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2 Thoughts on analyses ...

● Questions 
■ Portability 

▻ Does the analysis depend on where it runs or where it stores data? 

▻ It should not 

■ Reproducibility 
▻ A Student / PostDoc is leaving soon ... can someone else run the analysis? 
▻ Often not the case 

● Familiar situations 
■ "We couldn't produce updates, our local cluster is down for maintenance." 

■ "We need to run things again, we forgot to change some paths in script XYZ." 

■ "No updates from my side, I had to do job sitting the whole week ..." 

● From personal analysis experience 
■ ⅔ of time required for technicalities, ⅓ left for physics 

→ Physics output doubled if it was the other way round?

WLCG

?

?
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3 Landscape of HEP analyses

● Most analyses are both large and complex 
■ Structure & requirements between workloads mostly undocumented 
■ Manual execution & steering of jobs, bookkeeping of data across storage elements, different data revisions, … 

→ Time-consuming & error-prone 

● Workflow management must ... 
■ provide full automation	 	 →  Execution through a single command 

■ cover all possible use cases	 →  Examples on next slides

Scale

C
om

pl
ex

ity

Computing 
infrastructure 

(grid, local clusters)

Good scripts 
& code structure

Single machine,    
single command

Analysis 
Workflow  

Management



law 
Marcel Rieger

3 Landscape of HEP analyses

● Most analyses are both large and complex 
■ Structure & requirements between workloads mostly undocumented 
■ Manual execution & steering of jobs, bookkeeping of data across storage elements, different data revisions, … 

→ Time-consuming & error-prone 

● Workflow management must ... 
■ provide full automation	 	 →  Execution through a single command 

■ cover all possible use cases	 →  Examples on next slides

Scale

C
om

pl
ex

ity

Computing 
infrastructure 

(grid, local clusters)

Good scripts 
& code structure

Single machine,    
single command

Analysis 
Workflow  

Management

solved by

law
luigi analysis workflow

provided by



law 
Marcel Rieger

4 Example 1: ttbb measurement visualization
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5 Example 2: Analysis Grand Challenge (with ML)Analysis Grand Challenge + ML

5

Entry 
point

Entry 
point

Dependency

Result

Intermediate result
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6 Example 3: Fully orchestrated LHC Run 2 + 3 analysis with columnflow

Source

  
w
or

kfl
ow
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Used in
training?
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Note: this is a simplified, stylized view 
of the full workflow, which can easily 
consist of  particular workloads 𝒪(1M)

https://github.com/columnflow/columnflow
https://github.com/columnflow/columnflow/wiki
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8

● Python package for building complex pipelines 

● Development started at Spotify, now open-source 
and community-driven 

1. Workloads defined as Task classes that        
can require other Tasks 

2. Tasks produce output Targets 

3. Parameters customize tasks & control                  
runtime behavior 

● Web UI with two-way messaging (task → UI, UI → 

task), automatic error handling, task history 
browser, collaborative features, command line 
interface, … 

● Great documentation 📖

Building blocks

github.com/spotify/luigi

https://luigi.readthedocs.io/en/stable/
https://github.com/spotify/luigi
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9 Luigi in a nutshell

 > python reco.py Reconstruction --dataset ttbar
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9 Luigi in a nutshell

 > python reco.py Reconstruction --dataset ttbar

luigi's local file target: 
  - path: string
  - exists(): bool
  - remove()
  - open(): fd
  - ...

Encoding parameters into 
output target path

Parameter object on class-level, 
translates to argument parser

string on instance-level
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10 make - like execution system

● Luigi’s execution model is make-like  

1. Create dependency tree for triggered task 
2. Determine tasks to actually run: 
－ Walk through tree (top-down) 
－ For each path, stop if all output                  

targets of a task exist* 

● Only processes what is really necessary 

● Scalable through simple structure 

● Error handling & automatic re-scheduling

triggered task

required task

dependency

* in this case, the task is considered complete
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11 Example dependency trees

Work of a B.Sc. student 
after 2 weeks ❗



HEP concepts, constraints & 
peculiarities 

(aka "reality check")
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13 Design choices

● Purpose 
■ Analysis workflow system that provides necessary tools to develop an automated analysis right from the start 

▻ Ability to adapt to all possible resources (software stacks, remote file access, submission to batch systems, ...) 

