the ones based on message passing [29, 30]. This ap-
parent contradiction was solved in [14, 19, 31] where it
was shown that there exist rare but dense regions of so-
lutions that are accessible by algorithms. Subsequent
works suggested that simple algorithmic strategies that
are commonly used in deep learning such as the choice
of the loss and the activation function [15, 16] or the
e�ect of regularization [32] seem to help algorithms to
access those regions. Finally, a systematic study of the
loss landscape of neural networks suggested that as net-
work depth increases the number of minima increase as
well, but at the same time they become more clustered
and generally are separated by low barriers [17, 18, 33].
In [34] the authors show that SGD-based algorithms are
able to access flat minima because they intrinsically pos-
sess an anisotropic noise that is stronger in the directions
where the landscape is rough and smaller when it is flat.

Here we want to better understand the geometry of
those rare dense regions, in particular how they relate
to the Ÿ > 0 solutions, with which they share at least
the property of being robust with respect to input per-
turbations (see [16] for a discussion of the distribution of
the stabilities inside a high-local-entropy region). To this
end we begin by analyzing in which part of the landscape
high-margin solutions tend to be concentrated. Given a
configuration w̃, that we also call the “reference”, we de-
fine the local entropy of w̃ as the logarithm (divided by
N) of the quantity:

N›(w̃, d, Ÿ) =
ÿ

w

X›(w; Ÿ) ”

A
N(1 ≠ 2d) ≠

Nÿ

i=1
w̃iwi

B
.

(3)
This expression counts the number of configurations w
that are solutions with margin Ÿ of the classification task,
and which lay at a normalized Hamming distance d from
the reference w̃. Studying the local entropy profile as we
vary the distance d thus allows to characterize the density

High margin solutions are less but tend to be much closer to each other! 
The lines change from solid to dashed when the entropy of solutions becomes negative, i.e. when κ = κmax

typical distance
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Figure 1. The picture represents a portion of the space
of network configurations. Di�erent dots represent solutions
(zero-error configurations); solutions with larger Ÿ margin are
represented with larger, darker dots (see legend). Red arrows
from left to right indicate four examples of typical solutions
with a given Ÿ (in descending order from top to bottom). The
yellow arrows from right to left indicate three examples of
the type of atypical solutions found around the typical ones
with a larger margin (also in descending order from top to
bottom). Low-margin solutions are more numerous than high-
margin solutions. Typical low-margin solutions are isolated
and distant from each other. Typical high-margin solutions
are also distant from each other, but less so, and tend to
be surrounded by (atypical) low-margin solutions. Thus, the
higher-margin solutions are rare, but they lie in the middle of
a dense, extended region that results from the coalescence of
the low-margin solutions.

ing with Ÿ, high-margin solutions are exponentially rare
compared to zero-margin solutions. However, they tend
to concentrate in particular regions, and are in turn sur-
rounded by other solutions of smaller and smaller mar-
gin. This coalescence of minima results in dense regions
of solutions over long distances, of size O (N). This is
illustrated in Fig. 1, where we show a two-dimensional
qualitative sketch of the picture that emerges from our
analysis of the geometric distribution of minima for a
not too large value of –. As as the number of patterns
increases (i.e. –), the solutions thin out, their margin
gets smaller, and above some threshold in – the large
connected structures break up and eventually disappear.

Our results provide a clearer picture regarding the in-
ternal structure of the flat minima and allow us to de-
fine an alternative analytical method for estimating the
threshold at which they appear and where the algorithms

begin to find solutions e�ciently. We show that, for val-
ues of the loading parameter – su�ciently small, the
zero-error solutions have the following properties:

1) the Hamming distance between typical solutions in
the space of network configurations is a rapidly decreas-
ing function of their margin Ÿ. Despite being exponen-
tially less numerous (in N) compared to the Ÿ = 0 so-
lutions, the Ÿ > 0 solutions tend to have small mutual
distance. They are sparser and yet much closer. 2) typi-
cal solutions with a prescribed margin Ÿ̃ > 0 are always
surrounded at O(N) Hamming distance by an exponen-
tial number of smaller margin solutions. By increasing
Ÿ̃, we make sure to target higher local entropy regions.

While the notion of margin has been developed in
the context of shallow networks where it can be directly
linked to generalization, the notion of flatness, or high
local entropy, applies also to deep networks for which
there is no straightforward way to define the margin for
the hidden layer units. High local entropy minima are
stable with respect to perturbations of the input and of
the internal representations.

The model. For simplicity, we discuss here the results
of our study by considering a single-layer [22] network
with N binary weights w œ {≠1, 1}N , which is per-
haps the simplest to define non-convex neural network
endowed with a non-trivial geometric structure of zero-
error solutions. In the SM we detail the analytical results
for models with one hidden layer, with binary weights
and generic activation functions, which lead to a quali-
tatively similar geometric scenario. In the SM we also
report numerical results for deep networks.

Given a (binary) pattern › œ {≠1, 1}N as input to
the network, the corresponding output is computed as
‡out = sign (w · ›). We consider a training set composed
of µ = 1, . . . , P = –N i.i.d. unbiased random binary
patterns ›µ = {≠1, 1}N and labels ‡µ = {≠1, 1} [23, 24].
The learning problem consists in finding the weights that
realize all the input-output mappings of the training set.
In this paper we are interested not only in those con-
figurations that are solutions, but also those that have
a large confidence level. We quantify this by imposing
that for every pattern in the training set, the weights
should have stability �µ © ‡µ

Ô
N

w · ›µ, larger than a
given margin Ÿ, which therefore represents the distance
from the threshold of the output unit (i.e. the classifica-
tion boundary) in the direction of the correct label. The
flat measure over these configurations is proportional to
X›,‡(w; Ÿ) =

rP
µ=1 �

1
‡µ

Ô
N

qN
i=1 wi›

µ
i ≠ Ÿ

2
where �(·)

is the Heaviside theta function; this quantity is equal to
1 if the weight w classifies correctly all the patterns with
a certain margin Ÿ, and 0 otherwise. The number of so-
lutions with margin Ÿ is given by

Z =
ÿ

{wi=±1}

X›,‡(w; Ÿ) (1)

Figure 1: A heuristic illustration of the rugged landscape of the fitness function of solutions
�kGXk1 in the perceptron model.

Figure 2: Cross sections {X : �kGXk1 � �} at increasing values of  representing the clusters
of solutions.

illustrated in Figure 1. Away from the peaks the landscape falls away quickly in most directions
but more slowly in a few directions (of course unlike our figure, the space of X in the perceptron
model is very high dimensional). If we fix ↵, varying  corresponds to taking di↵erent cross-sections
of the landscape as illustrated in Figure 2. For any , most clusters will be isolated points given by
peaks of height exactly �. But the taller peaks have larger cross-sections and for small enough 
these connect together and can form very wide but thin webs as seen in the left cross-section. For
larger  the mountain cross-sections do no overlap but the largest mountains still give clusters of
linear size.

3

Binary perceptron: e�cient algorithms can find solutions in
a rare well-connected cluster

Emmanuel Abbe ∗ Shuangping Li † Allan Sly ‡

Abstract

It was recently shown that almost all solutions in the symmetric binary perceptron are
isolated, even at low constraint densities, suggesting that finding typical solutions is hard. In
contrast, some algorithms have been shown empirically to succeed in finding solutions at low
density. This phenomenon has been justified numerically by the existence of subdominant and
dense connected regions of solutions, which are accessible by simple learning algorithms. In
this paper, we establish formally such a phenomenon for both the symmetric and asymmetric
binary perceptrons. We show that at low constraint density (equivalently for overparametrized
perceptrons), there exists indeed a subdominant connected cluster of solutions with almost
maximal diameter, and that an e�cient multiscale majority algorithm can find solutions in such
a cluster with high probability, settling in particular an open problem posed by Perkins-Xu in
STOC’21. In addition, even close to the critical threshold, we show that there exist clusters of
linear diameter for the symmetric perceptron, as well as for the asymmetric perceptron under
additional assumptions.

1 Introduction

The binary perceptron is a simple neural network model. It was studied in the 60s by Cover1

[Cov65] and in the 80s in the statistical physics literature with detailed characterizations put
forward by Gardner and Derrida [GD88] and Krauth and Mézard [KM89]. More recently, the
structural properties of its solution space have been related to the behavior of algorithms for
learning neural networks in [Bal+16a; Bal+16b; BZ06; Bal+15] and several probabilistic results
have been established in [KR98; Tal99; Sto13; DS19; APZ19; PX21; ALS21] (see further discussions
below).

The asymmetric binary perceptron model (ABP) is defined as follows. Let G be an m by n
matrix with i.i.d. entries taking value in {+1,�1} with equal probability. Fix a real number , and
consider the following constraints:

Sj(G) :=

(
X 2 {�1,+1}n :

1p
n

nX

i=1

Gj,iXi � 

)
, j = 1, · · · ,m.

