RECAST workflows in ATLAS SUSY

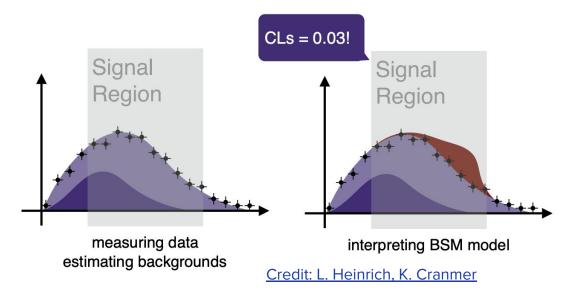
Ben Hodkinson

Overview

1) What is RECAST and why do we need it?

2) My experience authoring RECAST workflows

- Anatomy of a workflow
- > Challenges

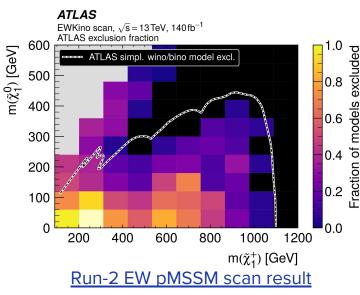

3) My experience using existing RECAST workflows

- ATLAS pMSSM scan
- Other ATLAS reinterpretation efforts
- > Challenges

4) Incentivising RECAST

Introduction

- Goal of the ATLAS SUSY group: discover new physics!
- An ATLAS search takes o(years) from initial idea to publication
 - Most of the work goes into taking data, designing/validating the analysis strategy, understanding Standard Model backgrounds
 - Plugging in a SUSY signal model at the end to discover/exclude is the easy bit
- In the absence of a discovery, how do we extract maximum value from this work?

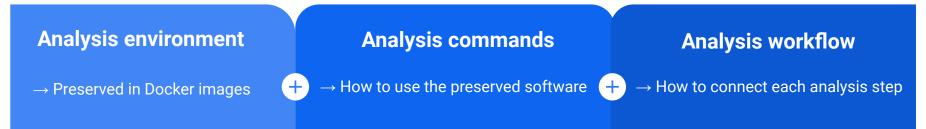


Re-using ATLAS SUSY analyses

(Re-)use cases:

- Process new signal points for <u>statistical combinations</u>
- Apply SUSY searches to non-SUSY models and vice versa
- Check new models aren't already excluded
 - Concentrate our efforts on viable scenarios
- Interpretation in wider SUSY parameter spaces (eg. pMSSM scans)
 - Build a coherent picture of the global ATLAS constraints on SUSY
 - Identify gaps in our search programme

Project 19-dim pMSSM into 2D planes and evaluate our sensitivity:



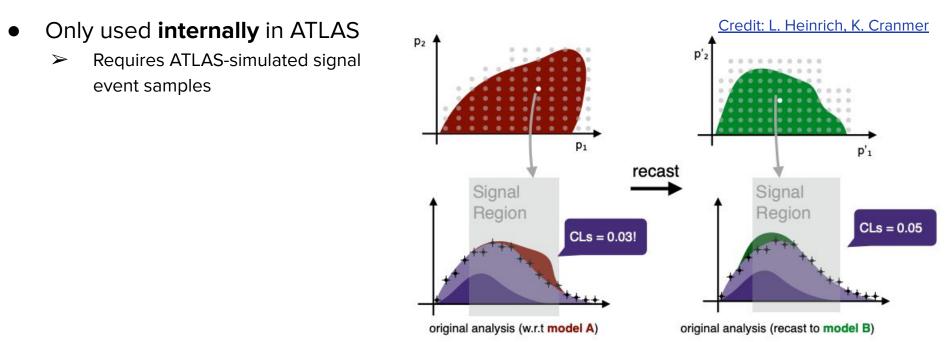
How do we do any of this once the original analysis team has disbanded?

This requires **preservation** of an analysis workflow

RECAST

• RECAST: Complete preservation of ATLAS analysis software environment and workflow

Automate the re-execution of an analysis on a new signal: Initial event sample \rightarrow Calculate kinematic variables \rightarrow Event selections \rightarrow Statistical analysis



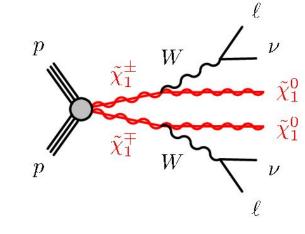
- REANA: Infrastructure for running RECAST on the cloud
 - > I've run over 5000 analysis jobs with REANA for 1000s models and eight analyses!

