
Workshop on Workflow Languages

4.4.2024

luigi analysis workflow

Marcel Rieger

law
luigi analysis workflow



law 
Marcel Rieger

2 Thoughts on analyses ...

● Questions 
■ Portability 

▻ Does the analysis depend on where it runs or where it stores data? 

▻ It should not 

■ Reproducibility 
▻ A Student / PostDoc is leaving soon ... can someone else run the analysis? 
▻ Often not the case 

● Familiar situations 
■ "We couldn't produce updates, our local cluster is down for maintenance." 

■ "We need to run things again, we forgot to change some paths in script XYZ." 

■ "No updates from my side, I had to do job sitting the whole week ..." 

● From personal analysis experience 
■ ⅔ of time required for technicalities, ⅓ left for physics 

→ Physics output doubled if it was the other way round?

WLCG

?

?

?



law 
Marcel Rieger

3 Landscape of HEP analyses

● Most analyses are both large and complex 
■ Structure & requirements between workloads mostly undocumented 
■ Manual execution & steering of jobs, bookkeeping of data across storage elements, different data revisions, … 

→ Time-consuming & error-prone 

● Workflow management must ... 
■ provide full automation	 	 →  Execution through a single command 

■ cover all possible use cases	 →  Examples on next slides

Scale

C
om

pl
ex

ity

Computing 
infrastructure 

(grid, local clusters)

Good scripts 
& code structure

Single machine,    
single command

Analysis 
Workflow  

Management



law 
Marcel Rieger

3 Landscape of HEP analyses

● Most analyses are both large and complex 
■ Structure & requirements between workloads mostly undocumented 
■ Manual execution & steering of jobs, bookkeeping of data across storage elements, different data revisions, … 

→ Time-consuming & error-prone 

● Workflow management must ... 
■ provide full automation	 	 →  Execution through a single command 

■ cover all possible use cases	 →  Examples on next slides

Scale

C
om

pl
ex

ity

Computing 
infrastructure 

(grid, local clusters)

Good scripts 
& code structure

Single machine,    
single command

Analysis 
Workflow  

Management

solved by

law
luigi analysis workflow

provided by



law 
Marcel Rieger

4 Example 1: ttbb measurement visualization

 