∗Institute of Mathematics, EPFL, Lausanne, CH-1015, Switzerland. Email: emmanuel.abbe@epfl.ch.
†PACM, Princeton University, Princeton, NJ, 08544, USA. Email: sl31@princeton.edu.
‡Department of Mathematics, Princeton University, Princeton, NJ, 08544, USA. Email: allansly@princeton.edu.
1Mainly for the spherical case.
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Unveiling the structure of wide flat minima in neural networks

Carlo Baldassi,1 Clarissa Lauditi,2 Enrico M. Malatesta,1 Gabriele Perugini,1 and Riccardo Zecchina1

1
Artificial Intelligence Lab, Bocconi University, 20136 Milano, Italy

2
Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy

The success of deep learning has revealed the application potential of neural networks across the
sciences and opened up fundamental theoretical problems. In particular, the fact that learning
algorithms based on simple variants of gradient methods are able to find near-optimal minima
of highly nonconvex loss functions is an unexpected feature of neural networks. Moreover, such
algorithms are able to fit the data even in the presence of noise, and yet they have excellent predictive
capabilities. Several empirical results have shown a reproducible correlation between the so-called
flatness of the minima achieved by the algorithms and the generalization performance. At the same
time, statistical physics results have shown that in nonconvex networks a multitude of narrow minima
may coexist with a much smaller number of wide flat minima, which generalize well. Here we show
that wide flat minima arise as complex extensive structures, from the coalescence of minima around
"high-margin" (i.e., locally robust) configurations. Despite being exponentially rare compared to
zero-margin ones, high-margin minima tend to concentrate in particular regions. These minima
are in turn surrounded by other solutions of smaller and smaller margin, leading to dense regions
of solutions over long distances. Our analysis also provides an alternative analytical method for
estimating when flat minima appear and when algorithms begin to find solutions, as the number of
model parameters varies.

Machine learning has undergone a tremendous ac-
celeration thanks to the performance of so-called deep
networks [1]. Very complex architectures are able to
achieve unexpected performance in very di�erent do-
mains, from language processing [2] to protein structure
prediction [3, 4], just to name a few recent impressive re-
sults. A key aspect that di�erent neural network models
have in common is the non-convex nature of the learning
problem. The learning process must be able to converge
in a very high-dimensional space and in the presence of a
huge number of local minima of the loss function which
measures the error rate on the data set. Surprisingly,
this goal can be achieved by algorithms designed for con-
vex problems with just few adjustments, such as choosing
highly parameterized architectures, using dynamic regu-
larization techniques, and choosing appropriate loss func-
tions [5]. In practice, neural networks with hundreds of
millions of variables can be successfully optimized by al-
gorithms based on the gradient descent method [6].

The study of the geometric structure of the minima of
the loss function is essential for understanding the dy-
namic phenomena of learning and explaining generaliza-
tion capabilities. Several empirical results have shown
a reproducible correlation between the so-called flatness
of the minima achieved by algorithms and generalization
performance [7–9]. In a sense that needs to be made rig-
orous, the loss functions of neural networks seem to be
characterized by the existence of large flat minima that
are both accessible and well generalizable [10–12]. More-
over, similar minima are found in the case of randomized
labels [13] and di�erent data sets, suggesting that they
are a robust property of the networks.

This scenario is upheld by some recent studies based
on statistical physics methods [14–18], which show that
in tractable models of non-convex neural networks a mul-

titude of minima with poor generalization capabilities co-
exists with a smaller number of wide flat minima, a.k.a.
high local entropy minima, that generalize close to opti-
mality [14]. These studies rely on large-deviation meth-
ods that give access to the typical number of minima
surrounded by a very large number of other minima at a
fixed distance. The analytical results are corroborated by
numerical studies that confirm the accessibility of wide
flat minima by simple algorithms that do not try to sam-
ple from the dominating set of minima [19].

Here we provide analytical results on the geometric
structure of these wide flat minima. We take as analyt-
ically tractable non-convex model a prototypical neural
network with N binary weights trained on P = –N ran-
dom patterns, investigated in the thermodynamic limit
of large N and large P , with – = P/N = O(1) . The
network performs a binary classification task, and its pre-
diction is given by the sign of the output unit. This model
has been extensively studied with mean field statistical
physics methods [20], based on the self-averaging prop-
erty that in the thermodynamic limit the macroscopic
behavior of any sample is fully described by the sample
average; many of the results were later corroborated by
rigorous techniques [21]. The solutions of the learning
task (zero-error configurations) can be characterized by
their margin, denoted by Ÿ. The margin of a solution
is a hard measure of robustness to local perturbations
of the weights: it is the minimum di�erence, across all
the training patterns, between the output pre-activation
and the threshold. A Ÿ-margin solution is guaranteed
to be surrounded in configuration space by other solu-
tions within a radius proportional to Ÿ

Ô
N . In the model

under study, the number of solutions at a given margin
Ÿ, when they exist, is typically exponential in N , i.e.
exp (N„ (–, Ÿ)). Since „ (–, Ÿ) is monotonically decreas-
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Algorithmic follow-up

Assume y integer:

Local free entropy:

Large-deviation partition function: Z(y, �,�0,�) =
X

W

e��0LNE(W )+y �(W,�,�)

<latexit sha1_base64="jCXBSPCbj7+AfBLitViHa1b5KIU="></latexit>

�(W, �,�) = log
X

W 0

e��LNE(W 0)� �
2 d(W,W 0)
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center y (real) replicas

interaction

Z(y, �,�0,�) =
X

W,{Wa}
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a=1 LNE(Wa)� �
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a=1 d(W,Wa)
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• Local Entropy driven or replicated Simulated Annealing  

• Replicated Message-Passing (Belief Propagation) 

• Replicated Stochastic Gradient Descent (SGD) 

• Entropy-SGD: Langevin dynamics to estimate local entropy 

• Replicated Greedy Algorithms 

• Sharpness Aware Minimization 

• Stochastic weights +gradient on the probabilities 

• Quantum Annealing delocalization mechanism for finding NN ground 
states 

• …

Local entropy algorithms 



some known algorithms for DNNs
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Figure 1: (left) Error rate reduction obtained by switching to SAM. Each point is a different dataset
/ model / data augmentation. (middle) A sharp minimum to which a ResNet trained with SGD
converged. (right) A wide minimum to which the same ResNet trained with SAM converged.

batch normalization (Ioffe & Szegedy, 2015), stochastic depth (Huang et al., 2016), data augmenta-
tion (Cubuk et al., 2018), and mixed sample augmentations (Zhang et al., 2017; Harris et al., 2020).

The connection between the geometry of the loss landscape—in particular, the flatness of minima—
and generalization has been studied extensively from both theoretical and empirical perspectives
(Shirish Keskar et al., 2016; Dziugaite & Roy, 2017; Jiang et al., 2019). While this connection
has held the promise of enabling new approaches to model training that yield better generalization,
practical efficient algorithms that specifically seek out flatter minima and furthermore effectively
improve generalization on a range of state-of-the-art models have thus far been elusive (e.g., see
(Chaudhari et al., 2016; Izmailov et al., 2018); we include a more detailed discussion of prior work
in Section 5).

We present here a new efficient, scalable, and effective approach to improving model generalization
ability that directly leverages the geometry of the loss landscape and its connection to generaliza-
tion, and is powerfully complementary to existing techniques. In particular, we make the following
contributions:

• We introduce Sharpness-Aware Minimization (SAM), a novel procedure that improves
model generalization by simultaneously minimizing loss value and loss sharpness. SAM
functions by seeking parameters that lie in neighborhoods having uniformly low loss value
(rather than parameters that only themselves have low loss value, as illustrated in the middle
and righthand images of Figure 1), and can be implemented efficiently and easily.

• We show via a rigorous empirical study that using SAM improves model generalization
ability across a range of widely studied computer vision tasks (e.g., CIFAR-{10, 100},
ImageNet, finetuning tasks) and models, as summarized in the lefthand plot of Figure 1. For
example, applying SAM yields novel state-of-the-art performance for a number of already-
intensely-studied tasks, such as ImageNet, CIFAR-{10, 100}, SVHN, Fashion-MNIST,
and the standard set of image classification finetuning tasks (e.g., Flowers, Stanford Cars,
Oxford Pets, etc).

• We show that SAM furthermore provides robustness to label noise on par with that provided
by state-of-the-art procedures that specifically target learning with noisy labels.

• Through the lens provided by SAM, we further elucidate the connection between loss
sharpness and generalization by surfacing a promising new notion of sharpness, which
we term m-sharpness.