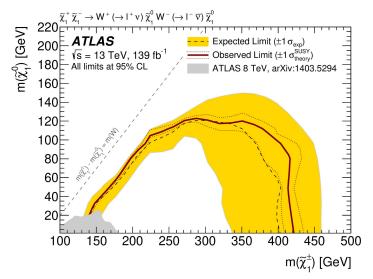
RECAST

- Only re-processing the **signal** (eg. a SUSY model)
 - > Data and Standard Model backgrounds were already processed and preserved originally
- Analysis code and workflow preserved such that it can be re-run on new input
 - Most analyses have their own code framework and scripts

RECAST user experience

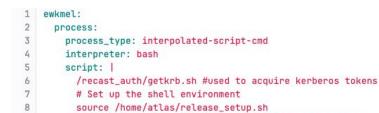
Two types of "user":


- i. Analyser authoring a RECAST implementation for their analysis
- ii. Analyser using RECAST to reinterpret an existing analysis


I will discuss my experience with both

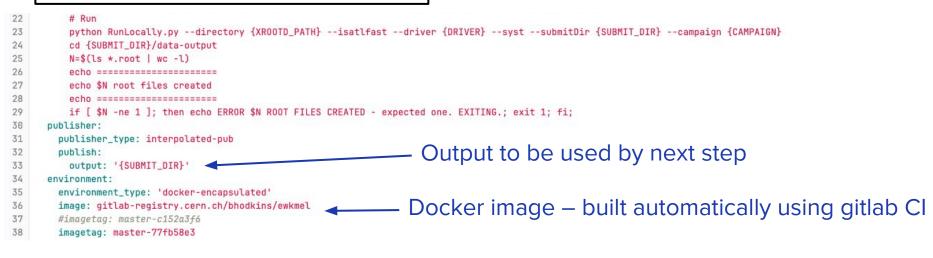
(i) **RECASTing an analysis**

Anatomy of a RECAST workflow


- Example: ATLAS two lepton + MET search
- Inputs:
 - > Dataset ID
 - Cross-section, K-factor, filter efficiency
 - Sample name
 - EOS path to pile-up re-weighting files
 - XRootD path to signal samples
- Outputs:
 - ➢ Fit result (CLs)
 - Intermediate files (ntuples, workspace etc.)
- Steps:
 - Calculate kinematic variables and produce flat ntuple
 X 3 (simulated samples for each year of data-taking)
 - Merge ntuples
 - Calculate region yields
 - ➢ Perform fit

Anatomy of a RECAST workflow

Example: ATLAS two lepton + MET search



[Bash script for running this step]

Steps.yml specifies workflow steps

"**Ewkmel**" is one of five steps in this workflow

performs initial preselections

Anatomy of a RECAST workflow

Example: ATLAS two lepton + MET search

stages: - name: ewkmel mc16a dependencies: [init] scheduler: scheduler_type: singlestep-stage parameters: XROOTD_PATH: {'step': init, output: XROOTD_PATH} PRW_PATH: {'step': init, output: PRW_PATH} DRIVER: xrootd SUBMIT_DIR: '{workdir}/submitDir_mc16a' CAMPAIGN: mc16a DSID: {'step': init, output: DSID} step: {\$ref: 'steps.yml#/ewkmel'} - name: loopsusy_mc16a dependencies: [init, ewkmel_mc16a] scheduler: scheduler_type: singlestep-stage parameters: INPUT_PATH: {'step': ewkmel_mc16a, output: output} DRIVER: local SUBMIT DIR: '{workdir}/submitDir mc16a' XSEC_PB: {'step': init, output: XSEC_PB} User-specified inputs FILTER_EFF: {'step': init, output: FILTER_EFF} KFACTOR: {'step': init, output: KFACTOR} DSID: {'step': init, output: DSID} POINT: {'step': init, output: POINT} step: {\$ref: 'steps.yml#/loopsusy'}

