

Neuroscience Workflows Joint Management of Data and Computation

HEP Workflow Management Workshop

Erik C. Johnson, Christa Cooke, Nikoo Dalili, Victoria Rose, Daniel Xenes

erik.c.johnson@jhuapl.edu

Automated research workflows for neuroscience

Neuroscience Operations Maturity Roadmap

APL

Data Archives of the US BRAIN Initiative

- Increasing set of public data repositories
- For example, US BRAIN Initiative Archives

Neural Structure at Different Scales

EM. 1 *mm*³: ~2 *petabytes*

Voxel size: ~1 mm³

APL

Voxel size: ~1 um³

Voxel size: ~270 nm³

A quick introduction to the field MICrONS (Machine Intelligence from Cortical Networks)

Structural Data:

BossDB Ecosystem

Multiple model organisms:

- Invertebrates
- Vertebrates
- Mammals

Varying imaging modalities and scales:

- EM, XRM, XNH Light Microscopy
- Dataset size (0.001 400 TB)
- Image extent (10 μm³ 1 mm³)
- Image resolution (1 nm 1 μm)

Image, segmentation, annotation, connectomics data:

- Image data (e.g., numpy array)
- Image tiles / image files (e.g., *.PNG)
- Object data (e.g., numpy array)
- Connectome (e.g., *.CSV)
- Meshes (e.g., precompute data)

Work easily with subvolumes, cut-outs

Visualization, Workflows, Standards, and more!

https://bossdb.org/

BossDB – Open Data Storage

intern SDK

• intern SDK

- https://bossdb.org/tools/intern
 - Python, compatible with Jupyter
 - Node.js
 - Julia (partial)
 - Rust (partial)
- Connects with multiple community resources (storage, visualization)
 - DVID
 - CloudVolume / precompute
 - Neuroglancer
 - syglass.io
- Facilitates ingests with a variety of community data formats

Matelsky 2020 - https://www.biorxiv.org/content/10.1101/2020.05.15.098707v1

Kuan & Phelps 2020, Witvliet 2021, MICrONS Minnie Dataset

BossDB – Data Access & Visualization

- Multiple Data Visualization
 Options
 - Neuroglancer
 - syGlass.io
 - Python
- Account-Free Data Access

Neuroscience Workflows: Examples from EM

A. Cell Membrane Detection

D. Graph Generation

Automated Workflow Management

- Software to execute a defined sequence of processing steps
- Automated execution of computational steps
- Computational dependencies captured as a Directed Acyclic Graph (DAG)
- Simple example use case: automate execution of a series of scripts which are run every time you collect new data
- · Hundreds of software solutions for this
 - Academic

https://github.com/nextflow-io/nextflow

- Commercial

Key Features of Workflow Management

- Workflow execution control- start, stop, restart, schedule
- Monitoring tools- cost, resources, execution success
- Scalable execution from local compute to clusters/cloud
- Some things to consider:
 - Setup complexity
 - Open-source?
 - Can you share and version control workflows?
 - What language is used to specify workflows?
 - How are backend resources managed?
 - What visualization tools are included?

Comparing Low-cost Workflow Orchestration Systems

Tool	Description	Language	Features
Prefect	Workflow orchestration tool with a free open- source version	Python	Task dependencies, parameterization, retries, dashboard, resource management
Airflow	Open-source platform for authoring, scheduling, and monitoring workflows	Python (with DSL)	Directed Acyclic Graphs (DAGs), web- based UI, task dependencies, scheduling
Luigi	Open-source workflow management tool by Spotify	Python (with DSL)	Task dependencies, parameterization, visualizing workflow, scheduling
Argo Workflows	Open-source workflow engine for running jobs in Kubernetes	YAML or DSL	Container-native workflows, complex dependencies, parallelism, event- driven triggers, integration with Kubernetes
Nextflow	Workflow management system for scalable and reproducible scientific workflows	Groovy (with DSL)	Scalable and distributed computing, process isolation, dependency management, compatibility with Python and bioinformatics tools
Snakemake	Workflow management system specifically for bioinformatics workflows	Python (with DSL)	Declarative rules, dynamic rule generation, compatibility with Python and bioinformatics tools, parallel and distributed execution