vispa

e_bdt_eval

e_bdt_roc

e_hist

e_syst_bdt_plot_btag

e_syst_bdt_plot_mistag

e_syst_bdt_plot_jer

e_syst_bdt_plot_jes

e_syst_bdt_plot_pdf

e_syst_bdt_plot_pileup

mu_data_cms

mu_data_lumi

mu_data_merge

sfb_coefficients

mu_data_tuple

e_data_tuple

mu_tuple

e_tuple

mu_enrich_fill

mu_enrich_old_weighter

mu_syst_scaleUp_tuple

mu_syst_scaleDown_tuple

e_syst_scaleUp_bdt

e_syst_scaleDown_bdt

mu_syst_matchingUp_tuple

mu_syst_matchingDown_tuple

e_syst_matchingUp_bdt

e_syst_matchingDown_bdt

mu_syst_btagUp_tuple

mu_syst_btagDown_tuple

e_syst_btagUp_bdt

e_syst_btagDown_bdt

mu_syst_mistagUp_tuple

mu_syst_mistagDown_tuple

e_syst_mistagUp_bdt

e_syst_mistagDown_bdt

mu_syst_jerUp_tuple

mu_syst_jerDown_tuple

e_syst_jerUp_bdt

e_syst_jerDown_bdt

mu_syst_jesUp_tuple

mu_syst_jesDown_tuple

e_syst_jesUp_bdt

e_syst_jesDown_bdt

mu_syst_pdfUp_tuple

mu_syst_pdfDown_tuple

e_syst_pdfUp_bdt

e_syst_pdfDown_bdt

mu_syst_pileupUp_tuple

mu_syst_pileupDown_tuple

e_syst_pileupUp_bdt

e_syst_pileupDown_bdt

mu_qcd_tuple

sfb_plot_coefficients

pu_weight pu_weight_plot

e_data_cms

e_data_lumi

e_data_merge
e_syst_btag_hist

e_syst_mistag_hist

e_syst_jer_hist

e_syst_jes_hist

e_syst_pdf_hist

e_syst_pileup_hist

e_syst_scale_hist

e_syst_matching_hist

e_plot

mu_chain

crab_mc

sfb_tuple

crab_mc_merge

crab_data crab_data_lumi

mu_enrich_old_chain

mu_syst_scaleUp_chain

mu_syst_scaleDown_chain

mu_syst_matchingUp_chain

mu_syst_matchingDown_chain

mu_syst_btagUp_chain

mu_syst_btagDown_chain

mu_syst_mistagUp_chain

mu_syst_mistagDown_chain

mu_syst_jerUp_chain

mu_syst_jerDown_chain

mu_syst_jesUp_chain

mu_syst_jesDown_chain

mu_syst_pdfUp_chain

mu_syst_pdfDown_chain

mu_syst_pileupUp_chain

mu_syst_pileupDown_chain

crab_data_merge

mu_qcd_chain

mc_nominal_merge

mu_bdt_train__ttbb_vs_all__nominal

mu_bdt_train__ttbb_vs_all__enriched

mu_bdt_train__ttb_vs_ttbb__nominal

mu_bdt_train__ttbb_vs_ttb__nominal

mu_bdt_train__ttlight_vs_rest__nominal

mu_hist

mu_enrichment_comparison_plot

mu_bdt_eval

mu_syst_bdt_plot_pileup

mu_plot

mu_plot_no_toppt

mu_plot_mcOnly

mu_plot_mc_2d

mu_plot_mcOnly_ttlight

mu_plot_events

sfb_chain

mu_syst_scaleUp_bdt

mu_syst_scaleDown_bdt

mu_syst_matchingUp_bdt

mu_syst_matchingDown_bdt

mu_syst_btagUp_bdt

mu_syst_btagDown_bdt

mu_syst_mistagUp_bdt

mu_syst_mistagDown_bdt

mu_syst_jerUp_bdt

mu_syst_jerDown_bdt

mu_syst_jesUp_bdt

mu_syst_jesDown_bdt

mu_syst_pdfUp_bdt

mu_syst_pdfDown_bdt

mu_syst_pileupUp_bdt

mu_syst_pileupDown_bdt

mu_qcd_bdt

mu_bdt_train__ttbb_vs_all__nominal_plot

mu_bdt_train__ttbb_vs_all__enriched_plot

mu_bdt_train__ttb_vs_ttbb__nominal_plot

mu_bdt_train__ttbb_vs_ttb__nominal_plot

mu_bdt_train__ttlight_vs_rest__nominal_plot

e_bdt_roc_plot

th_combined

th_batch_prep

mc_scale_merge

mc_matching_merge

mu_syst_plot_pdf_comparison

mu_syst_plot_pdf_stack

mu_syst_plot_pdf_shape

mu_qcd_fit

mu_qcd_ratio

mu_qcd_scatter

mu_qcd_plot_mc_2d

th_qcd

mu_syst_btag_hist

mu_syst_mistag_hist

mu_syst_jer_hist

mu_syst_jes_hist

mu_syst_pdf_hist

mu_syst_pileup_hist

mu_syst_scale_hist

mu_syst_matching_hist

mu_qcd_hist_sr

mu_qcd_hist_sb_nominal

mu_qcd_hist_sb_variation

mc_nominal_das mc_nominal_cms

mc_ttbaralt_das mc_ttbaralt_cms mc_ttbaralt_merge

mc_scale_das mc_scale_cms

mc_matching_das mc_matching_cms

mu_data_das

e_data_das

pu_calc

mu_syst_bdt_plot_scale

mu_syst_bdt_plot_matching

mu_syst_bdt_plot_mistag

mu_syst_bdt_plot_jer

mu_syst_bdt_plot_jes

mu_syst_bdt_plot_pdf

mu_bdt_plot_output

mu_bdt_roc

mu_qcd_stack

mu_qcd_comparison

mu_bdt_roc_plot

sfb_plot_control

* Excerpt of the full analysis

Results

Entry 
points



law 
Marcel Rieger

4 Example 1: ttbb measurement visualization

 

vispa

e_bdt_eval

e_bdt_roc

e_hist

e_syst_bdt_plot_btag

e_syst_bdt_plot_mistag

e_syst_bdt_plot_jer

e_syst_bdt_plot_jes

e_syst_bdt_plot_pdf

e_syst_bdt_plot_pileup

mu_data_cms

mu_data_lumi

mu_data_merge

sfb_coefficients

mu_data_tuple

e_data_tuple

mu_tuple

e_tuple

mu_enrich_fill

mu_enrich_old_weighter

mu_syst_scaleUp_tuple

mu_syst_scaleDown_tuple

e_syst_scaleUp_bdt

e_syst_scaleDown_bdt

mu_syst_matchingUp_tuple

mu_syst_matchingDown_tuple

e_syst_matchingUp_bdt

e_syst_matchingDown_bdt

mu_syst_btagUp_tuple

mu_syst_btagDown_tuple

e_syst_btagUp_bdt

e_syst_btagDown_bdt

mu_syst_mistagUp_tuple

mu_syst_mistagDown_tuple

e_syst_mistagUp_bdt

e_syst_mistagDown_bdt

mu_syst_jerUp_tuple

mu_syst_jerDown_tuple

e_syst_jerUp_bdt

e_syst_jerDown_bdt

mu_syst_jesUp_tuple

mu_syst_jesDown_tuple

e_syst_jesUp_bdt

e_syst_jesDown_bdt

mu_syst_pdfUp_tuple

mu_syst_pdfDown_tuple

e_syst_pdfUp_bdt

e_syst_pdfDown_bdt

mu_syst_pileupUp_tuple

mu_syst_pileupDown_tuple

e_syst_pileupUp_bdt

e_syst_pileupDown_bdt

mu_qcd_tuple

sfb_plot_coefficients

pu_weight pu_weight_plot

e_data_cms

e_data_lumi

e_data_merge
e_syst_btag_hist

e_syst_mistag_hist

e_syst_jer_hist

e_syst_jes_hist

e_syst_pdf_hist

e_syst_pileup_hist

e_syst_scale_hist

e_syst_matching_hist

e_plot

mu_chain

crab_mc

sfb_tuple

crab_mc_merge

crab_data crab_data_lumi

mu_enrich_old_chain

mu_syst_scaleUp_chain

mu_syst_scaleDown_chain

mu_syst_matchingUp_chain

mu_syst_matchingDown_chain

mu_syst_btagUp_chain

mu_syst_btagDown_chain

mu_syst_mistagUp_chain

mu_syst_mistagDown_chain

mu_syst_jerUp_chain

mu_syst_jerDown_chain

mu_syst_jesUp_chain

mu_syst_jesDown_chain

mu_syst_pdfUp_chain

mu_syst_pdfDown_chain

mu_syst_pileupUp_chain

mu_syst_pileupDown_chain

crab_data_merge

mu_qcd_chain

mc_nominal_merge

mu_bdt_train__ttbb_vs_all__nominal

mu_bdt_train__ttbb_vs_all__enriched

mu_bdt_train__ttb_vs_ttbb__nominal

mu_bdt_train__ttbb_vs_ttb__nominal

mu_bdt_train__ttlight_vs_rest__nominal

mu_hist

mu_enrichment_comparison_plot

mu_bdt_eval

mu_syst_bdt_plot_pileup

mu_plot

mu_plot_no_toppt

mu_plot_mcOnly

mu_plot_mc_2d

mu_plot_mcOnly_ttlight

mu_plot_events

sfb_chain

mu_syst_scaleUp_bdt

mu_syst_scaleDown_bdt

mu_syst_matchingUp_bdt

mu_syst_matchingDown_bdt

mu_syst_btagUp_bdt

mu_syst_btagDown_bdt

mu_syst_mistagUp_bdt

mu_syst_mistagDown_bdt

mu_syst_jerUp_bdt

mu_syst_jerDown_bdt

mu_syst_jesUp_bdt

mu_syst_jesDown_bdt

mu_syst_pdfUp_bdt

mu_syst_pdfDown_bdt

mu_syst_pileupUp_bdt

mu_syst_pileupDown_bdt

mu_qcd_bdt

mu_bdt_train__ttbb_vs_all__nominal_plot

mu_bdt_train__ttbb_vs_all__enriched_plot

mu_bdt_train__ttb_vs_ttbb__nominal_plot

mu_bdt_train__ttbb_vs_ttb__nominal_plot

mu_bdt_train__ttlight_vs_rest__nominal_plot

e_bdt_roc_plot

th_combined

th_batch_prep

mc_scale_merge

mc_matching_merge

mu_syst_plot_pdf_comparison

mu_syst_plot_pdf_stack

mu_syst_plot_pdf_shape

mu_qcd_fit

mu_qcd_ratio

mu_qcd_scatter

mu_qcd_plot_mc_2d

th_qcd

mu_syst_btag_hist

mu_syst_mistag_hist

mu_syst_jer_hist

mu_syst_jes_hist

mu_syst_pdf_hist

mu_syst_pileup_hist

mu_syst_scale_hist

mu_syst_matching_hist

mu_qcd_hist_sr

mu_qcd_hist_sb_nominal

mu_qcd_hist_sb_variation

mc_nominal_das mc_nominal_cms

mc_ttbaralt_das mc_ttbaralt_cms mc_ttbaralt_merge

mc_scale_das mc_scale_cms

mc_matching_das mc_matching_cms

mu_data_das

e_data_das

pu_calc

mu_syst_bdt_plot_scale

mu_syst_bdt_plot_matching

mu_syst_bdt_plot_mistag

mu_syst_bdt_plot_jer

mu_syst_bdt_plot_jes

mu_syst_bdt_plot_pdf

mu_bdt_plot_output

mu_bdt_roc

mu_qcd_stack

mu_qcd_comparison

mu_bdt_roc_plot

sfb_plot_control

 