▻ Features for interactive work 

▻ Collaborative aspects 

→ More details on next slides 

❗ A system that is designed for a-posteriori analysis preservation is not necessarily an appropriate candidate for a 
"workflow development environment" for large analyses 

● Typical usage 
■ Most analysis development is done by PhD students and early PostDocs (popular exception: "framework devs") 

▻ Structure of an analysis (workflow shape) might not be perfectly clear a-priori 
▻ Several stages in the course of an analysis that can cause perturbations 
﹣ Commencing collaboration with other groups 
﹣ Internal reviews and suggestions to restructure / repurpose an analysis 

■ A typical analysis cycle ... 
▻ Year 1: 	 	 "Let's start from scratch and plan everything ahead. This is going to be great." 
▻ Year 2: 	 	 "Ok, we didn't know we had to consider XYZ. But we can still make it happen ..." 
▻ Year 3+n:	 " 🔩🪛  it! My contract is ending & I need that paper to apply for a job. Let's do workarounds ..."
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law 
Marcel Rieger

14 Design choices (cont'd)

● Language & flexibility 
■ An physics analysis workflow is not a simple sequence of steps 

▻ Being able to model dynamic "paths" is a mandatory feature 
▻ Only parts of the workflow shape are predictable, some are not!
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15 A typical example: ML workflow with uncertainties

Reconstruction
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16 Design choices (cont'd)

● Language & flexibility 
■ An physics analysis workflow is not a simple sequence of steps 

▻ Being able to model dynamic "paths" is a mandatory feature 
▻ Only parts of the workflow shape are predictable, some are not! 

■ Dynamic behavior can depend on many (❗) aspects, categorized into three classes: 
a) a-priori known: 	 	 easy to consider into analysis design 
b) a-priori unknown:		 potential for severe disruptions, especially in late stages 
c) dynamic:		 	 	 the workflow shape is not fully determined at execution time but can depend on 		 	

	 	 	 	 	 outcomes at runtime 

■ People are aware of potential risks and 
▻ hesitate to use new tools - while solving a short-term issue - might constrain them long-term 
﹣ collaborative / centralized development and training! 

▻ avoid straying too far from their current point of expertise 
▻ for defining workflows, want to use a language they know 

﹣ just to be equipped for what might come down the road 
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17 "Reality check"

● Remote storage is mandatory 
■ Local storage (e.g. at lab or institute) not always sufficient 
■ Using only local storage constraints you to use only (the only?) local batch system 

■ When collaborating with groups, copying files manually between sites is error prone & high-maintenance! 

● Analyses are large 
■ Imagine  tasks  (file based) outputs and a target-based workflow engine 
■ Starting the workflow requires checking the existence of many (remote) files 

■ Without doing optimizations, this will just not work  (and site admins will find you 👀) 

● Our IT infrastructure is (very) heterogeneous 
■ Different systems (storage, batch) and exerpise at different sites 
■ Random yet typical example 

▻ Accessing files on site X via webdav://, and on Y via root:// 
▻ Site X updates their configuration, and now mkdir_rec requests are no longer supported 
﹣ Switch to root:// on site X for mkdir_rec 

▻ Site Y updates their caching database to accelerate stat requests through root://, and now mtime's are gone 
﹣ Your local cache just got invalidated ... 
﹣ Switch to gsiftp:// on site Y for stat

𝒪(1M) ≈ 𝒪(1M)
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19 Law

● law: extension on top of luigi  (i.e. it does not replace luigi) 

● Design follows three primary goals 

1. Experiment-agnostic core (in fact, not even related to physics) 

2. Scalability on HEP infrastructure (but not limited to it*) 

3. Decoupling of run locations, storage locations & software environments 
▻ Not constrained to specific resources, all components interchangeable 

● Toolbox to follow an analysis design pattern 

→ Not a framework (no language or data format constraints) 

→ Serves as a day-to-day working environment allowing to prototype                                                                                                                                          
and automatically scale-out for free 

● Most used workflow system for analyses in CMS 

■ O(30) analyses, O(100) people 
■ Central groups, e.g. HIG, TAU, BTV 

● Also used outside CMS (e.g. LIGO) and outside HEP

law
luigi analysis workflow

Analysis

Run 
location

Storage 
location

Software 
environment

Code
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20 Law features (1)

1. Job submission 

■ Idea: submission built into tasks, no need to write extra code 

■ Currently supported job systems: HTCondor, SLURM, LSF, gLite, ARC, CMS-CRAB 

■ Mandatory features such as automatic resubmission, flexible task ↔︎ job matching,                                              

job files fully configurable at submission time, internal job staging in case of saturated queues, ... 