Section 2 below derives the SAM procedure and presents the resulting algorithm in full detail. Sec-
tion 3 evaluates SAM empirically, and Section 4 further analyzes the connection between loss sharp-
ness and generalization through the lens of SAM. Finally, we conclude with an overview of related
work and a discussion of conclusions and future work in Sections 5 and 6, respectively.

2
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ABSTRACT

This paper proposes a new optimization algorithm called Entropy-SGD for train-
ing deep neural networks that is motivated by the local geometry of the energy
landscape. Local extrema with low generalization error have a large proportion of
almost-zero eigenvalues in the Hessian with very few positive or negative eigen-
values. We leverage upon this observation to construct a local-entropy-based ob-
jective function that favors well-generalizable solutions lying in large flat regions
of the energy landscape, while avoiding poorly-generalizable solutions located in
the sharp valleys. Conceptually, our algorithm resembles two nested loops of SGD
where we use Langevin dynamics in the inner loop to compute the gradient of the
local entropy before each update of the weights. We show that the new objective
has a smoother energy landscape and show improved generalization over SGD
using uniform stability, under certain assumptions. Our experiments on convolu-
tional and recurrent networks demonstrate that Entropy-SGD compares favorably
to state-of-the-art techniques in terms of generalization error and training time.

1 INTRODUCTION

This paper presents a new optimization tool for deep learning designed to exploit the local geometric
properties of the objective function. Consider the histogram we obtained in Fig. 1 showing the spec-
trum of the Hessian at an extremum discovered by Adam (Kingma & Ba, 2014) for a convolutional
neural network on MNIST (LeCun et al., 1998) (⇡ 47,000 weights, cf. Sec. 5.1). It is evident that:

(i) a large number of directions (⇡ 94%) have near-zero eigenvalues (magnitude less than 10�4),

(ii) positive eigenvalues (right inset) have a long tail with the largest one being almost 40,

(iii) negative eigenvalues (left inset), which are directions of descent that the optimizer missed,
have a much faster decay (the largest negative eigenvalue is only �0.46).

Interestingly, this trend is not unique to this particular network. Rather, its qualitative properties are
shared across a variety of network architectures, network sizes, datasets or optimization algorithms
(refer to Sec. 5 for more experiments). Local minima that generalize well and are discovered by
gradient descent lie in “wide valleys” of the energy landscape, rather than in sharp, isolated minima.
For an intuitive understanding of this phenomenon, imagine a Bayesian prior concentrated at the

Code: https://github.com/ucla-vision/entropy-sgd
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ABSTRACT

In today’s heavily overparameterized models, the value of the training loss pro-
vides few guarantees on model generalization ability. Indeed, optimizing only
the training loss value, as is commonly done, can easily lead to suboptimal
model quality. Motivated by prior work connecting the geometry of the loss
landscape and generalization, we introduce a novel, effective procedure for in-
stead simultaneously minimizing loss value and loss sharpness. In particular,
our procedure, Sharpness-Aware Minimization (SAM), seeks parameters that lie
in neighborhoods having uniformly low loss; this formulation results in a min-
max optimization problem on which gradient descent can be performed effi-
ciently. We present empirical results showing that SAM improves model gen-
eralization across a variety of benchmark datasets (e.g., CIFAR-{10, 100}, Ima-
geNet, finetuning tasks) and models, yielding novel state-of-the-art performance
for several. Additionally, we find that SAM natively provides robustness to la-
bel noise on par with that provided by state-of-the-art procedures that specifi-
cally target learning with noisy labels. We open source our code at https:
//github.com/google-research/sam.

1 INTRODUCTION

Modern machine learning’s success in achieving ever better performance on a wide range of tasks
has relied in significant part on ever heavier overparameterization, in conjunction with developing
ever more effective training algorithms that are able to find parameters that generalize well. Indeed,
many modern neural networks can easily memorize the training data and have the capacity to readily
overfit (Zhang et al., 2016). Such heavy overparameterization is currently required to achieve state-
of-the-art results in a variety of domains (Tan & Le, 2019; Kolesnikov et al., 2020; Huang et al.,
2018). In turn, it is essential that such models be trained using procedures that ensure that the
parameters actually selected do in fact generalize beyond the training set.

Unfortunately, simply minimizing commonly used loss functions (e.g., cross-entropy) on the train-
ing set is typically not sufficient to achieve satisfactory generalization. The training loss landscapes
of today’s models are commonly complex and non-convex, with a multiplicity of local and global
minima, and with different global minima yielding models with different generalization abilities
(Shirish Keskar et al., 2016). As a result, the choice of optimizer (and associated optimizer settings)
from among the many available (e.g., stochastic gradient descent (Nesterov, 1983), Adam (Kingma
& Ba, 2014), RMSProp (Hinton et al.), and others (Duchi et al., 2011; Dozat, 2016; Martens &
Grosse, 2015)) has become an important design choice, though understanding of its relationship
to model generalization remains nascent (Shirish Keskar et al., 2016; Wilson et al., 2017; Shirish
Keskar & Socher, 2017; Agarwal et al., 2020; Jacot et al., 2018). Relatedly, a panoply of methods
for modifying the training process have been proposed, including dropout (Srivastava et al., 2014),

⇤Work done as part of the Google AI Residency program.
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Schmidhuber (1997b)) is similar to our Eqn. (7). Indeed, Gibbs formalism used in their analysis is a
very promising direction to understanding generalization in deep networks (Zhang et al., 2016).

Homotopy continuation methods convolve the loss function to solve sequentially refined optimiza-
tion problems (Allgower & Georg, 2012; Mobahi & Fisher III, 2015), similarly, methods that perturb
the weights or activations to average the gradient (Gulcehre et al., 2016) do so with an aim to smooth
the rugged energy landscape. Such smoothing is however very different from local entropy. For in-
stance, the latter places more weight on wide local minima even if they are much shallower than the
global minimum (cf. Fig. 2); this effect cannot be obtained by smoothing. In fact, smoothing can
introduce an artificial minimum between two nearby sharp valleys which is detrimental to general-
ization. In order to be effective, continuation techniques also require that minimizers of successively
smaller convolutions of the loss function lie close to each other (Hazan et al., 2016); it is not clear
whether this is true for deep networks. Local entropy, on the other hand, exploits wide minima
which have been shown to exist in a variety of learning problems (Monasson & Zecchina, 1995;
Cocco et al., 1996). Please refer to Appendix C for a more elaborate discussion as well as possible
connections to stochastic variational inference (Blei et al., 2016).

3 LOCAL ENTROPY

We first provide a simple intuition for the concept of local entropy of an energy landscape. The
discussion in this section builds upon the results of Baldassi et al. (2016a) and extends it for the case
of continuous variables. Consider a cartoon energy landscape in Fig. 2 where the x-axis denotes the
configuration space of the parameters. We have constructed two local minima: a shallower although
wider one at xrobust and a very sharp global minimum at xnon�robust. Under a Bayesian prior on the
parameters, say a Gaussian of a fixed variance at locations xrobust and xnon�robust respectively, the
wider local minimum has a higher marginalized likelihood than the sharp valley on the right.

�0.5

0.0

0.5

1.0

1.5

2.0

xcandidate

xrobust

xnon-robust

Original landscape
Negative local entropy : � = 0.001
Negative local entropy : � = 0.00005

Figure 2: Local entropy concentrates on
wide valleys in the energy landscape.

The above discussion suggests that parameters that lie in
wider local minima like xrobust, which may possibly have
a higher loss than the global minimum, should generalize
better than the ones that are simply at the global mini-
mum. In a neighborhood of xrobust, “local entropy” as
introduced in Sec. 1 is large because it includes the con-
tributions from a large region of good parameters; con-
versely, near xnon�robust, there are fewer such contribu-
tions and the resulting local entropy is low. The local en-
tropy thus provides a way of picking large, approximately
flat, regions of the landscape over sharp, narrow valleys
in spite of the latter possibly having a lower loss. Quite
conveniently, the local entropy is also computed from the
partition function with a local re-weighting term.

Formally, for a parameter vector x 2Rn, consider a Gibbs
distribution corresponding to a given energy landscape
f (x):

P(x; b ) = Z�1
b exp (�b f (x)) ; (1)

where b is known as the inverse temperature and Zb is a normalizing constant, also known as the
partition function. As b ! •, the probability distribution above concentrates on the global minimum
of f (x) (assuming it is unique) given as:

x⇤ = argmin
x

f (x), (2)

which establishes the link between the Gibbs distribution and a generic optimization problem (2).
We would instead like the probability distribution — and therefore the underlying optimization
problem — to focus on flat regions such as xrobust in Fig. 2. With this in mind, let us construct a
modified Gibbs distribution:

P(x0; x,b ,g) = Z�1
x,b , g exp

⇣
�b f (x0)�b g

2
kx� x0k2

2

⌘
. (3)

4



Similar analytical results hold for 1-hidden layer NN with continuous weights 
and for overparametrized NN

High Local Entropy regions  ⬌   Wide Flat Minima (WFM) 

Analytical Results: Rare Wide Flat Minima (WFM)  exist in non-convex  
networks with continuous weights storing random patterns. 