vispa

e_bdt_eval

e_bdt_roc

e_hist

e_syst_bdt_plot_btag

e_syst_bdt_plot_mistag

e_syst_bdt_plot_jer

e_syst_bdt_plot_jes

e_syst_bdt_plot_pdf

e_syst_bdt_plot_pileup

mu_data_cms

mu_data_lumi

mu_data_merge

sfb_coefficients

mu_data_tuple

e_data_tuple

mu_tuple

e_tuple

mu_enrich_fill

mu_enrich_old_weighter

mu_syst_scaleUp_tuple

mu_syst_scaleDown_tuple

e_syst_scaleUp_bdt

e_syst_scaleDown_bdt

mu_syst_matchingUp_tuple

mu_syst_matchingDown_tuple

e_syst_matchingUp_bdt

e_syst_matchingDown_bdt

mu_syst_btagUp_tuple

mu_syst_btagDown_tuple

e_syst_btagUp_bdt

e_syst_btagDown_bdt

mu_syst_mistagUp_tuple

mu_syst_mistagDown_tuple

e_syst_mistagUp_bdt

e_syst_mistagDown_bdt

mu_syst_jerUp_tuple

mu_syst_jerDown_tuple

e_syst_jerUp_bdt

e_syst_jerDown_bdt

mu_syst_jesUp_tuple

mu_syst_jesDown_tuple

e_syst_jesUp_bdt

e_syst_jesDown_bdt

mu_syst_pdfUp_tuple

mu_syst_pdfDown_tuple

e_syst_pdfUp_bdt

e_syst_pdfDown_bdt

mu_syst_pileupUp_tuple

mu_syst_pileupDown_tuple

e_syst_pileupUp_bdt

e_syst_pileupDown_bdt

mu_qcd_tuple

sfb_plot_coefficients

pu_weight pu_weight_plot

e_data_cms

e_data_lumi

e_data_merge
e_syst_btag_hist

e_syst_mistag_hist

e_syst_jer_hist

e_syst_jes_hist

e_syst_pdf_hist

e_syst_pileup_hist

e_syst_scale_hist

e_syst_matching_hist

e_plot

mu_chain

crab_mc

sfb_tuple

crab_mc_merge

crab_data crab_data_lumi

mu_enrich_old_chain

mu_syst_scaleUp_chain

mu_syst_scaleDown_chain

mu_syst_matchingUp_chain

mu_syst_matchingDown_chain

mu_syst_btagUp_chain

mu_syst_btagDown_chain

mu_syst_mistagUp_chain

mu_syst_mistagDown_chain

mu_syst_jerUp_chain

mu_syst_jerDown_chain

mu_syst_jesUp_chain

mu_syst_jesDown_chain

mu_syst_pdfUp_chain

mu_syst_pdfDown_chain

mu_syst_pileupUp_chain

mu_syst_pileupDown_chain

crab_data_merge

mu_qcd_chain

mc_nominal_merge

mu_bdt_train__ttbb_vs_all__nominal

mu_bdt_train__ttbb_vs_all__enriched

mu_bdt_train__ttb_vs_ttbb__nominal

mu_bdt_train__ttbb_vs_ttb__nominal

mu_bdt_train__ttlight_vs_rest__nominal

mu_hist

mu_enrichment_comparison_plot

mu_bdt_eval

mu_syst_bdt_plot_pileup

mu_plot

mu_plot_no_toppt

mu_plot_mcOnly

mu_plot_mc_2d

mu_plot_mcOnly_ttlight

mu_plot_events

sfb_chain

mu_syst_scaleUp_bdt

mu_syst_scaleDown_bdt

mu_syst_matchingUp_bdt

mu_syst_matchingDown_bdt

mu_syst_btagUp_bdt

mu_syst_btagDown_bdt

mu_syst_mistagUp_bdt

mu_syst_mistagDown_bdt

mu_syst_jerUp_bdt

mu_syst_jerDown_bdt

mu_syst_jesUp_bdt

mu_syst_jesDown_bdt

mu_syst_pdfUp_bdt

mu_syst_pdfDown_bdt

mu_syst_pileupUp_bdt

mu_syst_pileupDown_bdt

mu_qcd_bdt

mu_bdt_train__ttbb_vs_all__nominal_plot

mu_bdt_train__ttbb_vs_all__enriched_plot

mu_bdt_train__ttb_vs_ttbb__nominal_plot

mu_bdt_train__ttbb_vs_ttb__nominal_plot

mu_bdt_train__ttlight_vs_rest__nominal_plot

e_bdt_roc_plot

th_combined

th_batch_prep

mc_scale_merge

mc_matching_merge

mu_syst_plot_pdf_comparison

mu_syst_plot_pdf_stack

mu_syst_plot_pdf_shape

mu_qcd_fit

mu_qcd_ratio

mu_qcd_scatter

mu_qcd_plot_mc_2d

th_qcd

mu_syst_btag_hist

mu_syst_mistag_hist

mu_syst_jer_hist

mu_syst_jes_hist

mu_syst_pdf_hist

mu_syst_pileup_hist

mu_syst_scale_hist

mu_syst_matching_hist

mu_qcd_hist_sr

mu_qcd_hist_sb_nominal

mu_qcd_hist_sb_variation

mc_nominal_das mc_nominal_cms

mc_ttbaralt_das mc_ttbaralt_cms mc_ttbaralt_merge

mc_scale_das mc_scale_cms

mc_matching_das mc_matching_cms

mu_data_das

e_data_das

pu_calc

mu_syst_bdt_plot_scale

mu_syst_bdt_plot_matching

mu_syst_bdt_plot_mistag

mu_syst_bdt_plot_jer

mu_syst_bdt_plot_jes

mu_syst_bdt_plot_pdf

mu_bdt_plot_output

mu_bdt_roc

mu_qcd_stack

mu_qcd_comparison

mu_bdt_roc_plot

sfb_plot_control

* Excerpt of the full analysis

Results

Entry 
points



law 
Marcel Rieger

5 Example 2: Analysis Grand Challenge (with ML)Analysis Grand Challenge + ML

5

Entry 
point

Entry 
point

Dependency

Result

Intermediate result



law 
Marcel Rieger

6 Example 3: Fully orchestrated LHC Run 2 + 3 analysis with columnflow

Source

  
w
or

kfl
ow

  
 

Event 
processing

Plots & 
inference

Results1

Cutflow plots

Merging 2

ML Training

Merging 1

Inference Tables

Plots

lfns

lfns

cols

masks cols

cols

lfns

stats

stats

masks cols sizes

factors

events

masks

hists hists

eventsevents

events

colscols

cols

events

yes

mlcols stats

mlcols stats

model

either
way

colscols

hists

hists

cols

data hists

mc hists

data hists

mc hists

data hists hists

wrapper

hists

cols

PlotShiftedVariables1D

PlotShiftedVariablesPerProcess1D

PlotVariables1D

PlotMLResultsCreateYieldTableCreateDatacards WritePyhfWorkspace

PlotCutflow PlotCutflowVariables1D

MergeHistograms

MergeShiftedHistograms

MergeMLEvaluation

PrepareMLEvents

MergeMLEvents MergeMLStats

MLTraining

MergeSelectionStats

MergeSelectionMasks

MergeReductionStats

MergedReducedEvents

GetDatasetLFNs

CalibrateEvents

SelectEvents

CreateCutflowHistograms

ReduceEvents

ProduceColumns

UniteColumns CreateHistograms

Used in
training?