■ From the htcondor_at_cern example:

lxplus129:law_test > law run CreateChars --workflow htcondor
INFO: [pid 30564] Worker Worker(host=lxplus129.cern.ch, username=mrieger) running                      
                  CreateChars(branch=-1, start_branch=0, end_branch=26, version=v1)
going to submit 26 htcondor job(s)
submitted 1/26 job(s)
submitted 26/26 job(s)
14:35:40: all: 26, pending: 26 (+26), running: 0 (+0),   finished: 0 (+0),   retry: 0 (+0), failed: 0 (+0)
...
14:37:10: all: 26, pending: 0 (+0),   running: 26 (+26), finished: 0 (+0),   retry: 0 (+0), failed: 0 (+0)
14:37:40: all: 26, pending: 0 (+0),   running: 10 (-16), finished: 16 (+16), retry: 0 (+0), failed: 0 (+0)
14:38:10: all: 26, pending: 0 (+0),   running: 0  (+0),  finished: 26 (+10), retry: 0 (+0), failed: 0 (+0)
INFO: [pid 30564] Worker Worker(host=lxplus129.cern.ch, username=mrieger) done!

lxplus129:law_test >

law
luigi analysis workflow

local

htcondor

local

new

https://github.com/riga/law/tree/master/examples/htcondor_at_cern
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21 Scaling up

Job status polling from CMS HH combination law
luigi analysis workflow
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22 Law features (2)

2. Remote targets 

■ Idea: work with remote files as if they were local 

■ Remote targets built on top of GFAL2 Python bindings 
▻ Supports all WLCG protocols (XRootD, WebDAV, GridFTP, dCache, SRM, ...) + DropBox 
▻ HDFS under development 
▻ API identical to local targets 

❗ Actual remote interface interchangeable (GFAL2 is just a good default, fsspec integration easily possible) 

■ Mandatory features: automatic retries, local caching (backup), configurable protocols, round-robin, ...

“FileSystem” configuration

● Base path prefixed to all 
paths using this “fs” 

● Configurable per file 
operation (stat, listdir, ...) 

● Protected against removal 
of parent directories

law
luigi analysis workflow

new
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3. Environment sandboxing 

■ Diverging software requirements between typical workloads                                                                                                              
is a great feature / challenge / problem 

■ Introduce sandboxing: 
▻ Run entire task in different environment 

■ Existing sandbox implementations: 
▻ Sub-shell with init file (e.g. for CMSSW) 
▻ Virtual envs 
▻ Docker images 
▻ Singularity images

23 Law features (3)

docker::imgA

docker::imgB

shell::myEnv.sh

singularity::cc7

law
luigi analysis workflow
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24 Law in action

 > python reco.py Reconstruction --dataset ttbar

☐ luigi task 
☐ law task 
☐ Run on HTCondor 
☐ Store on EOS 
☐ Run in docker

✔︎

Example ☞

https://github.com/riga/law/tree/master/examples/htcondor_at_cern
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● CLI 
> law run Reconstruction --dataset ttbar --workflow htcondor