(Baldassi, Pittorino, Zecchina, PNAS 2019)

Analytical/numerical  results: they have good generalisation properties 
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test 

generalization 

size/

Classical overfitting problem

size hidden layers (Neyshabur, Tomioka, and Srebro, 2014)

Overfitting under control in DNNs !?



Random Feature Model Neal, 1996; Balcan, Blum, Vempala 2006; 
Rahimi, Recht; 2008; Bach, 2016 

Nonlinear (random) projection of the data (from dimension D to N) 

Random Features

A more realistic model: Random features
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Teacher assigns the label by looking to "raw data" (dimension D)
Student sees a (random) projection of the data (of dimension N)
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• Interpolation does not necessarily lead to poor generalization, as 
long as you go ”deep” enough in the interpolation regime 

• Reconciling the modern practice with a statistical point-of-view 
• Explicit analysis for Linear Models 

Main findings

Why is the “double descent” important?

Stating that interpolation does not necessarily lead to poor
generalization, as long as you ”deep” enough in the interpolation
regime

Reconciling the modern practice with a statistical point-of-view

Explicit analysis for Linear Models

The true risk in the over-parameterized regime is typically lower!

Oren Yuval Learning curve in modern ML , The ”double descent” behavior 11 / 47

Belkin, Rakhlin, Tsybakov, 2018  

• Connection with the Hidden Manifold Model
Goldt, Mezard, Krzakala, Zdeborova, 2020
Montanari, Mei, 2019
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BLOG

Deep Double
Descent
We show that the double descent phenomenon
occurs in CNNs, ResNets, and transformers:
performance first improves, then gets worse,
and then improves again with increasing
model size, data size, or training time. This
effect is often avoided through careful
regularization. While this behavior appears to
be fairly universal, we don’t yet fully understand
why it happens, and view further study of this
phenomenon as an important
research direction.

December 5, 2019
3 minute read

Many classes of modern deep learning models,
including CNNs, ResNets, and transformers,
exhibit the previously-observed double descent
phenomenon when not using early stopping or
regularization. The peak occurs predictably at a
“critical regime,” where the models are barely able
to fit the training set. As we increase the number
of parameters in a neural network, the test error
initially decreases, increases, and, just as the
model is able to fit the train set, undergoes a

READ PAPER!

From: Deep Double Descent: Where Bigger Models and More Data Hurt
P Nakkiran, G Kaplun, Y Bansal, T Yang, B Barak, I Sutskever (2019)

Deep Double Descent
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Learning through atypical “phase transitions” in overparametrized neural networks 

3

II. THE TYPICAL GEOMETRY VS
OVERPARAMETRIZATION

In the following we consider the primitive loss function that
counts the number of misclassified patterns in the training set
whose stability is greater than a given margin of ^ � 0. For
each pattern, the stability �` is defined as the product of the
pre-activation of the output unit _` (w) and the binary label of
pattern H

` = ±1:

�` (w) ⌘ H
`
_
` (w) (2)

where

_
` (w) ⌘ 1p

#

#’
8=1

F8 f

 
1p
⇡

⇡’
:=1

�:8b
`
:

!
(3)

The loss function per pattern is defined as

✓#⇢ (��` (w); ^) = ⇥ (��` (w) + ^) (4)

where ⇥(·) is the Heaviside step function: ⇥ (G) = 1 if G > 0
and zero otherwise. For ^ = 0 this loss reduces to the one that
counts the number of training errors; with a slight abuse of
language we call it “number-of-errors loss” even if the margin
is non-zero. For the analytical study, we will be interested in
the large-size limit, where our calculations can be performed
by asymptotic methods: # , ⇡, % ! 1 while keeping finite
the ratios

U ⌘ %

#

, U) ⌘ %

⇡

, U⇡ ⌘ #

⇡

, (5)

where clearly U) = U
U⇡

. In order to compute the typical
properties of the solution space, the key quantity of interest is
the averaged free entropy of the model, i.e.

q = lim
# ,%,⇡!1

1
#

hln /ib ,� (6)

where we denoted with h•ib ,� the average over both the pat-
terns (including the desired outputs and thus the teacher) and
the features. Here / denotes the partition function of the model
which reads

/ (V) =
’
w

4
�VÕ%

`=1 ✓#⇢ (��` (w);^) (7)

For generic V, / (V) is the generating function in the variable
4
�V of the number of errors. In the analytical computations

however we have only considered the large V limit, where the
partition function reduces to the number of zero-error config-
urations (solutions):

/ =
’
w

%÷
`=1

⇥ (�` (w) � ^) ⌘
’
w

Xb ,� (w; ^) (8)

where Xb ,� is the indicator function that a pattern is being
correctly and robustly classified.

We also define the maximum margin ^max (U) for a fixed
value of U as the value of ^ for which q = 0 in the V ! 1
limit. The “interpolation threshold” U2 is instead defined as
the value of U for which zero-margin solutions disappear, i.e.
with high probability solutions cease to exist for U > U2 .

The averages of the logarithm in eq. (6), give access to
the most probable number of solutions for a randomly cho-
sen training set, and can be computed by asymptotic methods
developed in the theory of disordered systems, either the so
called replica method or the cavity method [19].

Phase diagram. Before diving into details, we anticipate
our most relevant result. The phase diagram of the model is
reported in Fig. 1. The plane (U) , U) is divided into three
distinct regions:

(1) an UNSAT region when the value of the density of con-
straints exceeds the interpolation threshold: U > U2 (U) ). As
we have anticipated, in this region there exists no configu-
ration of weights that is able to fit all the training set data.
This threshold is independent of the learning algorithm, but
it depends only on the properties of training data and of the
architecture. On the other hand for U < U2 (U) ) we have a
SAT region, so in principle the complexity of the model is able
to reproduce the data.

(2) for ULE (U) ) < U < U2 (U) ), despite there exist configu-
rations of weights that fit all the training set, they are not easily
accessible. We explain this by noticing that those solutions are
either completely isolated or are located inside a dense region
having a small characteristic size.

(3) for U  ULE (U) ) a wide and flat region of solutions
extending to very large scales appears. Those configurations
are also easily accessible by algorithms. We call the threshold
ULE (U) ) the Local Entropy transition. ULE can therefore be
interpreted as an upper bound to the algorithmic threshold of
algorithms.

As a confirmation to that we show in the inset of Fig. 1
the train error of the three representative algorithms, namely
Simulated Annealing (SA) [20], Belief-Propagation (BP) and
Stochastic BP-inspired (SBPI) [21]. None of them is able to
find solutions beyond the local entropy transition.

Typical solutions. Using the replica method in its replica
symmetric (RS) version (see SI), the averaged free entropy
turns out to depend on the “order parameters” @, ?, ?3 , A
and their conjugate Lagrange multipliers @̂, ?̂, ?̂3 , Â. Geo-
metrically @ represent the typical overlap between a pair of
solutions; ? is the typical overlap between a pair of solutions
projected in the teacher space (which has dimension ⇡), the
projection being performed simply by using the feature matrix
�:8; ?3 is the typical squared norm of a projected solution
and finally A denotes the typical overlap between a projected
solution and the teacher.

Eventually, q can be found by optimizing over eight order
parameters

q = argmax
@,@̂,?, ?̂,?3 , ?̂3 ,A ,Â

q'( (@, @̂, ?, ?̂, ?3 , ?̂3 , A, Â) (9)

where q'( is the RS expression for q (see SI). Knowing the

P= # data points
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Analytics vs Numerics in large scale DNNs

Deep Networks on Toroids: Removing Symmetries Reveals the Structure of
Flat Regions in the Landscape Geometry

Fabrizio Pittorino 1 Antonio Ferraro 1 Gabriele Perugini 1 2 Christoph Feinauer 1 Carlo Baldassi 1

Riccardo Zecchina 1

Abstract

We systematize the approach to the investigation
of deep neural network landscapes by basing it on
the geometry of the space of implemented func-
tions rather than the space of parameters. Group-
ing classifiers into equivalence classes, we de-
velop a standardized parameterization in which
all symmetries are removed, resulting in a toroidal
topology. On this space, we explore the error land-
scape rather than the loss. This lets us derive a
meaningful notion of the flatness of minimizers
and of the geodesic paths connecting them. Using
different optimization algorithms that sample min-
imizers with different flatness we study the mode
connectivity and relative distances. Testing a va-
riety of state-of-the-art architectures and bench-
mark datasets, we confirm the correlation between
flatness and generalization performance; we fur-
ther show that in function space flatter minima
are closer to each other and that the barriers along
the geodesics connecting them are small. We also
find that minimizers found by variants of gradient
descent can be connected by zero-error paths com-
posed of two straight lines in parameter space, i.e.
polygonal chains with a single bend. We observe
similar qualitative results in neural networks with
binary weights and activations, providing one of
the first results concerning the connectivity in this
setting. Our results hinge on symmetry removal,
and are in remarkable agreement with the rich phe-
nomenology described by some recent analytical
studies performed on simple shallow models.
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1. Introduction
The loss landscape of a typical deep neural network per-
forming a supervised learning task is in general highly non-
convex. Moreover, even small networks (by the current
standards) have a huge number of configurations of small
loss, corresponding to zero or near-zero training error. In
this sense, most modern networks operate in a strongly over-
parameterized regime. Understanding how simple variants
of first-order algorithms are able to escape bad local min-
ima and yet avoid overfitting is a fundamental problem,
which has received a lot of attention from several perspec-
tives (Belkin et al., 2019; Rocks & Mehta, 2020).