MLEvaluation

Note: this is a simplified, stylized view 
of the full workflow, which can easily 
consist of  particular workloads 𝒪(1M)

https://github.com/columnflow/columnflow
https://github.com/columnflow/columnflow/wiki




law 
Marcel Rieger

8

● Python package for building complex pipelines 

● Development started at Spotify, now open-source 
and community-driven 

1. Workloads defined as Task classes that        
can require other Tasks 

2. Tasks produce output Targets 

3. Parameters customize tasks & control                  
runtime behavior 

● Web UI with two-way messaging (task → UI, UI → 

task), automatic error handling, task history 
browser, collaborative features, command line 
interface, … 

● Great documentation 📖

Building blocks

github.com/spotify/luigi

https://luigi.readthedocs.io/en/stable/
https://github.com/spotify/luigi


law 
Marcel Rieger

9 Luigi in a nutshell

 > python reco.py Reconstruction --dataset ttbar



law 
Marcel Rieger

9 Luigi in a nutshell

 > python reco.py Reconstruction --dataset ttbar

luigi's local file target: 
  - path: string
  - exists(): bool
  - remove()
  - open(): fd
  - ...

Encoding parameters into 
output target path

Parameter object on class-level, 
translates to argument parser

string on instance-level



law 
Marcel Rieger

10 make - like execution system

● Luigi’s execution model is make-like  

1. Create dependency tree for triggered task 
2. Determine tasks to actually run: 
－ Walk through tree (top-down) 
－ For each path, stop if all output                  

targets of a task exist* 

● Only processes what is really necessary 

● Scalable through simple structure 

● Error handling & automatic re-scheduling

triggered task

required task

dependency

* in this case, the task is considered complete



law 
Marcel Rieger

11 Example dependency trees

Work of a B.Sc. student 
after 2 weeks ❗



HEP concepts, constraints & 
peculiarities 

(aka "reality check")



law 
Marcel Rieger

13 Design choices

● Purpose 
■ Analysis workflow system that provides necessary tools to develop an automated analysis right from the start 

▻ Ability to adapt to all possible resources (software stacks, remote file access, submission to batch systems, ...) 

▻ Features for interactive work 

▻ Collaborative aspects 

→ More details on next slides 

❗ A system that is designed for a-posteriori analysis preservation is not necessarily an appropriate candidate for a 
"workflow development environment" for large analyses 

● Typical usage 
■ Most analysis development is done by PhD students and early PostDocs (popular exception: "framework devs") 

▻ Structure of an analysis (workflow shape) might not be perfectly clear a-priori 
▻ Several stages in the course of an analysis that can cause perturbations 
﹣ Commencing collaboration with other groups 
﹣ Internal reviews and suggestions to restructure / repurpose an analysis 

■ A typical analysis cycle ... 
▻ Year 1: 	 	 "Let's start from scratch and plan everything ahead. This is going to be great." 
▻ Year 2: 	 	 "Ok, we didn't know we had to consider XYZ. But we can still make it happen ..." 
▻ Year 3+n:	 " 🔩🪛  it! My contract is ending & I need that paper to apply for a job. Let's do workarounds ..."



law 
Marcel Rieger

13 Design choices

● Purpose 
■ Analysis workflow system that provides necessary tools to develop an automated analysis right from the start 

▻ Ability to adapt to all possible resources (software stacks, remote file access, submission to batch systems, ...) 

▻ Features for interactive work 

▻ Collaborative aspects 

→ More details on next slides 

❗ A system that is designed for a-posteriori analysis preservation is not necessarily an appropriate candidate for a 
"workflow development environment" for large analyses 

● Typical usage 
■ Most analysis development is done by PhD students and early PostDocs (popular exception: "framework devs") 

▻ Structure of an analysis (workflow shape) might not be perfectly clear a-priori 
▻ Several stages in the course of an analysis that can cause perturbations 
﹣ Commencing collaboration with other groups 
﹣ Internal reviews and suggestions to restructure / repurpose an analysis 

■ A typical analysis cycle ... 
▻ Year 1: 	 	 "Let's start from scratch and plan everything ahead. This is going to be great." 
▻ Year 2: 	 	 "Ok, we didn't know we had to consider XYZ. But we can still make it happen ..." 
▻ Year 3+n:	 " 🔩🪛  it! My contract is ending & I need that paper to apply for a job. Let's do workarounds ..."



law 
Marcel Rieger

14 Design choices (cont'd)

● Language & flexibility 
■ An physics analysis workflow is not a simple sequence of steps 

▻ Being able to model dynamic "paths" is a mandatory feature 
▻ Only parts of the workflow shape are predictable, some are not!



law 
Marcel Rieger

15 A typical example: ML workflow with uncertainties

Reconstruction

MVA Split

MVA MVA Evaluation

Inference

MVA Training

...

...

train test evaluate

weights

Nominal MC



law 
Marcel Rieger

15 A typical example: ML workflow with uncertainties

Reconstruction

MVA Split

MVA MVA Evaluation

Inference

MVA Training

...

...

train test evaluate

weights

real data

Nominal MCData



law 
Marcel Rieger

15 A typical example: ML workflow with uncertainties

Reconstruction

MVA Split

MVA MVA Evaluation

Inference

MVA Training

...

...

train test evaluate

weights
MC with systematic 
derived from nominal 

sample

Nominal MCDataMC, Syst. I



law 
Marcel Rieger

15 A typical example: ML workflow with uncertainties

Reconstruction

MVA Split

MVA MVA Evaluation

Inference

MVA Training

...

...

train test evaluate

weights

MC with systematic 
generated from 

new events

Nominal MCDataMC, Syst. IMC, Syst. II



law 
Marcel Rieger

16 Design choices (cont'd)

● Language & flexibility 
■ An physics analysis workflow is not a simple sequence of steps 

▻ Being able to model dynamic "paths" is a mandatory feature 
▻ Only parts of the workflow shape are predictable, some are not! 

■ Dynamic behavior can depend on many (❗) aspects, categorized into three classes: 
a) a-priori known: 	 	 easy to consider into analysis design 
b) a-priori unknown:		 potential for severe disruptions, especially in late stages 
c) dynamic:		 	 	 the workflow shape is not fully determined at execution time but can depend on 		 	

	 	 	 	 	 outcomes at runtime 

■ People are aware of potential risks and 
▻ hesitate to use new tools - while solving a short-term issue - might constrain them long-term 
﹣ collaborative / centralized development and training! 

