
CWL in the HPC Ecosystem
Iacopo Colonnelli
Assistant Professor (RTDA), Computer Science Dept., University of Torino, Italy
Member of the CWL Technical Team
Co-lead of the CWL4HPC Working Group

1

2

CWL in the HPC Ecosystem: How To

• Build HPC support inside CWL: the CWL4HPC Working Group
1. Identify workflow patterns in HPC
2. Implement them in the CWL semantics
3. Validate the new features with real WMSs on real use cases
4. Extend CWL with the new features

• Build HPC support around CWL: the StreamFlow WMS
1. Couple standard CWL workflows with distributed execution semantics
2. Develop workflow-aware and location-aware techniques (scheduling, fault tolerance,
data movement, …)

3. Extend the StreamFlow WMS with custom plugins
4. Let StreamFlow orchestrate large-scale distributed workflows on cloud+HPC and
cross-HPC environments

3

Build HPC support inside CWL
The CWL4HPC Working Group

The CWL4HPC Working Group

The Common Workflow Language for High-Performance Computing
(CWL4HPC) Working Group aims to identify workflow patterns capable
of modelling large-scale scientific applications and implement the related
CWL enhancement proposals

5

The CWL4HPC Working Group

For each CWL enhancement proposal, the CWL4HPC group aims to:
1. Motivate it with two real use cases that would benefit from the
proposed feature

2. Agree on a first draft of the syntax and semantics of the proposed
feature

3. Implement it as a CWL extension on cwltool and at least another
CWL-compliant workflow system, together with a suite of
conformance tests

4. Validate it on at least two existing CWL workflows where the
proposal is applied, or with new example workflows created on
purpose

6

R. Ferreira da Silva, R. Filgueira, I. Pietri, M. Jiang, R. Sakellariou, and E. Deelman, “A characterization of workflow management
systems for extreme-scale applications,” Future Generation Computer Systems, vol 75, pp. 228-238, 2017. doi:
10.1016/j.future.2017.02.026

Workflow Patterns in HPC

7

https://doi.org/10.1016/j.future.2017.02.026

Workflow Patterns in CWL: Sequential
#!/usr/bin/env cwl-runner

cwlVersion: v1.0
class: Workflow

inputs:
 tarball: File
 name_of_file_to_extract: string

outputs:
 compiled_class:
 type: File
 outputSource: compile/classfile

steps:
 untar:
 run: tar-param.cwl
 in:
 tarfile: tarball
 extractfile: name_of_file_to_extract
 out: [extracted_file]
 compile:
 run: arguments.cwl
 in:
 src: untar/extracted_file
 out: [classfile]

8

Workflow Patterns in CWL: Parallel

CWL supports the scatter/gather data
parallel patterns at the step level since
v1.0

If the scatter field declares more than
one input parameter, the scatterMethod
field describes how to decompose the input
into a discrete set of jobs (dotproduct,
nested_crossproduct, or
flat_crossproduct)

#!/usr/bin/env cwl-runner

cwlVersion: v1.0
class: Workflow

requirements:
ScatterFeatureRequirement: {}

inputs:
bam: File
chromosomes: string[]

outputs:
HaplotypeCaller_VCFs:

type: File[][]
outputSource: GATK_HaplotypeCaller/vcf

steps:
GATK_HaplotypeCaller:

run: GATK_HaplotypeCaller.cwl
scatter: [intervals, input_bam]
scatterMethod: flat_crossproduct
in:

input_bam: bam
intervals: chromosomes

out: [vcf]

9

Workflow Patterns in CWL: Iterative
A cwltool:Loop extension has been introduced to
support iterative workflows, which is currently being
evaluated for inclusion in CWL v1.3.

The outputMethod field determines the value to be
propagated to subsequent steps of the workflow: just
the output of the last iteration (last) or the ordered
set containing the output of all loop iterations (all).