■ Full auto-completion of tasks and parameters 

● Scripting 
■ Mix task completeness checks, job execution                                                                                                                                                           

& input/output retrieval with custom scripts 

■ Easy interface to existing tasks for prototyping 

● Notebooks

25 Triggers: CLI, scripting and notebooks

https://mybinder.org/v2/gh/riga/law/master?filepath=examples/loremipsum/index.ipynb
https://mybinder.org/v2/gh/riga/law/master?filepath=examples/loremipsum/index.ipynb
https://mybinder.org/v2/gh/riga/law/master?filepath=examples/loremipsum/index.ipynb
https://mybinder.org/v2/gh/riga/law/master?filepath=examples/loremipsum/index.ipynb
https://mybinder.org/v2/gh/riga/law/master?filepath=examples/loremipsum/index.ipynb
https://mybinder.org/v2/gh/riga/law/master?filepath=examples/loremipsum/index.ipynb
https://mybinder.org/v2/gh/riga/law/master?filepath=examples/loremipsum/index.ipynb
https://mybinder.org/v2/gh/riga/law/master?filepath=examples/loremipsum/index.ipynb
https://mybinder.org/v2/gh/riga/law/master?filepath=examples/loremipsum/index.ipynb
https://mybinder.org/v2/gh/riga/law/master?filepath=examples/loremipsum/index.ipynb
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26 Summary

● Resource-agnostic workflow management essential for large & complex analyses 

→ Need for a flexible design pattern to automate arbitrary workloads 

→ End-to-end automation of analyses over distributed resources 

→ Full decoupling of run locations, storage locations & software environments 
→ Allows to build frameworks that check every point in the CMS analysis wishlist 
→ Currently working on full documentation and type annotations for next release 

→ github.com/riga/law, law.readthedocs.io 
→ github.com/spotify/luigi, luigi.readthedocs.io Run 

location
Storage 
location

Software 
environment

Code

Collaboration & contributions welcome!

law
luigi analysis workflow

workflow engine layer for HEP & scale-out features
(experiment independent)

analysis, SF calculation, ...

Frame 
work

https://cms-docdb.cern.ch/cgi-bin/DocDB/ShowDocument?docid=14434
https://github.com/riga/law
https://law.readthedocs.io/en/latest/
https://github.com/spotify/luigi
https://luigi.readthedocs.io/en/stable/
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27 Discussion starters

HEP-orientated questions to consider for discussion
● Need each step of a workflow to run in bespoke software environment (Linux 

container support is required. What runtimes are supported? E.g. Docker, 
Podman, Apptainer/Singularity)

● Workflow engine needs to be isolated from analysis code – how can we best 
separate the two while still making use of workflow commands natural during 
analysis development process?

○ e.g. avoid including workflow tooling in analysis software
○ Anything that needs to be changed in analysis software?

● Workflow scheduling: where can workflows be executed using typical HEP 
resources (HTCondor, SLURM, WLCG, Kubernetes…)

○ Can there be some generic solutions to this that don’t need implementations for each engine?
● Dynamics graphs

○ Number of files could be unknown in advance of runtime
○ Want to be able to control processes that call task graph builds (e.g. Dask). How is balance 

created?

11

from Matthew's slides

https://indico.cern.ch/event/1380367/contributions/5880476/attachments/2830469/4945329/workshop_overview.pdf


Backup
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29 Abstraction: analysis workflows

● Workflow, decomposable into particular workloads 

● Workloads related to each other by common interface 
■ In/outputs define directed acyclic graph (DAG) 

● Alter default behavior via parameters 

● Computing resources 
■ Run location (CPU, GPU, WLCG, …) 
■ Storage location (local, dCache, EOS, …) 

● Software environment 

● Collaborative development and processing 

● Reproducible intermediate and final results

Selection

Reconstruction

MVA Split

MVA MVA Evaluation

Inference

MVA Training

Weights

Example

CPU

GPU

→ Reads like a checklist for analysis workflow management



law 
Marcel Rieger

30 Existing WMS: MC production

● Structure known in advance 

● Workflows static & recurring 

● One-dimensional design 

● Special production infrastructure 

● Homogeneous software requirements

GEN SIM DIGI RECO ...

Tailored systems Wishlist for end-user analyses

● Structure “iterative”, a-priori unknown 

● Dynamic workflows, fast R&D cycles 

● DAG with arbitrary dependencies 

● Incorporate any existing infrastructure 

● Use custom software, everywhere

 → Requirements for HEP analyses mostly orthogonal
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31 "Realistic" HEP workflow management

● Consider this example again 

>  law run Reconstruction --dataset ttbar --workflow htcondor

■ (500 - 4k) files, stored either locally or remotely 
■ Any workflow engine will first check if things need to be rerun 

▻ (500 - 4k) file requests (via network)! 