▻ avoid straying too far from their current point of expertise 
▻ for defining workflows, want to use a language they know 

﹣ just to be equipped for what might come down the road 



law 
Marcel Rieger

17 "Reality check"

● Remote storage is mandatory 
■ Local storage (e.g. at lab or institute) not always sufficient 
■ Using only local storage constraints you to use only (the only?) local batch system 

■ When collaborating with groups, copying files manually between sites is error prone & high-maintenance! 

● Analyses are large 
■ Imagine  tasks  (file based) outputs and a target-based workflow engine 
■ Starting the workflow requires checking the existence of many (remote) files 

■ Without doing optimizations, this will just not work  (and site admins will find you 👀) 

● Our IT infrastructure is (very) heterogeneous 
■ Different systems (storage, batch) and exerpise at different sites 
■ Random yet typical example 

▻ Accessing files on site X via webdav://, and on Y via root:// 
▻ Site X updates their configuration, and now mkdir_rec requests are no longer supported 
﹣ Switch to root:// on site X for mkdir_rec 

▻ Site Y updates their caching database to accelerate stat requests through root://, and now mtime's are gone 
﹣ Your local cache just got invalidated ... 
﹣ Switch to gsiftp:// on site Y for stat

𝒪(1M) ≈ 𝒪(1M)



law 
Marcel Rieger

17 "Reality check"

● Remote storage is mandatory 
■ Local storage (e.g. at lab or institute) not always sufficient 
■ Using only local storage constraints you to use only (the only?) local batch system 

■ When collaborating with groups, copying files manually between sites is error prone & high-maintenance! 

● Analyses are large 
■ Imagine  tasks  (file based) outputs and a target-based workflow engine 
■ Starting the workflow requires checking the existence of many (remote) files 

■ Without doing optimizations, this will just not work  (and site admins will find you 👀) 

● Our IT infrastructure is (very) heterogeneous 
■ Different systems (storage, batch) and exerpise at different sites 
■ Random yet typical example 

▻ Accessing files on site X via webdav://, and on Y via root:// 
▻ Site X updates their configuration, and now mkdir_rec requests are no longer supported 
﹣ Switch to root:// on site X for mkdir_rec 

▻ Site Y updates their caching database to accelerate stat requests through root://, and now mtime's are gone 
﹣ Your local cache just got invalidated ... 
﹣ Switch to gsiftp:// on site Y for stat

𝒪(1M) ≈ 𝒪(1M)



law 
Marcel Rieger

17 "Reality check"

● Remote storage is mandatory 
■ Local storage (e.g. at lab or institute) not always sufficient 
■ Using only local storage constraints you to use only (the only?) local batch system 

■ When collaborating with groups, copying files manually between sites is error prone & high-maintenance! 

● Analyses are large 
■ Imagine  tasks  (file based) outputs and a target-based workflow engine 
■ Starting the workflow requires checking the existence of many (remote) files 

■ Without doing optimizations, this will just not work  (and site admins will find you 👀) 

● Our IT infrastructure is (very) heterogeneous 
■ Different systems (storage, batch) and exerpise at different sites 
■ Random yet typical example 

▻ Accessing files on site X via webdav://, and on Y via root:// 
▻ Site X updates their configuration, and now mkdir_rec requests are no longer supported 
﹣ Switch to root:// on site X for mkdir_rec 

▻ Site Y updates their caching database to accelerate stat requests through root://, and now mtime's are gone 
﹣ Your local cache just got invalidated ... 
﹣ Switch to gsiftp:// on site Y for stat

𝒪(1M) ≈ 𝒪(1M)



law
luigi analysis workflow



law 
Marcel Rieger

19 Law

● law: extension on top of luigi  (i.e. it does not replace luigi) 

● Design follows three primary goals 

1. Experiment-agnostic core (in fact, not even related to physics) 

2. Scalability on HEP infrastructure (but not limited to it*) 

3. Decoupling of run locations, storage locations & software environments 
▻ Not constrained to specific resources, all components interchangeable 

● Toolbox to follow an analysis design pattern 

→ Not a framework (no language or data format constraints) 

→ Serves as a day-to-day working environment allowing to prototype                                                                                                                                          
and automatically scale-out for free 

● Most used workflow system for analyses in CMS 

■ O(30) analyses, O(100) people 
■ Central groups, e.g. HIG, TAU, BTV 

● Also used outside CMS (e.g. LIGO) and outside HEP

law
luigi analysis workflow

Analysis

Run 
location

Storage 
location

Software 
environment

Code



law 
Marcel Rieger

20 Law features (1)

1. Job submission 

■ Idea: submission built into tasks, no need to write extra code 

■ Currently supported job systems: HTCondor, SLURM, LSF, gLite, ARC, CMS-CRAB 

■ Mandatory features such as automatic resubmission, flexible task ↔︎ job matching,                                              

job files fully configurable at submission time, internal job staging in case of saturated queues, ... 

■ From the htcondor_at_cern example:

lxplus129:law_test > law run CreateChars --workflow htcondor
INFO: [pid 30564] Worker Worker(host=lxplus129.cern.ch, username=mrieger) running                      
                  CreateChars(branch=-1, start_branch=0, end_branch=26, version=v1)
going to submit 26 htcondor job(s)
submitted 1/26 job(s)
submitted 26/26 job(s)
14:35:40: all: 26, pending: 26 (+26), running: 0 (+0),   finished: 0 (+0),   retry: 0 (+0), failed: 0 (+0)
...
14:37:10: all: 26, pending: 0 (+0),   running: 26 (+26), finished: 0 (+0),   retry: 0 (+0), failed: 0 (+0)
14:37:40: all: 26, pending: 0 (+0),   running: 10 (-16), finished: 16 (+16), retry: 0 (+0), failed: 0 (+0)
14:38:10: all: 26, pending: 0 (+0),   running: 0  (+0),  finished: 26 (+10), retry: 0 (+0), failed: 0 (+0)
INFO: [pid 30564] Worker Worker(host=lxplus129.cern.ch, username=mrieger) done!

lxplus129:law_test >

law
luigi analysis workflow

local

htcondor

local

new

https://github.com/riga/law/tree/master/examples/htcondor_at_cern


law 
Marcel Rieger

21 Scaling up

Job status polling from CMS HH combination law
luigi analysis workflow



law 
Marcel Rieger

22 Law features (2)

2. Remote targets 

■ Idea: work with remote files as if they were local 

■ Remote targets built on top of GFAL2 Python bindings 
▻ Supports all WLCG protocols (XRootD, WebDAV, GridFTP, dCache, SRM, ...) + DropBox 
▻ HDFS under development 
▻ API identical to local targets 

❗ Actual remote interface interchangeable (GFAL2 is just a good default, fsspec integration easily possible) 

■ Mandatory features: automatic retries, local caching (backup), configurable protocols, round-robin, ...

“FileSystem” configuration

● Base path prefixed to all 
paths using this “fs” 

● Configurable per file 
operation (stat, listdir, ...) 