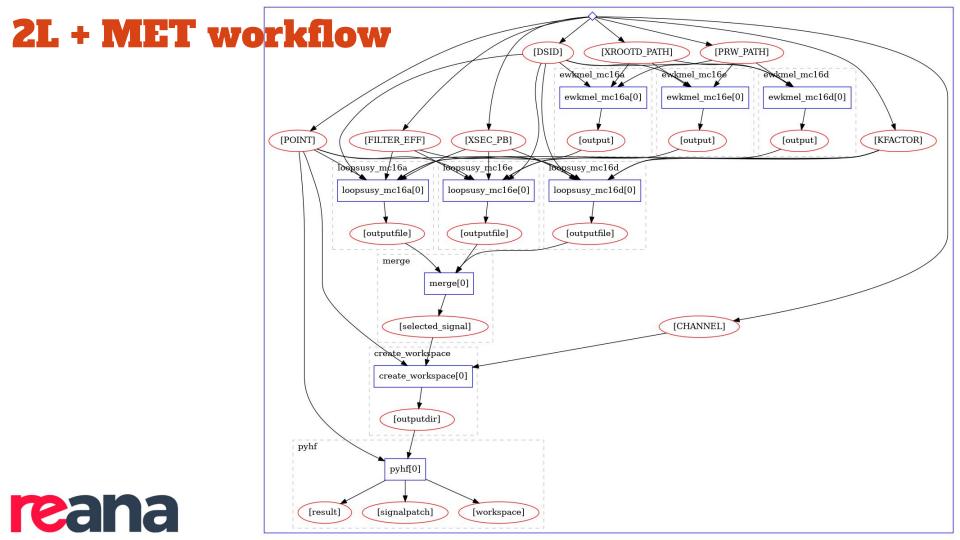
workflow.yml specifies how the steps are chained together

This step needs to run after **ewkmel**

Where to find necessary output from ewkmel step

2L + MET workflow

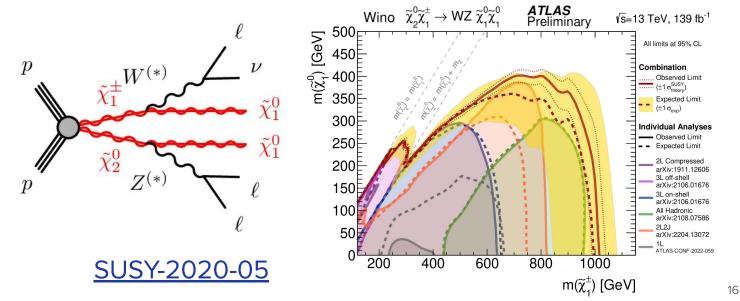
Convert to flat ntuple with initial preselections


Merge files from each MC campaign

Calculate region yields (HistFitter workspace format)

Perform statistical fit

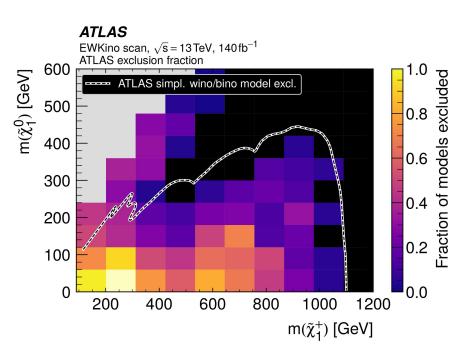
User experience as a RECAST author


• It is in principle "easy" to implement an analysis in RECAST

- Just have to write two YAML files (steps.yml and workflow.yml)
- Many pieces should already exist (gitlab Cl docker images + analysis scripts)
- But in practice:
 - Docker, gitlab CI, YAML, kubernetes, RECAST, REANA aren't necessarily in the typical HEP PhD student toolkit
 - User might not be familiar with every step of their analysis
- My experience: Looks simple on paper but debugging was not straightforward
- Often RECAST is a bit of an afterthought cultural issue
 - Understandably lower priority than the publication
 - Analysis team may have disbanded / students graduated
 - In my case, I wasn't on the original analysis team and implemented the RECAST over a year after the paper publication