APL,

Comparing Low-cost Workflow Orchestration Systems

ΤοοΙ	Description	Language	Features
Prefect	Workflow orchestration tool with a free open- source version	Python	Task dependencies, parameterization, retries, dashboard, resource management
Airflow	Open-source platform for authoring, scheduling, and monitoring workflows	Python (with DSL)	Directed Acyclic Graphs (DAGs), web- based UI, task dependencies, scheduling
Luigi	Open-source workflow management tool by Spotify	Python (with DSL)	Task dependencies, parameterization, visualizing workflow, scheduling
Argo Workflows	Open-source workflow engine for running jobs in Kubernetes	YAML or DSL	Container-native workflows, complex dependencies, parallelism, event- driven triggers, integration with Kubernetes
Nextflow	Workflow management system for scalable and reproducible scientific workflows	Groovy (with DSL)	Scalable and distributed computing, process isolation, dependency management, compatibility with Python and bioinformatics tools
Snakemake	Workflow management system specifically for bioinformatics workflows	Python (with DSL)	Declarative rules, dynamic rule generation, compatibility with Python and bioinformatics tools, parallel and distributed execution

APL,

Comparing Low-cost Workflow Orchestration Systems

ΤοοΙ	Description	Language	Features
Prefect	Workflow orchestration tool with a free open- source version	Python	Task dependencies, parameterization, retries, dashboard, resource management
Airflow	Open-source platform for authoring, scheduling, and monitoring workflows	Python (with DSL)	Directed Acyclic Graphs (DAGs), web- based UI, task dependencies, scheduling
Luigi	Open-source workflow management tool by Spotify	Python (with DSL)	Task dependencies, parameterization, visualizing workflow, scheduling
Argo Workflows	Open-source workflow engine for running jobs in Kubernetes	YAML or DSL	Container-native workflows, complex dependencies, parallelism, event- driven triggers, integration with Kubernetes
Nextflow	Workflow management system for scalable and reproducible scientific workflows	Groovy (with DSL)	Scalable and distributed computing, process isolation, dependency management, compatibility with Python and bioinformatics tools
Snakemake	Workflow management system specifically for bioinformatics workflows	Python (with DSL)	Declarative rules, dynamic rule generation, compatibility with Python and bioinformatics tools, parallel and distributed execution

APL,

Limitations of Workflow Management for Neuroscience

- Workflow structure and definition domain specific
- Managing heterogenous compute resources is a challenge
- Adoption is not widespread in neuroscience/neuroimaging outside of –omics communities
- Data management is a problem
 - Data sources
 - Data standards
 - Intermediate data products
- Possible approaches to overcome these challenges:
 - Integration with Data Archives
 - Data standards and standard APIs
 - Structured data management (e.g. DataJoint)

SABER: Workflow Management for Neuroimaging

- Workflow management widely used in bioinformatics
 - Galaxy (<u>https://usegalaxy.org/</u>) is a great example
- Some long-established solutions
 - LONI
 - Nipype
- SABER aimed to integrate standard definitions (Common Workflow Language), scalable management, and dockerized tool library

https://academic.oup.com/gigascience/article/9/12/giaa147/6042730

Example Tool – Cell Detection

- Docker-ized tool for detecting cell bodies in X-Ray Microtomography data.
- Leverages CWL's DockerRequirement hint to enforce latest image is used for container creation.
- Defines required and optional hyperparameters.
- Provides a standard interface for future cell detection tools.

cwlVersion: v1.0 class: CommandLineTool hints: DockerRequirement: dockerPull: aplbrain/xbrain:latest baseCommand: python arguments: ["/app/unsupervised_celldetect.py", "detect3D"] inputs: input: type: File inputBinding: position: 1 prefix: -i output_name: type: string inputBinding: position: 2 prefix: -o dense_output_name: type: string inputBinding: position: 3 prefix: -- denseoutput threshold: type: float? inputBinding: prefix: --pthreshold position: 4 stop: type: float? inputBinding: prefix: --presidual position: 5 initial template size: type: int? inputBinding: prefix: --spheresz position: 6 dilation: type: int? inputBinding: prefix: --dilationsz position: 7 max_cells: type: int? inputBinding: prefix: --maxnumcells position: 8 outputs: cell_detect_results: type: File outputBinding: glob: \$(inputs.output_name) dense_output: type: File outputBinding: glob: \$(inputs.dense_output_name)

Example Workflow – X-Ray U-Net Cell Detection

- A machine-learning workflow for unsupervised cell detection:
- DAG defined by output dependencies specified in workflow CWL.
- score_format hints allow for easy tracking of important performance metrics in logs.

