

RD50 HV-CMOS Meeting

RD50-MPW4

Lab measurements #2 Bias and ToT

Bernhard Pilsl

AUSTRIAN

SCIENCES

Methods

- **Recorded S-Curves** .
- Scan injection voltage in 5mV steps ٠
- 100 injections per step •
- Fit data (to "logistic function") \rightarrow y_{Fit}(x) ٠
- From $y_{Fit}(x) = 50$ evaluate x ... VT50 ٠
- From $y_{Fit}(x_1) = 16$, $y_{Fit}(x_2) = 84 \rightarrow Noise = x_2 x_1$ ٠
- Chip not biased ٠
- For conversion from voltage to charge injection ٠ capacity of 2.8fF used

S-Curves with bias

- Biased to 200V
- Biasing allows V_{thr} = 930mV
 - Noise μ ~ 31.5mV
 - At $V_{thr} = 950 \text{mV}$ and
 - VT50 σ ~ 3.7mV
- With **V**_{thr} = **950mV**
 - Noise $\mu \sim 30.3 mV$
 - Without bias $\mu \sim 30.9 mV$
 - Slightly better
 - VT50 $\sigma \sim 3.1 \text{mV}$
 - Without bias $\sigma \sim 3.2 mV$

VT50 response summary

- Smallest possible threshold with 200V bias corresponds to 930mV \sim 2930e $^{-}$
 - Still a large threshold

Response vs. Threshold

- Performed 2D scan
 - V_{thr} from 930mV \rightarrow 1300mV in 5mV steps
 - Injections in 5 mV steps
 - Only 1 double column (128 random pixels, to save time) evaluated
 - Justifiable by homogeneity of pixel response

Response vs. Threshold (Low V_{th})

- In range 930mV, 970mV linear fit parameters:
 - Offset smaller
 - Slope steeper
- Non linear effects in threshold behavior observed

ToT spectrum

- V_{thr} = 930mV, tuned trimDAC, 200V bias, injection voltage = 1.0V
- 100 injection pulses for full matrix

AUSTRIAN ACADEMY OF SCIENCES

- ToT values ranging from ~(10, 20) LSB
 - Huge difference of $\Delta t \sim 10 * 25$ ns = 250ns
- With *fei3_read* = 3 still 2 hits with ToT values O(250 LSB)
 - Disappear with fei3_read = 4
 - Corresponds to 5 * 25ns = 125ns read duration
 - Slow

AUSTRIAN ACADEMY OF SCIENCES

Further ToT observations

- TrimDAC set to 7 for full matrix
- Tuning seems not to have an effect on ToT distribution

- Single pixel shows 3 LSB spread
 - "Ideal" scenario for full matrix

SCIENCES

ToT spectrum: Effects of V_{ini}

- Investigated effects of V_{ini} amplitude ٠
- Injections to full matrix •
- μ_{ToT} smaller at lower V_{ini} •
- Distribution narrower at lower V_{ini} •
- At $V_{inj} = 0.2V$ (~VT50) almost ideal distribution ٠

ToT spectrum: Effects of V_{thr}

- Investigated effects of V_{thr}
- V_{inj} = 1.0V
- μ_{ToT} smaller at higher V_{thr}
- Width of distribution "constant" at different V_{inj}

Optimize ToT Spectra

- Procedure:
 - Choose V_{thr}
 - Tune to $V_{inj} = \mu(VT50)$
 - Extract V_{inj_opt} from 95% point of tuned S-curve
 - Record injection spectra with V_{inj_opt}
- → Narrow distribution

 $V_{thr} = 1.15V, V_{inj} = 490mV$

Conclusion / Outlook / Questions

- Biasing allows to reduce V_{thr} ٠
- Biasing reduces noise minimally ٠
- Non linear behavior of VT50 vs V_{thr} still a mistery ٠
 - Ideas? -

AUSTRIAN

SCIENCES

- V_{inj} far off from VT50 at given V_{thr} leads to broad ToT distribution ٠
 - Why? -
- Measuring ToT spectrum with ⁹⁰Sr source ٠
- Different bias voltages ٠
- Investigate baseline voltage effects on response curve ٠
- Stay tuned :) ٠