● Protected against removal 
of parent directories

law
luigi analysis workflow

new



law 
Marcel Rieger

22 Law features (2)

2. Remote targets 

■ Idea: work with remote files as if they were local 

■ Remote targets built on top of GFAL2 Python bindings 
▻ Supports all WLCG protocols (XRootD, WebDAV, GridFTP, dCache, SRM, ...) + DropBox 
▻ HDFS under development 
▻ API identical to local targets 

❗ Actual remote interface interchangeable (GFAL2 is just a good default, fsspec integration easily possible) 

■ Mandatory features: automatic retries, local caching (backup), configurable protocols, round-robin, ...

“FileSystem” configuration

● Base path prefixed to all 
paths using this “fs” 

● Configurable per file 
operation (stat, listdir, ...) 

● Protected against removal 
of parent directories

Conveniently reading remote files

law
luigi analysis workflow

new



law 
Marcel Rieger

22 Law features (2)

2. Remote targets 

■ Idea: work with remote files as if they were local 

■ Remote targets built on top of GFAL2 Python bindings 
▻ Supports all WLCG protocols (XRootD, WebDAV, GridFTP, dCache, SRM, ...) + DropBox 
▻ HDFS under development 
▻ API identical to local targets 

❗ Actual remote interface interchangeable (GFAL2 is just a good default, fsspec integration easily possible) 

■ Mandatory features: automatic retries, local caching (backup), configurable protocols, round-robin, ...

“FileSystem” configuration

● Base path prefixed to all 
paths using this “fs” 

● Configurable per file 
operation (stat, listdir, ...) 

● Protected against removal 
of parent directories

Conveniently reading remote files

law
luigi analysis workflow

new



law 
Marcel Rieger

22 Law features (2)

2. Remote targets 

■ Idea: work with remote files as if they were local 

■ Remote targets built on top of GFAL2 Python bindings 
▻ Supports all WLCG protocols (XRootD, WebDAV, GridFTP, dCache, SRM, ...) + DropBox 
▻ HDFS under development 
▻ API identical to local targets 

❗ Actual remote interface interchangeable (GFAL2 is just a good default, fsspec integration easily possible) 

■ Mandatory features: automatic retries, local caching (backup), configurable protocols, round-robin, ...

“FileSystem” configuration

● Base path prefixed to all 
paths using this “fs” 

● Configurable per file 
operation (stat, listdir, ...) 

● Protected against removal 
of parent directories

Conveniently reading remote files

law
luigi analysis workflow

new



law 
Marcel Rieger

22 Law features (2)

2. Remote targets 

■ Idea: work with remote files as if they were local 

■ Remote targets built on top of GFAL2 Python bindings 
▻ Supports all WLCG protocols (XRootD, WebDAV, GridFTP, dCache, SRM, ...) + DropBox 
▻ HDFS under development 
▻ API identical to local targets 

❗ Actual remote interface interchangeable (GFAL2 is just a good default, fsspec integration easily possible) 

■ Mandatory features: automatic retries, local caching (backup), configurable protocols, round-robin, ...

“FileSystem” configuration

● Base path prefixed to all 
paths using this “fs” 

● Configurable per file 
operation (stat, listdir, ...) 

● Protected against removal 
of parent directories

Conveniently reading remote files

law
luigi analysis workflow

new



law 
Marcel Rieger

3. Environment sandboxing 

■ Diverging software requirements between typical workloads                                                                                                              
is a great feature / challenge / problem 

■ Introduce sandboxing: 
▻ Run entire task in different environment 

■ Existing sandbox implementations: 
▻ Sub-shell with init file (e.g. for CMSSW) 
▻ Virtual envs 
▻ Docker images 
▻ Singularity images

23 Law features (3)

docker::imgA

docker::imgB

shell::myEnv.sh

singularity::cc7

law
luigi analysis workflow



law 
Marcel Rieger

24 Law in action

 > python reco.py Reconstruction --dataset ttbar

☐ luigi task 
☐ law task 
☐ Run on HTCondor 
☐ Store on EOS 
☐ Run in docker

✔︎

Example ☞

https://github.com/riga/law/tree/master/examples/htcondor_at_cern


law 
Marcel Rieger

24 Law in action

 > python reco.py Reconstruction --dataset ttbar > law run Reconstruction --dataset ttbar

☐ luigi task 
☐ law task 
☐ Run on HTCondor 
☐ Store on EOS 
☐ Run in docker

✔︎

✔︎

Example ☞

https://github.com/riga/law/tree/master/examples/htcondor_at_cern


law 
Marcel Rieger

24 Law in action

 > python reco.py Reconstruction --dataset ttbar > law run Reconstruction --dataset ttbar > law run Reconstruction --dataset ttbar --workflow htcondor

☐ luigi task 
☐ law task 
☐ Run on HTCondor 
☐ Store on EOS 
☐ Run in docker

✔︎

✔︎

✔︎

Example ☞

https://github.com/riga/law/tree/master/examples/htcondor_at_cern


law 
Marcel Rieger

24 Law in action

 > python reco.py Reconstruction --dataset ttbar > law run Reconstruction --dataset ttbar > law run Reconstruction --dataset ttbar --workflow htcondor

☐ luigi task 
☐ law task 
☐ Run on HTCondor 
☐ Store on EOS 
☐ Run in docker

✔︎

✔︎

✔︎

✔︎

Example ☞

https://github.com/riga/law/tree/master/examples/htcondor_at_cern


law 
Marcel Rieger

24 Law in action

 > python reco.py Reconstruction --dataset ttbar > law run Reconstruction --dataset ttbar > law run Reconstruction --dataset ttbar --workflow htcondor

☐ luigi task 
☐ law task 
☐ Run on HTCondor 
☐ Store on EOS 
☐ Run in docker

✔︎

✔︎

✔︎

✔︎

✔︎

Example ☞

https://github.com/riga/law/tree/master/examples/htcondor_at_cern


law 
Marcel Rieger

● CLI 
> law run Reconstruction --dataset ttbar --workflow htcondor

■ Full auto-completion of tasks and parameters 

● Scripting 
■ Mix task completeness checks, job execution                                                                                                                                                           

& input/output retrieval with custom scripts 

■ Easy interface to existing tasks for prototyping 

● Notebooks

25 Triggers: CLI, scripting and notebooks

https://mybinder.org/v2/gh/riga/law/master?filepath=examples/loremipsum/index.ipynb
https://mybinder.org/v2/gh/riga/law/master?filepath=examples/loremipsum/index.ipynb
https://mybinder.org/v2/gh/riga/law/master?filepath=examples/loremipsum/index.ipynb
https://mybinder.org/v2/gh/riga/law/master?filepath=examples/loremipsum/index.ipynb
https://mybinder.org/v2/gh/riga/law/master?filepath=examples/loremipsum/index.ipynb
https://mybinder.org/v2/gh/riga/law/master?filepath=examples/loremipsum/index.ipynb
https://mybinder.org/v2/gh/riga/law/master?filepath=examples/loremipsum/index.ipynb
https://mybinder.org/v2/gh/riga/law/master?filepath=examples/loremipsum/index.ipynb
https://mybinder.org/v2/gh/riga/law/master?filepath=examples/loremipsum/index.ipynb
https://mybinder.org/v2/gh/riga/law/master?filepath=examples/loremipsum/index.ipynb


law 
Marcel Rieger

26 Summary

● Resource-agnostic workflow management essential for large & complex analyses 

→ Need for a flexible design pattern to automate arbitrary workloads 

→ End-to-end automation of analyses over distributed resources 

→ Full decoupling of run locations, storage locations & software environments 
→ Allows to build frameworks that check every point in the CMS analysis wishlist 
→ Currently working on full documentation and type annotations for next release 