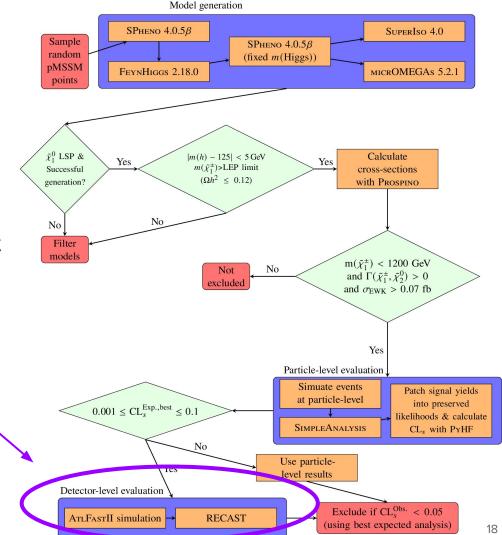
(ii) **RECAST** in action

Supersymmetry


- Minimal Supersymmetric Standard Model (MSSM) has > 100 unknown parameters
- Searches are optimized & interpreted using 2D slices of the MSSM
 - "Simplified models"
 - Results in easy-to-interpret 2D exclusion plots
 - > Far from a complete picture of our sensitivity/exclusion of the full MSSM
 - How do we connect searches for different simplified models?

pMSSM scans

- pMSSM = 19-dimensional space of viable
 SUSY models
- Includes a range of production and decay modes
- pMSSM scans are important for understanding our sensitivity to realistic SUSY scenarios and highlight gaps to be targeted



Run-2 EW pMSSM scan result

This requires re-running our searches on 1000s of new signal models

Workflow

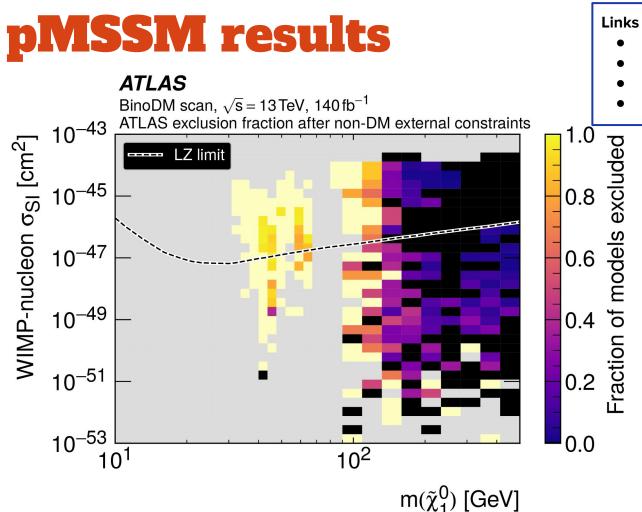
- Workflow to evaluate exclusion for a sample of pMSSM models
- Implemented in python using mySQL database to store results of each step
- Various constraints applied to pick out interesting models
- RECAST is used to apply SUSY searches to these models

recast and reana in the pMSSM scan

- Eight analyses run using RECAST
- 1878 models were processed with RECAST
 - > 9% of the 21,177 models in the scan
- 9561 REANA jobs
 - Including many failed tests and re-runs
 - Web-page monitoring very useful

Your quota

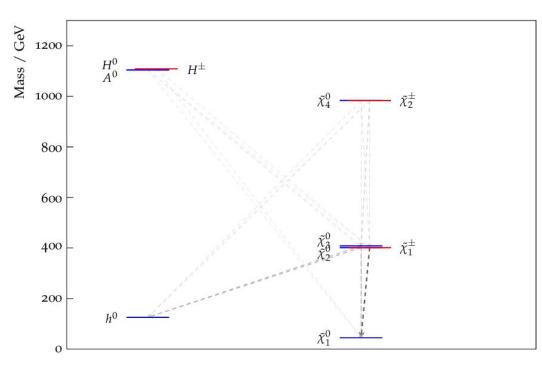
Search			Q
tatus • Show deleted runs		Latest first	
♥ recast-ana-susy-2018- 02_BinopMSSMRun2_EWFilt_522556_0 _3401007_BinopMSSMRun2_EW #1 = 7.29 GB Finished 10 months ago	finished in step 7/4	n 4h 41m 59s	
● recast-ana-susy-2018- 02_BinopMSSMRun2_EWFilt_522535_0 _2708758_BinopMSSMRun2_EW #1	finished in 2h 30m 50s step 7/4		
 recast-ana-susy-2018- 02_BinopMSSMRun2_EWFilt_522534_0 _2702833_BinopMSSMRun2_EW #1 a 6.13 08 Finished 10 months ago 	finished in step 7/4	n 4h 11m 14s	
recast-ana-susy-2018- 02_BinopMSSMRun2_EWFilt_522532_0 _2609326_BinopMSSMRun2_EW #1 = 41 08 Finished 10 months ago	finished in 2h 54m 45s step 7/4		
recast-ana-susy-2018- 02_BinopMSSMRun2_EWFilt_522523_0 _2504501_BinopMSSMRun2_EW #1 = 278 GB Finished 10 months ago	finished in 2h 51m 12s step 7/4		