A natural and promising approach for addressing this is-
sue is to investigate the geometrical properties of the loss
landscape. Broadly speaking, there are two related but con-
ceptually distinct main research directions in this area: one
is about the dynamics of gradient-based learning algorithms
(e.g. Feng & Tu (2021)); the other concerns a static descrip-
tion of the geometry, its overall structure and its relation to
the generalization properties of the network on unseen data
(e.g. Gotmare et al. (2018)). In this paper, we focus on the
latter.

A first basic observation is that (near-)minimizers of the loss,
corresponding to (near-)zero training error, can have dra-
matically different generalization properties (Keskar et al.,
2016; Liu et al., 2020; Pittorino et al., 2021). A growing
amount of evidence shows a consistent correlation between
the flatness of the minima of the loss and the test accuracy,
across a large number of models and with several alterna-
tive measures of flatness, see e.g. Dziugaite & Roy (2017);
Jiang* et al. (2020); Pittorino et al. (2021); Yue et al. (2020).
Moreover, several studies indicate that stochastic gradient
descent (SGD) and its variants introduce a bias, compared to
full-batch gradient descent, towards flatter minima (Keskar
et al., 2016; Chaudhari & Soatto, 2018; Feng & Tu, 2021;
Pittorino et al., 2021). This effect seems to be amplified by
other operating procedures, e.g. the use of the cross-entropy
loss function, drop-out, judicious initialization, ReLU trans-
fer functions (Baldassi et al., 2018; 2020; 2019; Liu et al.,
2020; Zhang et al., 2021). Therefore, in practical applica-
tions, bad minima are seldom reported or observed, even
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Abstract

The properties of flat minima in the empirical risk landscape of neural
networks have been debated for some time. Increasing evidence suggests
they possess better generalization capabilities with respect to sharp ones.
In this work we first discuss the relationship between alternative measures
of flatness: The local entropy, which is useful for analysis and algorithm
development, and the local energy, which is easier to compute and was
shown empirically in extensive tests on state-of-the-art networks to be the
best predictor of generalization capabilities. We show semi-analytically in
simple controlled scenarios that these two measures correlate strongly with
each other and with generalization. Then, we extend the analysis to the
deep learning scenario by extensive numerical validations. We study two
algorithms, Entropy-SGD and Replicated-SGD, that explicitly include the
local entropy in the optimization objective. We devise a training schedule
by which we consistently find flatter minima (using both flatness measures),
and improve the generalization error for common architectures (e.g. ResNet,
EfficientNet).

1 Introduction

The geometrical structure of the loss landscape of neural networks has been a key topic of
study for several decades (Hochreiter & Schmidhuber, 1997; Keskar et al., 2016). One area
of ongoing research is the connection between the flatness of minima found by optimization
algorithms like stochastic gradient descent (SGD) and the generalization performance of the
network (Baldassi et al., 2020; Keskar et al., 2016). There are open conceptual problems
in this context: On the one hand, there is accumulating evidence that flatness is a good
predictor of generalization (Jiang et al., 2019). On the other hand, modern deep networks
using ReLU activations are invariant in their outputs with respect to rescaling of weights
in different layers (Dinh et al., 2017), which makes the mathematical picture complicated1.
General results are lacking. Some initial progress has been made in connecting PAC-Bayes
bounds for the generalization gap with flatness (Dziugaite & Roy, 2018).

The purpose of this work is to shed light on the connection between flatness and generalization
by using methods and algorithms from the statistical physics of disordered systems, and to
corroborate the results with a performance study on state-of-the-art deep architectures.

Methods from statistical physics have led to several results in the last years. Firstly, wide
flat minima have been shown to be a structural property of shallow networks. They exist
even when training on random data and are accessible by relatively simple algorithms, even
though coexisting with exponentially more numerous minima (Baldassi et al., 2015; 2016a;

1We note, in passing, that an appropriate framework for theoretical studies would be to consider
networks with binary weights, for which most ambiguities are absent.
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Learning in deep neural networks takes place by minimizing a
nonconvex high-dimensional loss function, typically by a stochas-
tic gradient descent (SGD) strategy. The learning process is
observed to be able to find good minimizers without getting
stuck in local critical points and such minimizers are often satis-
factory at avoiding overfitting. How these 2 features can be kept
under control in nonlinear devices composed of millions of tun-
able connections is a profound and far-reaching open question. In
this paper we study basic nonconvex 1- and 2-layer neural net-
work models that learn random patterns and derive a number of
basic geometrical and algorithmic features which suggest some
answers. We first show that the error loss function presents few
extremely wide flat minima (WFM) which coexist with narrower
minima and critical points. We then show that the minimizers of
the cross-entropy loss function overlap with the WFM of the error
loss. We also show examples of learning devices for which WFM
do not exist. From the algorithmic perspective we derive entropy-
driven greedy and message-passing algorithms that focus their
search on wide flat regions of minimizers. In the case of SGD and
cross-entropy loss, we show that a slow reduction of the norm
of the weights along the learning process also leads to WFM. We
corroborate the results by a numerical study of the correlations
between the volumes of the minimizers, their Hessian, and their
generalization performance on real data.

machine learning | neural networks | statistical physics

Artificial neural networks (ANN), currently also known as
deep neural networks (DNN) when they have more than

2 layers, are powerful nonlinear devices used to perform differ-
ent types of learning tasks (1). From the algorithmic perspective,
learning in ANN is in principle a hard computational problem
in which a huge number of parameters, the connection weights,
need to be optimally tuned. Yet, at least for supervised pattern
recognition tasks, learning has become a relatively feasible pro-
cess in many applications across domains and the performances
reached by DNNs have had a huge impact on the field of machine
learning.

DNN models have evolved very rapidly in the last decade,
mainly by an empirical trial and selection process guided by
heuristic intuitions. As a result, current DNN are in a sense
akin to complex physical or biological systems, which are known
to work but for which a detailed understanding of the princi-
ples underlying their functioning remains unclear. The tendency
to learn efficiently and to generalize with limited overfitting
are 2 properties that often coexist in DNN, and yet a unifying
theoretical framework is still missing.

Here we provide analytical results on the geometrical structure
of the loss landscape of ANN which shed light on the success
of deep learning (2) algorithms and allow us to design efficient
algorithmic schemes.

We focus on nonconvex 1- and 2-layer ANN models that
exhibit sufficiently complex behavior and yet are amenable to
detailed analytical and numerical studies. Building on methods
of statistical physics of disordered systems, we analyze the com-

plete geometrical structure of the minimizers of the loss function
of ANN learning random patterns and discuss how the current
DNN models are able to exploit such structure, for example start-
ing from the choice of the loss function, avoiding algorithmic
traps, and reaching rare solutions that belong to wide flat regions
of the weight space. In our study the notion of flatness is given
in terms of the volume of the weights around a minimizer that
do not lead to an increase of the loss value. This generalizes the
so-called local entropy of a minimizer (3), defined for discrete
weights as the log of the number of optimal weights assignments
within a given Hamming distance from the reference minimizer.
We call these regions high local entropy (HLE) regions for dis-
crete weights or wide flat minima (WFM) for continuous weights.
Our results are derived analytically for the case of random data
and corroborated by numerics on real data. In order to eliminate
ambiguities that may arise from changes of scale of the weights,
we control the norm of the weights in each of the units that com-
pose the network. The outcomes of our study can be summarized
as follows.