→ github.com/riga/law, law.readthedocs.io 
→ github.com/spotify/luigi, luigi.readthedocs.io Run 

location
Storage 
location

Software 
environment

Code

Collaboration & contributions welcome!

law
luigi analysis workflow

workflow engine layer for HEP & scale-out features
(experiment independent)

analysis, SF calculation, ...

Frame 
work

https://cms-docdb.cern.ch/cgi-bin/DocDB/ShowDocument?docid=14434
https://github.com/riga/law
https://law.readthedocs.io/en/latest/
https://github.com/spotify/luigi
https://luigi.readthedocs.io/en/stable/


law 
Marcel Rieger

27 Discussion starters

HEP-orientated questions to consider for discussion
● Need each step of a workflow to run in bespoke software environment (Linux 

container support is required. What runtimes are supported? E.g. Docker, 
Podman, Apptainer/Singularity)

● Workflow engine needs to be isolated from analysis code – how can we best 
separate the two while still making use of workflow commands natural during 
analysis development process?

○ e.g. avoid including workflow tooling in analysis software
○ Anything that needs to be changed in analysis software?

● Workflow scheduling: where can workflows be executed using typical HEP 
resources (HTCondor, SLURM, WLCG, Kubernetes…)

○ Can there be some generic solutions to this that don’t need implementations for each engine?
● Dynamics graphs

○ Number of files could be unknown in advance of runtime
○ Want to be able to control processes that call task graph builds (e.g. Dask). How is balance 

created?

11

from Matthew's slides

https://indico.cern.ch/event/1380367/contributions/5880476/attachments/2830469/4945329/workshop_overview.pdf


Backup



law 
Marcel Rieger

29 Abstraction: analysis workflows

● Workflow, decomposable into particular workloads 

● Workloads related to each other by common interface 
■ In/outputs define directed acyclic graph (DAG) 

● Alter default behavior via parameters 

● Computing resources 
■ Run location (CPU, GPU, WLCG, …) 
■ Storage location (local, dCache, EOS, …) 

● Software environment 

● Collaborative development and processing 

● Reproducible intermediate and final results

Selection

Reconstruction

MVA Split

MVA MVA Evaluation

Inference

MVA Training

Weights

Example

CPU

GPU

→ Reads like a checklist for analysis workflow management



law 
Marcel Rieger

30 Existing WMS: MC production

● Structure known in advance 

● Workflows static & recurring 

● One-dimensional design 

● Special production infrastructure 

● Homogeneous software requirements

GEN SIM DIGI RECO ...

Tailored systems Wishlist for end-user analyses

● Structure “iterative”, a-priori unknown 

● Dynamic workflows, fast R&D cycles 

● DAG with arbitrary dependencies 

● Incorporate any existing infrastructure 

● Use custom software, everywhere

 → Requirements for HEP analyses mostly orthogonal



law 
Marcel Rieger

31 "Realistic" HEP workflow management

● Consider this example again 

>  law run Reconstruction --dataset ttbar --workflow htcondor

■ (500 - 4k) files, stored either locally or remotely 
■ Any workflow engine will first check if things need to be rerun 

▻ (500 - 4k) file requests (via network)! 

▻ Prepare for admins to find you 👀 

■ What law does 

▻ Reconstruction is a workflow 
▻ Workflows output a so-called TargetCollection's, containing all outputs of its branch tasks 

▻ TargetCollection's can check if their files are located in the same directory 

▻ If they do, perform a single (remote) listdir and compare basenames  →  single request 

● There is no free lunch 
■ Our HEP resources (clusters, grid, storage elements, software environments) are very inhomogeneous 
■ A realistic workflow engine 

▻ can make some good, yet simple assumptions based on known best-practices 
BUT 

▻ it should always allow users to transparently change decisions & configure every single aspect!

𝒪

𝒪



law 
Marcel Rieger

32 Inference tools used by HH searches

cms-hh.web.cern.ch/cms-hh/tools/inference

https://cms-hh.web.cern.ch/cms-hh/tools/inference


(Remote) targets



law 
Marcel Rieger

34 Working with remote targets



law 
Marcel Rieger

35 Remote target implementation details

Target

FileTarget 
   - fs: FileSystem

RemoteFileTarget 
   - fs: RemoteFileSystem

FileSystem 
   - std. methods: stat, touch,    
     exists, remove, listdir, ...

RemoteFileSystem 
   - file_interface_cls 
   - file_interface instance

RemoteFileInterface 
   - implements atomic file  
     interactions

GFALFileInterface 
   - access through gfal2

WLCGFileTarget 
   - no extra functionality

"is"

"has"

WLCGFileSystem 
   - file_interface_cls set to      
     GFALFileInterface



law 
Marcel Rieger

● Local cache for remote targets 

● Simple configuration 
■ When enabled, all operations on remote targets are cached

36 Effective remote targets  —  Caching

remote storage

save ✓

load ?

no ❗

law.cfg



law 
Marcel Rieger

● Local cache for remote targets 

● Simple configuration 
■ When enabled, all operations on remote targets are cached

36 Effective remote targets  —  Caching

remote storage

save ✓

load ?

no ❗

remote storage

save ✓

local cache

sync ✓

open ✓

law.cfg



law 
Marcel Rieger

● Local cache for remote targets 

● Simple configuration 
■ When enabled, all operations on remote targets are cached

36 Effective remote targets  —  Caching

remote storage

save ✓

load ?

no ❗

remote storage

save ✓

local cache

sync ✓

open ✓

law.cfg



law 
Marcel Rieger

37 Local caching (1)

Remote storage (e.g. eos / dcache / ...)