 <

pMSSM results

Project 19D models into 2D planes and compare to simplified model results

Reveal that bins inside simplified model contours don't have 100% exclusion...

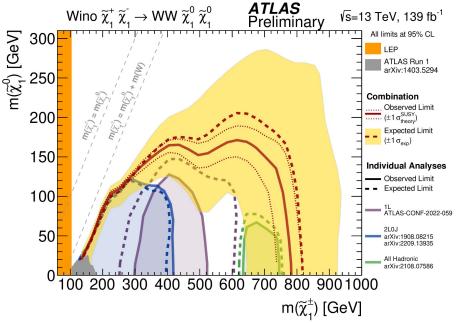

Links pMSSM paper CERN courier article on pMSSM results ATLAS briefing on pMSSM paper pMSSM paper HEP data entry ATLAS EWKino scan, $\sqrt{s} = 13 \text{ TeV}$, 140 fb⁻¹ ATLAS exclusion fraction after non-DM external constraints 600 n(χ̃₁⁰) [GeV] ATLAS simpl. wino/bino model excl. excluc 500 0.8 400 of models 0.6 300 0.4 200 ⁻raction 0.2 100 0.0 0 200 400 600 800 1000 1200 $m(\tilde{\chi}_1^+)$ [GeV]

- pMSSM paper
- CERN courier article on pMSSM results
- ATLAS briefing on pMSSM paper
- pMSSM paper HEP data entry

- pMSSM models come with dark matter interaction cross-sections
- Can compare ATLAS to direct detection experiments

Benchmark models

Links


- pMSSM paper
- <u>CERN courier article on pMSSM results</u>
- ATLAS briefing on pMSSM paper
- pMSSM paper HEP data entry

Identified SUSY models that have not been excluded

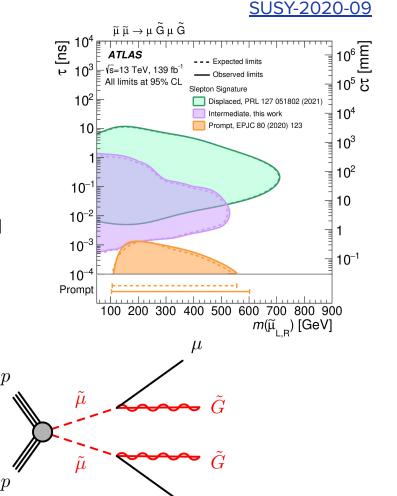
Smaller production cross-section than typical simplified models \Rightarrow Greater "Higgsino" content of $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$

RECAST in action: **ATLAS SUSY Combinations**

- Statistical combinations of multiple searches which targeted the same simplified models
- Problem: Lack of harmonization in the signal points available from each analysis
- Solution: Generate new signal points and use RECAST to produce necessary inputs for the combination
- More details in the paper

RECAST in action: Displaced smuon reinterpretation

- Recent search for displaced muons targeted GMSB model with long-lived smuons
- RECAST reinterpretation allowed comparison with 2LOJ search for prompt sleptons


2LOJ targeted:

p

Puts the micro-displaced search in context and makes the message of the paper stronger

RECAST

reinterpretation

24

Challenges using RECAST

• Harmonisation/standardisation of inputs

- Every analysis works slightly differently
- How are inputs accessed (eg. cross-sections, pile-up reweighting files)?
 - CVMFS, input parameter, file on EOS?
- Theoretical uncertainties?
- Event yield normalization + inconsistent approaches
 - Impacts whether to provide total or per-sub-process cross-section as input
- pMSSM team created a framework to handle automated submission of REANA jobs with the various input formats
- Hidden dependencies on original analysis samples (ie. simplified models) and input file naming
 - Hard-coded if-statements related to sample ID's or names
 - > Appropriate sample format ("derivation") not documented properly