1) We show analytically that ANN learning random patterns
possess the structural property of having extremely robust
regions of optimal weights, namely WFM of the loss, whose
existence is important to achieve convergence in the learning

Significance

Deep neural networks (DNN) are becoming fundamental
learning devices for extracting information from data in a
variety of real-world applications and in natural and social
sciences. The learning process in DNN consists of finding a
minimizer of a loss function that measures how well the data
are classified. This optimization task is typically solved by tun-
ing millions of parameters by stochastic gradient algorithms.
This process can be thought of as an exploration process of
a highly nonconvex landscape. Here we show that such land-
scapes possess very peculiar wide flat minima and that the
current models have been shaped to make the loss functions
and the algorithms focus on those minima. We also derive
efficient algorithmic solutions.
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Learning in deep neural networks takes place by minimizing a
nonconvex high-dimensional loss function, typically by a stochas-
tic gradient descent (SGD) strategy. The learning process is
observed to be able to find good minimizers without getting
stuck in local critical points and such minimizers are often satis-
factory at avoiding overfitting. How these 2 features can be kept
under control in nonlinear devices composed of millions of tun-
able connections is a profound and far-reaching open question. In
this paper we study basic nonconvex 1- and 2-layer neural net-
work models that learn random patterns and derive a number of
basic geometrical and algorithmic features which suggest some
answers. We first show that the error loss function presents few
extremely wide flat minima (WFM) which coexist with narrower
minima and critical points. We then show that the minimizers of
the cross-entropy loss function overlap with the WFM of the error
loss. We also show examples of learning devices for which WFM
do not exist. From the algorithmic perspective we derive entropy-
driven greedy and message-passing algorithms that focus their
search on wide flat regions of minimizers. In the case of SGD and
cross-entropy loss, we show that a slow reduction of the norm
of the weights along the learning process also leads to WFM. We
corroborate the results by a numerical study of the correlations
between the volumes of the minimizers, their Hessian, and their
generalization performance on real data.
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Artificial neural networks (ANN), currently also known as
deep neural networks (DNN) when they have more than

2 layers, are powerful nonlinear devices used to perform differ-
ent types of learning tasks (1). From the algorithmic perspective,
learning in ANN is in principle a hard computational problem
in which a huge number of parameters, the connection weights,
need to be optimally tuned. Yet, at least for supervised pattern
recognition tasks, learning has become a relatively feasible pro-
cess in many applications across domains and the performances
reached by DNNs have had a huge impact on the field of machine
learning.

DNN models have evolved very rapidly in the last decade,
mainly by an empirical trial and selection process guided by
heuristic intuitions. As a result, current DNN are in a sense
akin to complex physical or biological systems, which are known
to work but for which a detailed understanding of the princi-
ples underlying their functioning remains unclear. The tendency
to learn efficiently and to generalize with limited overfitting
are 2 properties that often coexist in DNN, and yet a unifying
theoretical framework is still missing.

Here we provide analytical results on the geometrical structure
of the loss landscape of ANN which shed light on the success
of deep learning (2) algorithms and allow us to design efficient
algorithmic schemes.

We focus on nonconvex 1- and 2-layer ANN models that
exhibit sufficiently complex behavior and yet are amenable to
detailed analytical and numerical studies. Building on methods
of statistical physics of disordered systems, we analyze the com-

plete geometrical structure of the minimizers of the loss function
of ANN learning random patterns and discuss how the current
DNN models are able to exploit such structure, for example start-
ing from the choice of the loss function, avoiding algorithmic
traps, and reaching rare solutions that belong to wide flat regions
of the weight space. In our study the notion of flatness is given
in terms of the volume of the weights around a minimizer that
do not lead to an increase of the loss value. This generalizes the
so-called local entropy of a minimizer (3), defined for discrete
weights as the log of the number of optimal weights assignments
within a given Hamming distance from the reference minimizer.
We call these regions high local entropy (HLE) regions for dis-
crete weights or wide flat minima (WFM) for continuous weights.
Our results are derived analytically for the case of random data
and corroborated by numerics on real data. In order to eliminate
ambiguities that may arise from changes of scale of the weights,
we control the norm of the weights in each of the units that com-
pose the network. The outcomes of our study can be summarized
as follows.

1) We show analytically that ANN learning random patterns
possess the structural property of having extremely robust
regions of optimal weights, namely WFM of the loss, whose
existence is important to achieve convergence in the learning
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sciences. The learning process in DNN consists of finding a
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are classified. This optimization task is typically solved by tun-
ing millions of parameters by stochastic gradient algorithms.
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• Trained more than 10,000 models over two image classification datasets (CIFAR-10,  Street View House Numbers).  
• Training under all combination of hyperparameters and optimization resulted in a large pool of models.  
• For any such model, we considered 40 complexity measures*. 

The quite expensive Google experiments
(Y. Jiang, B.Neyshabur, H. M. D.Krishnan, S.Bengio, 2019)

* complexity measure in machine learning: a quantity that monotonically relates to some aspect of generalization.Typically it depends on the trained 
model and the training data, but should not have access to a validation set.  Lower complexity should often imply smaller generalization gap.

Findings:

“ … the relative success of sharpness-based and optimization-based complexity 
measures for predicting the generalization gap can provoke further study of 
these measures.“



Our aim is to use random Neural Network models to build cryptographic 
system, based on what we know about the geometry of solutions.



The Overlap Gap Property (OGP)

OGP Definition:  In high-dimensional optimization problems, the solution space exhibits 
a "gap" structure.



The Overlap Gap Property (OGP)

OGP Definition:  In high-dimensional optimization problems, the solution space exhibits 
a "gap" structure.

This scenario has to be studied for collisions



The Overlap Gap Property (OGP) D. Gamarnik, 2018

Let P be a combinatorial optimization problem exhibiting OGP. 

If a stable algorithm is applied to solve  P, then under typical conditions the algorithm will 
fail to find an optimal solution with high probability.

Intuition: if there is OGP  a small perturbation can result in a large change in the output, then 
the algorithm cannot be stable.

Theorem:  (OGP and Stable algorithms), informal statement:

Generalised to multi-OGP: 2-OGP ⇒ y-OGP   (y-OGP is sufficient) 
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Fig. S2. Landscape exhibiting the OGP: Solutions are split into clusters, with diameter of each cluster smaller than the distance between any pair clusters.

4 of 9 David Gamarnik

Landscape exhibiting the OGP: Solutions are split into 
clusters, with diameter of each cluster smaller than the 
distance between any pair clusters.
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Fig. S3. Landscape not exhibiting the OGP: diameter of one cluster is larger than distance between one pair of clusters.
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Landscape not exhibiting the OGP: diameter of one cluster 
is larger than distance between one pair of clusters.

from D. Gamarnik, PNAS 2018
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Fig. S1. Clustering phase transition. Clustered sets are represented by blue colors and the exception sets are represented by the grey colored regions
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What is a Stable Algorithm?

- Definition: it refers to an algorithm whose output does not change significantly when small, 
random perturbations are made to its input. The algorithm is robust to minor changes or noise 
in the input, meaning its performance or result is not highly sensitive to such perturbations.

Examples:  

• Gradient Descent 
• SVMs 
• PCS  
• Convex Optimization Algorithms (Interior-Point Methods or Simplex Method) 
• Low degree polynomials (hence message-passing) 
• QAOA  
• …



Post-Quantum Cryptography (PQC)

Quantum computers can break widely-used cryptographic systems (e.g., RSA, ECC) by leveraging 
algorithms like Shor's algorithm.

PQC: Cryptographic algorithms designed to be secure against attacks by quantum computers. 

•Lattice-based Cryptography: Utilizes hard problems in lattice structures, such as Learning With Errors (LWE).

•Code-based Cryptography: Based on the difficulty of decoding random linear codes, such as McEliece 
cryptosystem.

•Hash-based Cryptography: Relies on the security of hash functions, used for digital signatures.

•Multivariate Cryptography: Solves systems of multivariate polynomial equations, considered hard for quantum 
computers.



Ajtai’s Function and high-dimensional Lattice problems

Lattice Problem: Consider a lattice  defined as , where  is a (random) basis matrix. 
Ajtai's function is related to the shortest vector problem (SVP) in this lattice.