CWL Parser

- Python based processor parser
- Part of core SABER docker
- Executed using SABER command line tools
- Similar to CWL-Airflow project for genomics, but with key added features
 - Resource aware (CPU/GPU)
 - Can specify sweeps (in separate yaml parameter file from CWL)
 - x:
 range: start: 0 stop: 10000 step: 10
 - parameters:
 - xmin
 - xmax
- Can specify stdout flags with metrics values, for optimization of pipelines

Next Steps: Integrated Workflow and Data Management

- Benefits of Workflow Managers
 - Scalable execution
 - Capture computation dependencies
 - Manage large numbers of jobs efficiently
- Benefits of Data Management
 - Access to archive
 - Standardized types/formats
 - Structured data storage and dependencies
- How can we combine these benefits?

Example: DataJoint + Nextflow

- Low-effort, easy set-up integration of
 - Workflow management
 - Data Management
- nextflow provides
 - Task definitions and execution
 - Workflow definition and execution
- <u>https://github.com/aplbrain/neuroworkflows-demo</u>
- https://bossdb.org/

Nextflow Example

nextflow

cd incf-demo/workflow
nextflow run incf-demo.nf -with-report report.html

- https://github.com/aplbrain/neuroworkflows-demo
- <u>https://bossdb.org/</u>

Nextflow Example

// Define the Nextflow process for downloading and processing data
process intern_pull {
 container 'intern/pull'

output:

path "\$params.out_dir/data.npy"

.....

```
python /app/intern_pull.py \
--bossdb_uri $params.bossdb_uri \
--z_rng $params.z_rng \
--y_rng $params.y_rng \
--x_rng $params.x_rng \
--output_dir $params.out_dir \
"""
```

// Define the Nextflow workflow
workflow {
 intern_pull()
 cc3d_annotate(intern_pull.out)
 datajoint_push(cc3d_annotate.out)

}

Future Directions

- Continue to explore intersection of data and workflow management
- Connect to a range of archives
- Streamline process to create workflows
- Streamline process to create structure data given workflows
- Explore impact for neuroinformatics

Reference Repos:

<u>https://github.com/aplbrain/saber</u> (CWL + Airflow, though a bit out of date!) <u>https://github.com/aplbrain/neuroworkflows-demo</u> (nextflow)

Team

 Grateful for the support of NIH Grant R24MH114799, R24MH114785, R01MH126684, R44NS129492

Caitlyn Bishop Christa Cooke Hannah Cowley Joseph Downs Nathan Drenkow Tim Gion William Gray-Roncal Ph.D. Sandy Hider Mark Hinton Marisa Hughes, Ph.D. Justin Joyce Lindsey Kitchell, Ph.D. Dean Kleissas Jordan Matelsky Sean McDaniel, Ph.D. **Derek Prvor** Devin Ramsden Elizabeth Reilly, Ph.D. Corban Rivera, Ph.D. Jorge Rivera Patricia Rivlin, Ph.D. Luis Rodriguez

Kevin Romero Victoria Rose Nicole Stock Marisel Villafañe-Delgado, Ph.D. Brock Wester, Ph.D. Perry Wilson Miller Wilt Miguel Wimbish Daniel Xenes

DataJoint Dimitri Yatsenko Raphael Guzman Monty Kosma Kabilar Gunalan Drew Yang Jeroen Verswijver Georgia Tech Eva Dyer, Ph.D. University of Pennsylvania Konrad Kording, Ph.D.

https://github.com/aplbrain https://bossdb.org

JOHNS HOPKINS APPLIED PHYSICS LABORATORY