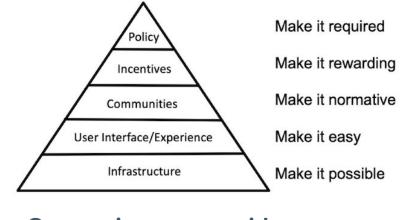
Challenges using RECAST

• Ideally RECAST implementations work out of the box

> When this is the case, the experience is very smooth

• In practice:

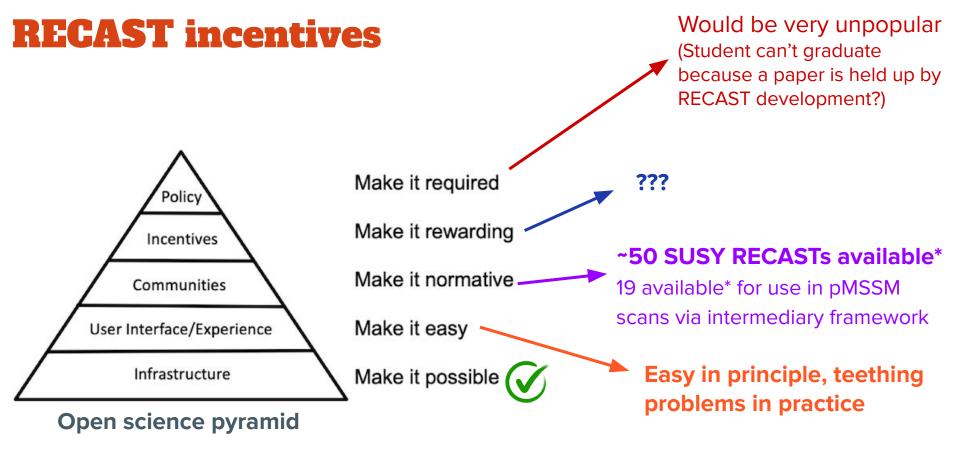
- > pMSSM team spent a lot of time on technical implementation, validation and debugging of RECASTs
- RECASTs which don't reproduce original analysis results
- RECASTs which don't work with new signal points
- Paper was descoped somewhat due to time spent on this


• Found it difficult to get analysis support – often analysis experts have moved on

This is precisely the problem RECAST is supposed to solve!

RECAST incentives

Two types of "user":


- i. Analyser authoring a RECAST implementation for their analysis
- ii. Analyser using RECAST to reinterpret an existing analysis (eg. the pMSSM analysis team)

Open science pyramid

What is the incentive for user (i) do make a (good quality) RECAST for user (ii) ?

- User (i) already has a publication from their analysis and has higher priorities than RECAST-development (thesis-writing, moved to new analysis/experiment/field)
- It's user (ii) who gets the publication a few years later from using RECAST
- Often user (ii) has to finish/fix a RECAST, which defeats the purpose!

* in various states of development and validation

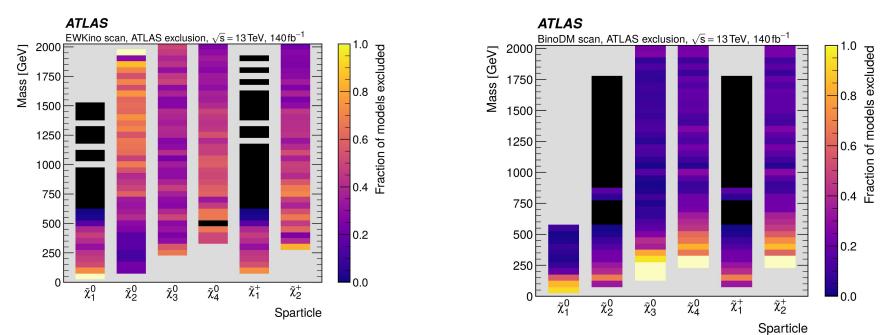
Conclusions

- Reinterpretation produces very valuable physics results
 - Link our searches, build a coherent picture of sensitivity, identify gaps in sensitivity
- **RECAST** is an important tool for preserving and re-deploying analyses
- **REANA** provides a smooth experience running **RECAST** workflows at scale
- **Open question:** How to incentivise current analysers to produce good-quality, validated RECAST workflows that work out-of-the-box for future users?
- The ATLAS SUSY group has a large and growing collection of RECAST implementations how should we use them?
 - Currently used internally for ATLAS reinterpretation efforts
 - Original RECAST proposals envisaged cross-collaboration between theorists and experimentalists + "Request" / "Response" system