ℒ ℒ = {B ⋅ z : z ∈ ℤn} B

Ajtai's Theorem:
Worst-Case to Average-Case Reduction: Ajtai showed that there exists an algorithmic  function    that 
maps a random instance of a lattice problem (like SVP) to a generic solution in polynomial time if and only 
if the corresponding worst-case problem is solvable in polynomial time.

f(x)

Hardness Guarantee: The function    in Ajtai's theorem ensures that if an efficient algorithm solves the average case of this 
function, then it can also solve the hardest instances of the problem.

f(x)

Generating Hard Instances of Lattice Problems
Extended abstract

M. Ajtai
IBM Almaden Research Center

650 Harry Road, San Jose, CA, 95120
e-mail: ajtai@almaden,ibm. com

ABSTRACT. We give a random class of lattices in
Zn whose elements can be generated together with a
short vector in them so that, if there is a probabilistic
polynomial time algorithm which finds a short vector in
a random lattice with a probability of at least ~ then
there is also a probabilistic polynomial time algorithm
which solves the following three lattice problems in ev-
e~g lattice in Zn with a probability exponentially close
to one. (1) Find the length of a shortest nonzero vec-
tor in an n-dimensional lattice, approximately, up to a
polynomial factor. (2) Find the shortest nonzero vector
in an n-dimensional lattice L where the shortest vector
v is unique in the sense that any other vector whose
length is at most n’ IIv]l is parallel to v, where c is a
sufficiently large absolute constant. (3) Find a basis
bl, . . . . bn in the n-dimensional lattice L whose length,
defined as rnax~=l Ilbi II, is the smallest possible up to a
polynomial factor. We get the following corollaries: if
for any of the mentioned worst-case problems there is
no polynomial time probabilistic solution then (a) there
is a one-way function (b) for any fixed ~ > e > 0 there
is a polynomial time computable function r(m) with
mc s log ~(m) s m2e, so that the randomized subset
sum problem: ~~=1 aizi s b (mod ~(m)), zi = 0, 1 for
i=l ,..., m, has no polynomial time probabilistic solu-
tion, where ai i = 1, . . . . n and b are chosen at random
with uniform distribution from the interval [1, r(m)].

Introduction. A large number of the existing tech-
niques of cryptography include the generation of a spe-
cific instance of a problem in IVP (together with a solu-
tion) which for some reason is thought to be difficult to
solve. As an example we may think about factorization.
Here a party of a cryptographic protocol is supposed to
provide a composite number m so that the factorization
of m is known to her but she has some serious reason
to believe that nobody else will be able to factor m.
The most compelling reason for such a belief would be
a mathematical proof of the fact that the prime factors
of m cannot be found in less then k step in some re-
alistic model of computation, where k is a very large
number. For the moment we do not have any proof of
this type, neither for specific numerical values of m and
k, nor in some asymptotic sense. In spite of the lack
of mathematical proofs, in two cases at least, we may
expect that a problem will be difficult to solve. One is
the class of IV.P-complete problems. Here we may say
that if there is a problem at all which is difficult to
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solve, then an iVP-complete problem will provide such
an example.

The other case is, if the problem is a very famous
question (e.g. factorization), which for a long time were
unsuccessfully attacked by the most able scientists. In
both cases it is reasonable to expect that the problem is
difiicult to solve. Unfortunately the expression “diflicult
to solve” means difficult to solve in the worst case. If
our task is to provide a specific instance of the problem,
these general principles do not provide any guidance
about how to create one.

It has been realized a long time ago that a possible
solution would be to find a set of randomly generated
problems and show that if there is an algorithm which
finds a solution of a random instance with a positive
probability, then there is also an algorithm which solves
one of the famous unsolved problems in the worst case.
(It does not really matter whether this “positive prob-
ability y“ is ~, c or ~, because taking many instances of
the problem and asking for a solution for each of them,
the probability y can be improved.)

In this paper we give such a class of random prob-
lems. In fact we give a random problem: find a short
vector in a certain class of random Iat t ices (whose el-
ements can be generated together with a short vector
in them), whose solution in the mentioned sense would
imply the solution of a group of related “famous” prob-
lems in the worst case. We mention here three of these
worst-case problems:
(PI) Find the length of a shortest non.zero vector in
an n dimensional lattice, approximately, up to a poly-
nomial factor.
(P2) Find the shortest non.zero vector in an n dimen-
sional lattice L where the shortest vector v is unique in
the sense that any other vector whose length is at most
n’ Ilvll is parallel to v, where c is a sufficiently large ab-
solute constant.
(P3) Finds basis bl, . . . . bn. in the n-dimensional lattice
L whose length, defined as max~=l //bi /1, is the srnadest
possible up to a polynomial fztor.

Remarks. 1. (P2) can be given in a more general
form. If a lattice L G Zn is given, then find all sublat-
tices L’ = V n L (by giving a basis in them), where V is
a d-dimensional subspace of Zn so that min{d, n – d} is
smaller than a constant and V (l L has a basis VI, . . . . vd
so that for al w ~ L\V, nca max$=l llv~ll < Ilwll, where
cd > 0 is sufficiently Laxge with respect to d, but does
not depend on anything else.

2. The random problem can be also formulated as
a linear simultaneous Diophantine approximation prob-
lem.

3. Although (PI) is not in lVF’ (we are not able to
check whether our estimate is good), still, our algorithm
will give a one-sided certificate. Namely we may get a
certificate which shows that there is no shorter vector
than the lower bound in our estimate. (This certificate
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Explicit case: Short Integer Solution (SIS) Problem

Find a short vector  such that   for a given random matrix . 
This problem is hard under Ajtai's worst-case to average-case reduction.

x ∈ ℤn A ⋅ x = 0 mod q A

Function Definition: 

The SIS function could be formally  written as

Observations: 
- the hardness of these problems (and the functions derived from them) is believed to hold even against quantum 

computers.
- not very efficient …

 .f(A) = {x : A ⋅ x = 0 mod q, ∥x∥  is small}



NIST PQC Standardization: The National Institute of Standards and Technology (NIST) has just 
approved a standard for PQC algorithms, with the first crypto system officially approved.

Open problem:

PQC algorithms may have larger key sizes and slower performance compared to traditional 
algorithms. There is a need for efficient crypto systems.

Post-Quantum Encryption Standards

Remark:



Collision problem

these rare events should not exist!



Simplest non convex neural device : 1-hidden layer, i.i.d. random associations

↵ =
# patterns

# weights
<latexit sha1_base64="qbFA79Xv6dN1qC50+uHJ3FXB2j0="></latexit>

control parameter:

<latexit sha1_base64="w581HsszZER1UultGxyAOqMU61U="></latexit>

{(x̄µ, yµ)} µ = 1, ..., P = ↵N

<latexit sha1_base64="x/yrm8fQRWNEPTzsKpbEL/mf300="></latexit>

yµ = ±1 (i.i.d. p = 1/2)

<latexit sha1_base64="+/rX/sNIwxPJrDMGpQeRH7o9r30="></latexit>

xµ
`i = ±1 (i.i.d. p = 1/2)

training set:

Non convex also for K=1 (perceptron)

A := [x1 , x2 , . . . , xP ]

Find  W   such that with yA(W) = y {Wi = ± 1}, i.e.     sign(φ(∑
i

Wi xμ
i )) = yμ ∀μ

Ñ ⌘ N

K<latexit sha1_base64="Pdh0QlVw4GNTAlmN+ARgJECN4yg="></latexit>

i = 1, ..., Ñ
<latexit sha1_base64="rUM8TF4kCuGVUeb6xka1SplCJMo="></latexit>

` = 1, ...,K
<latexit sha1_base64="DKNOj4zuz6QlVR1jPtbuFZkdZZQ=">AAACjXicbZHRShwxFIYzo23t2NZte9mb4LJgYRlmrG2trUX0woKwKHRV2GyXTPbMbjCZGZOMdAnzOH2gXvZtzIzTYtUfAj//+Q4nOUkKwbWJoj+ev7T86PGTlafB6rPnL9Y6L1+d6rxUDIYsF7k6T6gGwTMYGm4EnBcKqEwEnCUXB3X97AqU5nn23SwKGEs6y3jKGTUumnR+9YjdID/5xBIQAvPqB5El7hPNZ5LW/i2pggeZXVJIHN8icRM0PN+N+2EY9onhYgp4ENSNbXYU9Kyj/xJUFHOKB/WQFsYELkt+hUmqKLODyh5Vk043CqNG+L6JW9NFrY4nnd9kmrNSQmaYoFqP4qgwY0uV4UxAFZBSQ0HZBZ3ByNmMStBj26yzwj2XTHGaK3cyg5v0doelUuuFTBwpqZnru7U6fKg2Kk26PbY8K0oDGbsZlJYCmxzXf4OnXAEzYuEMZYq7u2I2p24Lxv1gs4NPtT78e/F9c7oZxu/CrZOt7t5+u40V9Aatow0Uo49oD31Dx2iImLfqxd6O99lf89/7X/yvN6jvtT2v0X/yD68BQyLAPA==</latexit>

w`i
<latexit sha1_base64="WAdCArT2tjP0to7944WC02PJV/0="></latexit>

<latexit sha1_base64="Ph6pWUGlhzIcrIHrrLaajCAr0Vc="></latexit>

x̄µ

<latexit sha1_base64="YOhKyYt9wlEbWocv0yXeVv9Lu58="></latexit>

W`i

y = sign( φ(h) )

h =
K

∑
ℓ=1

sign (
N/K

∑
i=1

Wℓ,ixℓ,i)



Simplest non convex neural device : 1-hidden layer, i.i.d. random associations
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# weights
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Find  W   such that with yA(W) = y {Wi = ± 1}, i.e.     sign(φ(∑
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Wi xμ
i )) = yμ ∀μ
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K<latexit sha1_base64="Pdh0QlVw4GNTAlmN+ARgJECN4yg="></latexit>

i = 1, ..., Ñ
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<latexit sha1_base64="Ph6pWUGlhzIcrIHrrLaajCAr0Vc="></latexit>

x̄µ

<latexit sha1_base64="YOhKyYt9wlEbWocv0yXeVv9Lu58="></latexit>

W`i

y = sign( φ(h) )

h =
K

∑
ℓ=1

sign (
N/K

∑
i=1

Wℓ,ixℓ,i)

We will need to generalize this model through  to obtain the 
computational bounds we need for the collision problem

φ



•Inversion (learning): given disorder   and labels ,  find any 
set of weights  such that , assuming such  exists.