This is the first ongoing activity promoted by the
CWL4HPC Working Group. There is still time to
discuss improvements and modifications to the
proposed syntax.

#!/usr/bin/env cwl-runner

cwlVersion: v1.3.0-dev1
class: Workflow

requirements:
 InlineJavascriptRequirement: {}

inputs:
 i1: int

outputs:
 o1:
 type: int
 outputSource: subworkflow/o1

steps:
 subworkflow:
 run: sum.cwl
 when: $(inputs.i1 < 10)
 loop:
 i1: o1
 outputMethod: last
 in:
 i1: i1
 out: [o1] https://matrix.to/#/#cwl4hpc:matrix.org

10

https://matrix.to/

Workflow Patterns in CWL: Concurrent

Concurrent workflow steps require streaming capabilities. CWL itself does
not (yet) support an explicit Stream type to connect input and output
ports

CWL structure is regular enough to allow some automatic conversions of
arrays into streams (e.g., Gather+Scatter, Loop+Scatter), but not all cases
can be safely optimized by the compiler/WMS (e.g., in case of valueFrom
fields)

A Channel CWL extension has been proposed, but no WMS supports it by
now. It will probably be one of the next focuses in the CWL4HPC group

https://github.com/common-workflow-language/common-workflow-language/issues/939
11

https://github.com/common-workflow-language/common-workflow-language/issues/939

Workflow Patterns in CWL: Concurrent

Note that the External Steering pattern can always be modelled as a
Concurrent Iteration pattern, enclosing the external interaction in a step’s
internal logic.

The CWL Operation class can model workflow steps as custom processes.
This mechanism could be used to embed interactive steps in a CWL
Workflow (e.g., modelling the cells of a Jupyter Notebook)

I. Colonnelli, M. Aldinucci, B. Cantalupo, L. Padovani, S. Rabellino, C. Spampinato, R. Morelli, R. Di Carlo, N. Magini and C.
Cavazzoni, “Distributed workflows with Jupyter”, Future Generation Computer Systems, vol. 128, pp. 282-298, 2022. doi:
10.1016/j.future.2021.10.00712

https://doi.org/10.1016/j.future.2021.10.007

Workflow Patterns in CWL: Coupling
Support for step coupling requires several features:
• Co-scheduling and potentially co-location of multiple workflow
steps

• Communication channels between in/out ports of different
workflow steps

• Application-agnostic communication protocols between multiple
steps (e.g., POSIX-based pipes)

CWL does not support co-scheduling, co-location, and channel types.
Plus, it offers (limited) support for streaming File contents (through
the streamable field). A new extension to enrich the CWL data
streaming capabilities is in plan

Alberto Riccardo Martinelli, Massimo Torquati, Marco Aldinucci, Iacopo Colonnelli, Barbara Cantalupo. “CAPIO: a Middleware for
Transparent I/O Streaming in Data-Intensive Workflows”, 2023 IEEE 30th International Conference on High Performance
Computing, Data, and Analytics (HiPC), IEEE, Goa, India, 2023.13

The CWL4HPC Working Group

https://www.commonwl.org/working-groups/cwl4hpc

The CWL4HPC Working Group aims to build, refine, and validate high-
quality CWL enhancement proposals in the HPC ecosystem.

The CWL4HPC proposal process is iterative. If some criticalities of
further enhancements emerge during the implementation or validation
phases, the syntax and semantics can be refined and the process
restarts. After reaching a sufficient level of maturity, the group agrees to
present the proposal to the CWL community for inclusion in the following
standard version

Domain experts, HPC administrators, workflow designers and maintainers,
and workflow system implementers are welcome to join the discussion,
but the group is open to anyone who wants to contribute

14

https://www.commonwl.org/working-groups/cwl4hpc

Outside CWL4HPC

The CWL4HPC Working Group is not (and neither aims to be) the only
place where to develop HPC-oriented CWL extensions. Other examples of
CWL Extensions for the HPC ecosystem are:

• The MPIRequirement extension, supported by the cwltool WMS,
which allows users to specify the number of processes that should run
an MPI command

• The CUDARequirement extension, supported again by the cwltool
WMS, that targets heterogeneous HPC facilities equipped with NVIDIA
GPUs

Both features are under evaluation to be included in CWL 1.3

15

Build HPC support around CWL
Hybrid Workflows and the StreamFlow WMS

17

Large-Scale Workflows
• Each step of a distributed
application can require multiple
intercommunicating agents (e.g.,
a Spark cluster or a micro-
services architecture)

• Large-scale architectures can be
heterogeneous (e.g., Cloud+HPC
environments and
Classical+Quantum computing)

• Large-scale architectures can be
modular, and modules can be
independent of each other (e.g.,
modular HPC and infrastructure
federations)

A hybrid workflow is a workflow whose steps can span multiple,
heterogeneous, and independent computing infrastructures.

Deployment models

SPMD

Workflow StreamFlow+ =

k8s

cluster1

cluster2

Hybrid Workflows

18

Hybrid Workflows

ldriverl1 l2

s1

s2 s3

p3p2p1

Workflow model
A directed bipartite graph encoding
executable steps, data ports and
dependencies between them

Topology of deployment locations
A directed graph where the nodes are the
locations in charge of executing steps and
the links are directed communication
channels between locations

Mapping relations
Many-to-many relations stating which locations are in
charge of executing each workflow step

19

ldriverl1 l2

s1

s2 s3

p3p2p1
A step 𝑠 becomes fireable
(ready for execution) when:
• Each input port 𝐼𝑛 𝑠
contains the right number of
tokens

• Its related location is
deployed

• All its input data have been
transferred on that location

Model Interpretation

20

The StreamFlow WMS

https://streamflow.di.unito.it

I. Colonnelli, B. Cantalupo, I. Merelli and M. Aldinucci, “StreamFlow: cross-breeding cloud with HPC,” in IEEE Transactions on
Emerging Topics in Computing, vol. 9, iss. 4, p. 1723-1737, 2021. doi: 10.1109/TETC.2020.3019202.21

https://streamflow.di.unito.it/
https://ieeexplore.ieee.org/abstract/document/9177340

The StreamFlow WMS
StreamFlow is listed as a production-ready implementation of CWL. It has also
been used as a software laboratory to experiment new CWL extensions in the
CWL4HPC Working Group (e.g., the Loop extension for iterative workflows)

22

Case study: Single-Cell Pipeline

CellRanger

R environment

CellRanger mkfastq

CellRanger count

Seurat

SingleR

Scatter

I. Colonnelli, B. Cantalupo, I. Merelli and M.
Aldinucci, “StreamFlow: cross-breeding cloud
with HPC,” in IEEE Transactions on Emerging
Topics in Computing, vol. 9, iss. 4, p. 1723-1737,
2021. doi: 10.1109/TETC.2020.3019202.23

https://ieeexplore.ieee.org/abstract/document/9177340

Case study: Variant Calling Pipeline

A. Mulone, S. Awad, D. Chiarugi, and M. Aldinucci, “Porting the variant calling pipeline for NGS data
in cloud-HPC environment,” in 47th IEEE annual computers, software, and applications conference,
COMPSAC 2023, Torino, Italy, 2023, p. 1858–1863. doi:10.1109/COMPSAC57700.2023.0028824

http://dx.doi.org/10.1109/COMPSAC57700.2023.00288

Case study: Variant Calling Pipeline

A. Mulone, S. Awad, D. Chiarugi, and M. Aldinucci, “Porting the variant calling pipeline for NGS data
in cloud-HPC environment,” in 47th IEEE annual computers, software, and applications conference,
COMPSAC 2023, Torino, Italy, 2023, p. 1858–1863. doi:10.1109/COMPSAC57700.2023.0028825