▻ Prepare for admins to find you 👀 

■ What law does 

▻ Reconstruction is a workflow 
▻ Workflows output a so-called TargetCollection's, containing all outputs of its branch tasks 

▻ TargetCollection's can check if their files are located in the same directory 

▻ If they do, perform a single (remote) listdir and compare basenames  →  single request 

● There is no free lunch 
■ Our HEP resources (clusters, grid, storage elements, software environments) are very inhomogeneous 
■ A realistic workflow engine 

▻ can make some good, yet simple assumptions based on known best-practices 
BUT 

▻ it should always allow users to transparently change decisions & configure every single aspect!

𝒪

𝒪
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32 Inference tools used by HH searches

cms-hh.web.cern.ch/cms-hh/tools/inference

https://cms-hh.web.cern.ch/cms-hh/tools/inference


(Remote) targets
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34 Working with remote targets
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35 Remote target implementation details

Target

FileTarget 
   - fs: FileSystem

RemoteFileTarget 
   - fs: RemoteFileSystem

FileSystem 
   - std. methods: stat, touch,    
     exists, remove, listdir, ...

RemoteFileSystem 
   - file_interface_cls 
   - file_interface instance

RemoteFileInterface 
   - implements atomic file  
     interactions

GFALFileInterface 
   - access through gfal2

WLCGFileTarget 
   - no extra functionality

"is"

"has"

WLCGFileSystem 
   - file_interface_cls set to      
     GFALFileInterface
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● Local cache for remote targets 

● Simple configuration 
■ When enabled, all operations on remote targets are cached

36 Effective remote targets  —  Caching

remote storage

save ✓

load ?

no ❗

law.cfg
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37 Local caching (1)

Remote storage (e.g. eos / dcache / ...)

Remote

Local machine

law/python process Local cache

PWD /tmp

1⃣ Need to access file “a.root” 
(has unique, path-dep. hash X)

Local request
Remote request

3⃣ File “a.root” with hash X in 
     cache with latest mtime? → no

2⃣
 S

ta
t 
fil

e 
“a

.ro
ot

”
4⃣

 D
ownload “a.root”

7⃣ Return local path in cache

5⃣ Store “a.root” using hash X

8⃣ Work with local file 6⃣ Change mtime of file to 
     value from stat (see 2⃣ )

Configuration ☞

https://law.readthedocs.io/en/latest/config.html#id13
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38 Local caching (2)

Remote storage (e.g. eos / dcache / ...)

law/python process Local cache

PWD /tmp

1⃣ Need to access file “a.root” 
(has unique, path-dep. hash X)

3⃣ File “a.root” with hash X in 
     cache with latest mtime? → yes

2⃣
 S

ta
t 
fil

e 
“a

.ro
ot

”

4⃣ Return local path in cache
5⃣ Work with local file

Remote

Local machine
Local request
Remote request

Configuration ☞

https://law.readthedocs.io/en/latest/config.html#id13
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39 Effective remote targets  —  "Localization"
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39 Effective remote targets  —  "Localization"



Workflows



law 
Marcel Rieger

41 Workflows: General ideas

● Many tasks exhibit the same overall structure and/or purpose 
■ "Run over N existing files"  /  "Generate N events/toys"  /  "Merge N into M files" 

■ All these tasks can profit from the same features 
▻ "Only process file x and/to y", "Remove outputs of "x, y & z",                                                             

"Process N files, but consider the task finished once M < N are done", "..." 

→ Calls for a generic container object that provides guidance and features for these cases 

■ Workflow "containers" 
■ Task that introduces a parameters called --branch b (luigi.IntParameter) 

▻ b >= 0: Instantiates particular tasks called "branches"; run() will (e.g.) process file b 
▻ b = -1: Instantiates the workflow container itself; run() will run* all branch tasks 
* How branch tasks are run is implemented in different workflow types: local or several remote ones 

● Practical advantages 
■ Convenience: same features available in all workflows (see next slides) 

■ Scalability and versatility for remote workflows 
▻ Jobs: Better control of jobs, submission, task-to-job matching ... (see next slides) 
▻ Luigi: Central scheduler breaks when pinged by O(10k) tasks every few seconds 
▻ Remote storage: allows batched file operations instead of file-by-file requests
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42 Workflows: example implementation