•Teacher-student:  given disorder  and labels  for 
uniformly sampled , find any  such that 

• Collision finding: given disorder , find any two  such 
that           (unexplored so far).

A ∈ RP×N y ∈ {−1,1}P

W ∈ {−1,1}N yA(W) = y W

A ∈ RP×N ŷ = yA(W) ∈ {−1,1}P

W ∈ {−1,1}N W′ ∈ {−1,1}N yA(W′ ) = ŷ

A ∈ RP×N W ≠ W′ ∈ {−1,1}N

yA(W) = yA(W′ )

Computational challenges in non-convex NN:

  random matrix  composed by    -dim random rows A ∈ RP×N P N xμ

x1

x2

xP

( (A :=



Collision finding:

The input is simply the function  itself, and the problem is to find a collision, defined as a pair of 

distinct  such that    .  

yA

W ≠ W′ yA(W) = yA(W′ )

Collision Resistant Hash Functions

 Def.:  A hash function family  is said to be collision resistant, if for any polynomial-
time algorithm  and any constant , it holds that,





where the randomness is taken over a uniform random choice of , and the random coins used by .

ℋ = {h : X → Y}
A( ⋅ ) c > 0

Pr
A, h∈Rℋ

[h(x) = h(y) ∧ x ≠ y ∣ (x, y) ← A] = o (n−c),

h A



The Generalised Binary Perceptron model(s)

 In order to fit our model to a set of random inputs  and labels , we need to impose that 
the stability  is larger than zero

xμ yμ

Δμ

Δμ(w) ≡ yμφ ( 1

N ∑
i

wix
μ
i ) ≥ 0 , for any .μ ∈ [P]

   where  ,   are binary variables, and  is  a -dimensional patternh ≡
1

N ∑
i

wixi wi x N

̂y = sign ( )φ(h)



Construction of a Hash Function Using a random  NN 

Input: Consider an input vector   from the space of possible inputs (e.g., a message or file).W

Random Function Generation: Generate a set of  random patternsP = αN

Hash Function: The hash function based on the GRW model can be defined as follows. 

y1(x) = sign (φ ( 1

N ∑
i

wix(1)
i ))

y2(x) = sign (φ ( 1

N ∑
i

wix(2)
i ))

yP(x) = sign (φ ( 1

N ∑
i

wix(P)
i ))

y : BN → BP



Some relevant examples  of non-linearities

•        standard binary perceptron model;


•    and  ,    symmetric perceptron;


•        reversed wedge perceptron; 


•       generalizalized reverse wedge perceptron, with  oscillations in .

φ(h) = h

φ(h) = κ − h yμ = 1

φ(h) = (h − γ)h(h + γ)

φ(h) =
K

∏
l=−K

(h +
lγ
K ) K [−γ, γ]

Indicator function ,     

    and   . 

𝕏x(w; κ) ≡
P

∏
μ=1

Θ (Δμ(w))

xμ
i ∼ 𝒩(0,1) α ≡

P
N
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The problem of Collisions

Given , and ,    find  ,    s.t.xμ, μ = 1,…, P xμ
i ∼ 𝒩(0,1) w(1) w(2)

sgn φ ( 1

N
w(1) ⋅ xμ) = sgn φ ( 1

N
w(2) ⋅ xμ) ∀μ

with  . c ≡ (w(1), w(2))

Indicator function :𝕏x(c)

𝕏x(c) ≡
P

∏
μ=1

∑
yμ

Θ (yμφ ( 1

N
w(1) ⋅ xμ)) Θ (yμφ ( 1

N
w(2) ⋅ xμ))

Partition function of collisions is      where . Zx ≡ ∫ dc 𝕏x(c; κc) dc ≡ dw(1)dw(2)



Geometric landscape collisions

Local entropy of collisions   :w̃ 1, w̃ 2

ln 𝒩ξ( w̃ 1, w̃ 2; d) ≡ ln∫ dw1dw2 𝕏ξ(w1, w2) δ (d [( w̃ (1), w̃ (2)), (w(1), w(2))] − d)

where  is a permutation invariant distance between two collisions.d [( w̃ (1), w̃ (2)), (w(1), w(2)]

Consider   and  with .ca = (w(1)
a , w(2)

a ) cb = (w(1)
b , w(2)

b ) a ≠ b

d (ca, cb) = min
π∈𝒮2

1
2

2

∑
s=1

d (w(s)
a − wπ(s)

b ) = min
π∈𝒮2

1
2

2

∑
s=1

1
4N

N

∑
i=1

(w(s)
ai − wπ(s)

bi )
2

= min
π∈𝒮2

1
2

2

∑
s=1

1
2 (1 −

1
N

w(s)
a ⋅ wπ(s)

b ) =
1
4

max
π∈𝒮2

2

∑
s=1

(1 − qab
sπ(s)) =

1
2

(1 − p)

with  the overlap on the diagonal 
of the overlap matrix  

p
qab

st

(thanks to the symmetry, we have that the overlap , and we can choose  to be the identity) qab
1π(1) = qab

2π(2) π



p

q1q0



Free entropy  in the annealed approximation, i.e.ϕy(d)
	

	ϕy(d) ≤ ϕA
y (d) = lim

yN→∞

1
yN

ln 𝔼x𝒩y(d; x)

Since  is a non-negative and integer valued random variable, by Markov inequality we get 𝒩y(d; x)

	P(𝒩y(d; x) > 0) ≤ 𝔼x𝒩y(d; x) = eyNϕA
y (d)

If   for    then  for large . ϕA
y (d) ≤ 0 α ≥ αUB

c (d) P(𝒩y(d; x) > 0) → 0 N

   ⇒  no  collisions at a fixed distance  to one another. α ≥ αUB
c (d) d

Note:  that  is only an upper bound to the true value (i.e. it might be that the true  is lower than that).αUB
c (d) αc



Generalised Reverse Wedge model

      generalizalized reverse wedge perceptron, with  oscillations in .φ(h) =
K

∏
l=−K

(h +
lγ
K ) K [−γ, γ]

h

In the large  limit, the computation simplifies:         K lim
N→∞

K
N

→ 0 , and next K ≫ 1



Conclusions

Statistical physics of highly non-convex random systems and Crypto are very close

Spin glass theory used for crypto-systems design

These are just first steps, we conjecture we can prove CRH w.r.t. stable algorithms

Marco Benedetti, Andrej Bogdanov, Enrico Malatesta, Marc Mezard, Gianmarco 
Perrupato, Alon Rosen, Nikolaj I. Schwartzbach , and Riccardo Zecchina



  

More e3cient algorithms 3: Quantum Annealing

● Quantum annealing strategy: use quantum fluctuations (rather than 
thermal fluctuations) to overcome energetic barriers

– Classical energy function + quantum perturbation, slowly send the 
perturbation to zero

● Thus far: unclear if "true" QA really helps, compared to standard 
annealing, in any relevant concrete scenario

classical
part

transverse field
(send Γ to 0)

Quantum Annealing for non convex learning devices

QA detour



  

QA: Suzuki-Trotter transformation

● Partition function transformation → "effective" replicated classical 
Hamiltonian (with infinite replicas, y→∞)

● Can be simulated with MCMC (finite y) → Quantum Simulated 
Annealing (QSA)

QA detour



  

Quantum annealing vs Robust ensemble

● Effective Hamiltonian after Suzuki-Trotter transformation: very similar 
to the robust ensemble description...

original
factor graph

QA

RE

C. Baldassi, R. Zecchina, PNAS 2018

QA detour



 

QSA on binary neural networks study
● Analytical calculations + numerical experiments + comparison with 

true QA in small instances

● Ends up in the dense states (exponential speed-up w.r.t. thermal 
annealing – a physical device would work in ~O(1)...)

● QA lowers kinetic energy by delocalizing → favors dense 
regions

C. Baldassi, R. Zecchina, PNAS 2018

(DWave-like)

QA detour