http://dx.doi.org/10.1109/COMPSAC57700.2023.00288

Case study: Variant Calling Pipeline

A. Mulone, S. Awad, D. Chiarugi, and M. Aldinucci, “Porting the variant calling pipeline for NGS data
in cloud-HPC environment,” in 47th IEEE annual computers, software, and applications conference,
COMPSAC 2023, Torino, Italy, 2023, p. 1858–1863. doi:10.1109/COMPSAC57700.2023.0028826

http://dx.doi.org/10.1109/COMPSAC57700.2023.00288

Case study: Cross-Facility Federated Learning

Cloud
VM

Train
SVHN

Aggregate

Train
MNIST

<latexit sha1_base64="ELWLsbRISm20raxeLFdtXHyUNyc=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBahp5KUoh4LXjxWsB/QhrLZTtqlm03Y3Qgl9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzSxBP6JjyUPOqLFSOxlm9fmwXHFr7hJkk3g5qUCO1rD8NRjFLI1QGiao1n3PTYyfUWU4EzgvDVKNCWVTOsa+pZJGqP1seeycXFllRMJY2ZKGLNXfExmNtJ5Fge2MqJnodW8h/uf1UxPe+hmXSWpQstWiMBXExGTxORlxhcyImSWUKW5vJWxCFWXG5lOyIXjrL2+STr3mXdcaD41Ks5rHUYQLuIQqeHADTbiHFrSBAYdneIU3RzovzrvzsWotOPnMOfyB8/kDwKeOlA==</latexit>p2
<latexit sha1_base64="RdRm1FE3DylllQR1WLqHg9Vlsns=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBahp5JIUY8FLx4rmFZoQ9lsJ+3SzSbsboQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fiko5NMMfRZIhL1GFKNgkv0DTcCH1OFNA4FdsPJ7dzvPqHSPJEPZppiENOR5BFn1FjJTwe5NxtUa27DXYCsE68gNSjQHlS/+sOEZTFKwwTVuue5qQlyqgxnAmeVfqYxpWxCR9izVNIYdZAvjp2RC6sMSZQoW9KQhfp7Iqex1tM4tJ0xNWO96s3F/7xeZqKbIOcyzQxKtlwUZYKYhMw/J0OukBkxtYQyxe2thI2poszYfCo2BG/15XXSuWx4V43mfbPWqhdxlOEMzqEOHlxDC+6gDT4w4PAMr/DmSOfFeXc+lq0lp5g5hT9wPn8AvyKOkw==</latexit>p1

Init
model

EPITO
Cluster

MARCONI100
Cluster

<latexit sha1_base64="rlLAoKFPomyipkqI0WrhgKHC7fs=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBahp5JIUY8FLx4rmFZoQ9lsJ+3SzSbsboQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fiko5NMMfRZIhL1GFKNgkv0DTcCH1OFNA4FdsPJ7dzvPqHSPJEPZppiENOR5BFn1FjJTwe5OxtUa27DXYCsE68gNSjQHlS/+sOEZTFKwwTVuue5qQlyqgxnAmeVfqYxpWxCR9izVNIYdZAvjp2RC6sMSZQoW9KQhfp7Iqex1tM4tJ0xNWO96s3F/7xeZqKbIOcyzQxKtlwUZYKYhMw/J0OukBkxtYQyxe2thI2poszYfCo2BG/15XXSuWx4V43mfbPWqhdxlOEMzqEOHlxDC+6gDT4w4PAMr/DmSOfFeXc+lq0lp5g5hT9wPn8AvZ2Okg==</latexit>p0

<latexit sha1_base64="4apSSl55MCx211+CzwunHG1og2g=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBahp5JoUY8FLx4r2A9oQ9lsJ+3SzSbsboQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1FiplQyyq9mgXHFr7gJknXg5qUCO5qD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceyMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+hmXSWpQsuWiMBXExGT+ORlyhcyIqSWUKW5vJWxMFWXG5lOyIXirL6+T9mXNu67VH+qVRjWPowhncA5V8OAGGnAPTWgBAw7P8ApvjnRenHfnY9lacPKZU/gD5/MHwiyOlQ==</latexit>p3