EWK pMSSM scan

and neutralinos:

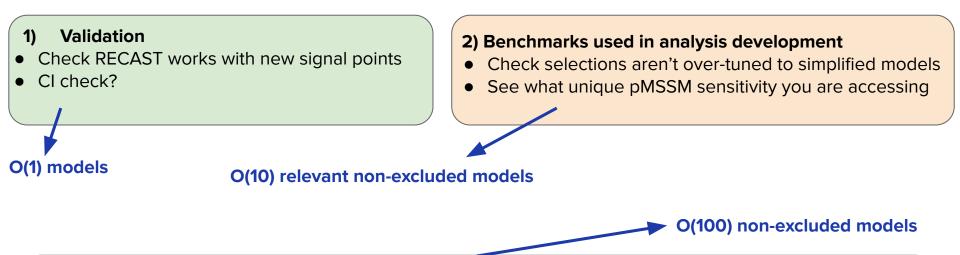
Random scan with uniform priors over parameters relevant to production of charginos


Parameter min max Note $M_{\tilde{L}_1}$ (= $M_{\tilde{L}_2}$) 10 TeV 10 TeV Left-handed slepton (first two gens.) mass 10 TeV 10 TeV Right-handed slepton (first two gens.) mass $M_{\tilde{e}_1}$ (= $M_{\tilde{e}_2}$) $M_{\tilde{L}_3}$ 10 TeV 10 TeV Left-handed stau doublet mass $M_{\tilde{e}_3}$ 10 TeV 10 TeV Right-handed stau mass 10 TeV 10 TeV Left-handed squark (first two gens.) mass $M_{\tilde{O}_{1}} (= M_{\tilde{O}_{2}})$ 10 TeV 10 TeV $M_{\tilde{u}_1}$ (= $M_{\tilde{u}_2}$) Right-handed up-type squark (first two gens.) mass Right-handed down-type squark (first two gens.) mass $M_{\tilde{d}_1}$ (= $M_{\tilde{d}_2}$) 10 TeV 10 TeV 5 TeV $M_{\tilde{O}_3}$ 2 TeV Left-handed squark (third gen.) mass 2 TeV 5 TeV Right-handed top squark mass $M_{\tilde{u}_3}$ $M_{\tilde{d}_3}$ 5 TeV Right-handed bottom squark mass 2 TeV M_1 -2 TeV 2 TeV Bino mass parameter M_2 -2 TeV 2 TeV Wino mass parameter Bilinear Higgs mass parameter -2 TeV 2 TeV μ M_3 5 TeV 1 TeV Gluino mass parameter A_t -8 TeV 8 TeV Trilinear top coupling -2 TeV 2 TeV Trilinear bottom coupling A_b -2 TeV 2 TeV Trilinear τ lepton coupling A_{τ} Pseudoscalar Higgs boson mass M_A 0 TeV 5 TeV Ratio of the Higgs vacuum expectation values 60 $\tan\beta$ 1

- pMSSM paper
- <u>CERN courier article on pMSSM results</u>
- ATLAS briefing on pMSSM paper
- pMSSM paper HEP data entry

Overall exclusion

ATLAS exclusion of each sparticle (after all external and dark matter constraints)



EWKino scan Mainly wino/higgsino LSP

Bino-DM scan

pMSSM model samples

The pMSSM team can provide analysis teams with pMSSM MC samples from the Run-2 scans How should we use these?

3) Integrate pMSSM workflow with developing analyses → evaluation on full Run-2 pMSSM model sets

- Rather than packing up and re-doing this exercise in 3 years, can we make pMSSM interpretations a central and continuous part of our analysis?
- Analyses document pMSSM interpretation plots → show what unique models your search is sensitive to.
- The pMSSM team can then focus on the global picture rather than processing individual analyses.