Common

Workflow 
specific

Implemented 
by task

}When "is_workflow", 
seen by luigi as 

requires(), output() 
and run()
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43 Workflows: example usage

● Tasks that each write a single character into a text file 
● Character assigned to them though the branch map as their "branch data"
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44 Workflows: remote workflows & jobs

● 6 remote workflow implementations come with law 

■ htcondor, glite, lsf, arc, slurm, cms-crab (in PR#150) 
■ Based on generic "job manager" implementations in contrib packages 

● Job managers fully decoupled from most law functionality 
■ Simple extensibility 
■ No "auto-magic" in submission files, rather minimal and configurable through tasks 
■ Usable also without law 

● Most important features 
■ Job submission functionality "declared" via task class inheritance 
■ Provision of software and job-specific requirements through workflow_requires()

■ Control over remote jobs through parameters: 
▻ --branch --branches :  granular control of which tasks to process 
▻ --acceptance --tolerance 	 	 :  defines when a workflow is complete / failed 
▻ --poll-interval --walltime 	 	 :  controls the job status polling interval and runtime 
▻ --tasks-per-job --parallel-jobs 	 :  control of resource usage at batch systems

https://github.com/riga/law/pull/150
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46 Package structure

Command-line interface

3rd party tools

Job interface 
    - Job file factory interface 
    - Job manager interface 
    - Generic remote job script

Sandboxing mechanism 
    - Sandbox task 
    - Sandbox interface 
    - Bash sandbox impl.

Base task definitions

Base workflow definition 
    - Local workflow impl. 
    - Remote workflow interface

Lightweight patches of luigi, e.g.: 
    -  Disable dep. checks in sandboxes 
    -  Colorize logs 
   → Could be added directly to luigi

Target definitions 
    - Generic + file interace 
    - Local target impl. 
    - Remote target interfaces

Config parsing & tools 
Task decorators 
Custom loggers 
Notification tools (for e.g. slack/telegram) 
Custom parameters 
Utilities & helpers
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47 luigi/law architecture
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Network Local Remote

User

Central 
Scheduler

Analysis &  
Task Classes

Input / Output
Targets

Workers Software & 
Images

Command-line
Interface

Register Tasks

Next task?

Read

LoadSubmit as job
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48 DAG abstraction

https://cds.cern.ch/record/2693550/files/TS2019_019.pdf?page=61
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49 Links

● law - luigi analysis workflow 
■ Repository 	 	 	 ☞ github.com/riga/law 
■ Paper	 	 	 	 ☞ arXiv:1706.00955 (CHEP16 proceedings) 
■ Documentation	 	 ☞ law.readthedocs.io (in preparation) 
■ Minimal example		 ☞ github.com/riga/law/tree/master/examples/loremipsum 
■ HTCondor example	 ☞ github.com/riga/law/tree/master/examples/htcondor_at_cern 
■ Contact	 	 	 ☞ Marcel Rieger 

● luigi - Powerful Python pipelining package (by Spotify) 
■ Repository	 	 	 ☞ github.com/spotify/luigi 
■ Documentation	 	 ☞ luigi.readthedocs.io 
■ “Hello world!”	 	 ☞ github.com/spotify/luigi/blob/master/examples/hello_world.py 

● Technologies 
■ GFAL2		 	 	 ☞ dmc.web.cern.ch/projects/gfal-2/home 
■ Docker		 	 	 ☞ docker.com 
■ Singularity	 	 	 ☞ singularity.lbl.gov

https://github.com/riga/law
https://arxiv.org/abs/1706.00955
https://law.readthedocs.io/en/latest/
https://github.com/riga/law/tree/master/examples/loremipsum
https://github.com/riga/law/tree/master/examples/htcondor_at_cern
mailto:marcel.rieger@cern.ch?subject=Law
https://github.com/spotify/luigi
https://luigi.readthedocs.io
https://github.com/spotify/luigi/blob/master/examples/hello_world.py
https://dmc.web.cern.ch/projects/gfal-2/home
https://www.docker.com
https://singularity.lbl.gov