SVHN MNIST

I. Colonnelli, B. Casella, G. Mittone, Y. Arfat, B. Cantalupo, R.
Esposito, A. R. Martinelli, D. Medić and M. Aldinucci, “Federated
Learning meets HPC and cloud,” in Astrophysics and Space Science
Proceedings, vol 60, 2023, p. 193-199. doi: 10.1007/978-3-031-
34167-0_39

27

https://doi.org/10.1007/978-3-031-34167-0_39
https://doi.org/10.1007/978-3-031-34167-0_39

Case study: Cross-Facility Federated Learning
LLAMA2-7B

LLAMA2-7B

LLAMA2-7B

I. Colonnelli et al., “Cross-Facility
Federated Learning”, 1st EuroHPC
User Day, Bruxelles, Belgium, 2023.

Workflow model

Deployment model

28

StreamFlow Adoption: European Projects
StreamFlow orchestrated distributed workflows in the
OpenDeepHealth platform, a Kubernetes-based Deep Learning
and Inference platform realised in the context of the DeepHealth
European project (G. A. 825111, 36 months, 14.8M€)
StreamFlow is the high-level workflow coordination tool of the
HPC+cloud Orchestration architecture in the ACROSS European
Project (G. A. 955648, 36 months, 8M€)
StreamFlow has been chosen as one of the three exploitable
results of the EUPEX European Project (G.A. 101033975, 48
months, 41M€), where it is used to orchestrate large-scale
workflows on top of modular HPC architectures

StreamFlow will be used to develop next generation large-scale
workflows, targeting modular Exascale HPC facilities, in the
SPACE Center of Excellence (2023, 48 months. total cost 8M€,
G.A. 101093441)

29

StreamFlow coordinates distributed data-oriented workflows on top
of OKD and HPC facilities in the EBRAINS Workflow Platform, the
European Brain ReseArch InfrastructureS federation

StreamFlow has been evaluated to submit large-scale distributed
workflows on the Amazon AWS Batch cloud service by the NASA
Jet Propulsor Laboratory

StreamFlow is being evaluated by the ECMWF Research Centre to
serve as the orchestration engine for large-scale weather
forecasting workflows in the Earth Observation for European
Union (EO4EU) European Project

StreamFlow is being evaluated by ASTRON, the Netherlands
Institute for Radio Astronomy, to orchestrate large-scale
astrophysics workflow at the LOFAR radio telescope

StreamFlow is part of the workflow orchestration software stack in
the first Spoke (Future HPC & BigData) of the National Research
Centre for High Performance, Big Data and Quantum Computing

StreamFlow Adoption: Other Use Cases

30

Conclusion

Goal: make CWL a first-class citizen in HPC workflow modelling

Non-goals:

 - Sacrifice ease of usage/support in the name of performance

 - Privilege HPC over other CWL application fields

 - Design new features without involving CWL community in the process

Roadmap:

 Support iterative patterns

 Support concurrent patterns

 Support coupling patterns

 Evaluate your proposals https://matrix.to/#/#cwl4hpc:matrix.org

Build HPC support inside CWL: the CWL4HPC Working Group

31

https://matrix.to/

Conclusion

Goals:

 - Experiment with CWL-based hybrid workflows on complex environments

 - Easily test new HPC-oriented CWL extensions at scale

 - Allow workflow researcher to integrate and test their ideas through plugins

Roadmap:

 100% CWL compliance

 Support iterative patterns

 Support concurrent and coupling patterns

 Support your research https://github.com/alpha-unito/streamflow

Build HPC support around CWL: the StreamFlow WMS

32

https://github.com/alpha-unito/streamflow