Remote

Local machine

law/python process Local cache

PWD /tmp

1⃣ Need to access file “a.root” 
(has unique, path-dep. hash X)

Local request
Remote request

3⃣ File “a.root” with hash X in 
     cache with latest mtime? → no

2⃣
 S

ta
t 
fil

e 
“a

.ro
ot

”
4⃣

 D
ownload “a.root”

7⃣ Return local path in cache

5⃣ Store “a.root” using hash X

8⃣ Work with local file 6⃣ Change mtime of file to 
     value from stat (see 2⃣ )

Configuration ☞

https://law.readthedocs.io/en/latest/config.html#id13


law 
Marcel Rieger

38 Local caching (2)

Remote storage (e.g. eos / dcache / ...)

law/python process Local cache

PWD /tmp

1⃣ Need to access file “a.root” 
(has unique, path-dep. hash X)

3⃣ File “a.root” with hash X in 
     cache with latest mtime? → yes

2⃣
 S

ta
t 
fil

e 
“a

.ro
ot

”

4⃣ Return local path in cache
5⃣ Work with local file

Remote

Local machine
Local request
Remote request

Configuration ☞

https://law.readthedocs.io/en/latest/config.html#id13


law 
Marcel Rieger

39 Effective remote targets  —  "Localization"



law 
Marcel Rieger

39 Effective remote targets  —  "Localization"



Workflows



law 
Marcel Rieger

41 Workflows: General ideas

● Many tasks exhibit the same overall structure and/or purpose 
■ "Run over N existing files"  /  "Generate N events/toys"  /  "Merge N into M files" 

■ All these tasks can profit from the same features 
▻ "Only process file x and/to y", "Remove outputs of "x, y & z",                                                             

"Process N files, but consider the task finished once M < N are done", "..." 

→ Calls for a generic container object that provides guidance and features for these cases 

■ Workflow "containers" 
■ Task that introduces a parameters called --branch b (luigi.IntParameter) 

▻ b >= 0: Instantiates particular tasks called "branches"; run() will (e.g.) process file b 
▻ b = -1: Instantiates the workflow container itself; run() will run* all branch tasks 
* How branch tasks are run is implemented in different workflow types: local or several remote ones 

● Practical advantages 
■ Convenience: same features available in all workflows (see next slides) 

■ Scalability and versatility for remote workflows 
▻ Jobs: Better control of jobs, submission, task-to-job matching ... (see next slides) 
▻ Luigi: Central scheduler breaks when pinged by O(10k) tasks every few seconds 
▻ Remote storage: allows batched file operations instead of file-by-file requests



law 
Marcel Rieger

42 Workflows: example implementation

Common

Workflow 
specific

Implemented 
by task

}When "is_workflow", 
seen by luigi as 

requires(), output() 
and run()



law 
Marcel Rieger

43 Workflows: example usage

● Tasks that each write a single character into a text file 
● Character assigned to them though the branch map as their "branch data"



law 
Marcel Rieger

44 Workflows: remote workflows & jobs

● 6 remote workflow implementations come with law 

■ htcondor, glite, lsf, arc, slurm, cms-crab (in PR#150) 
■ Based on generic "job manager" implementations in contrib packages 

● Job managers fully decoupled from most law functionality 
■ Simple extensibility 
■ No "auto-magic" in submission files, rather minimal and configurable through tasks 
■ Usable also without law 

● Most important features 
■ Job submission functionality "declared" via task class inheritance 
■ Provision of software and job-specific requirements through workflow_requires()

■ Control over remote jobs through parameters: 
▻ --branch --branches :  granular control of which tasks to process 
▻ --acceptance --tolerance 	 	 :  defines when a workflow is complete / failed 
▻ --poll-interval --walltime 	 	 :  controls the job status polling interval and runtime 
▻ --tasks-per-job --parallel-jobs 	 :  control of resource usage at batch systems

https://github.com/riga/law/pull/150


Miscellaneous



law 
Marcel Rieger

46 Package structure

Command-line interface

3rd party tools

Job interface 
    - Job file factory interface 
    - Job manager interface 
    - Generic remote job script

Sandboxing mechanism 
    - Sandbox task 
    - Sandbox interface 
    - Bash sandbox impl.

Base task definitions

Base workflow definition 
    - Local workflow impl. 
    - Remote workflow interface

Lightweight patches of luigi, e.g.: 
    -  Disable dep. checks in sandboxes 
    -  Colorize logs 
   → Could be added directly to luigi

Target definitions 
    - Generic + file interace 
    - Local target impl. 
    - Remote target interfaces

Config parsing & tools 
Task decorators 
Custom loggers 
Notification tools (for e.g. slack/telegram) 
Custom parameters 
Utilities & helpers



law 
Marcel Rieger

46 Package structure

Command-line interface

3rd party tools

Job interface 
    - Job file factory interface 
    - Job manager interface 
    - Generic remote job script

Sandboxing mechanism 
    - Sandbox task 
    - Sandbox interface 
    - Bash sandbox impl.

Base task definitions

Base workflow definition 
    - Local workflow impl. 
    - Remote workflow interface

Lightweight patches of luigi, e.g.: 
    -  Disable dep. checks in sandboxes 
    -  Colorize logs 
   → Could be added directly to luigi

Target definitions 
    - Generic + file interace 
    - Local target impl. 
    - Remote target interfaces

Config parsing & tools 
Task decorators 
Custom loggers 
Notification tools (for e.g. slack/telegram) 
Custom parameters 
Utilities & helpers



law 
Marcel Rieger

47 luigi/law architecture

Load  .
dependencies  

Task Tree
(Workers)

Network Local Remote

User

Central 
Scheduler

Analysis &  
Task Classes

Input / Output
Targets

Workers Software & 
Images

Command-line
Interface

Register Tasks

Next task?

Read

LoadSubmit as job

Poll status

Write Read Write

1



law 
Marcel Rieger

48 DAG abstraction

https://cds.cern.ch/record/2693550/files/TS2019_019.pdf?page=61


law 
Marcel Rieger

49 Links

● law - luigi analysis workflow 
■ Repository 	 	 	 ☞ github.com/riga/law 
■ Paper	 	 	 	 ☞ arXiv:1706.00955 (CHEP16 proceedings) 
■ Documentation	 	 ☞ law.readthedocs.io (in preparation) 
■ Minimal example		 ☞ github.com/riga/law/tree/master/examples/loremipsum 
■ HTCondor example	 ☞ github.com/riga/law/tree/master/examples/htcondor_at_cern 
■ Contact	 	 	 ☞ Marcel Rieger 

● luigi - Powerful Python pipelining package (by Spotify) 
■ Repository	 	 	 ☞ github.com/spotify/luigi 
■ Documentation	 	 ☞ luigi.readthedocs.io 
■ “Hello world!”	 	 ☞ github.com/spotify/luigi/blob/master/examples/hello_world.py 

● Technologies 
■ GFAL2		 	 	 ☞ dmc.web.cern.ch/projects/gfal-2/home 
■ Docker		 	 	 ☞ docker.com 
■ Singularity	 	 	 ☞ singularity.lbl.gov

https://github.com/riga/law
https://arxiv.org/abs/1706.00955
https://law.readthedocs.io/en/latest/
https://github.com/riga/law/tree/master/examples/loremipsum
https://github.com/riga/law/tree/master/examples/htcondor_at_cern
mailto:marcel.rieger@cern.ch?subject=Law
https://github.com/spotify/luigi
https://luigi.readthedocs.io
https://github.com/spotify/luigi/blob/master/examples/hello_world.py
https://dmc.web.cern.ch/projects/gfal-2/home
https://www.docker.com
https://singularity.lbl.gov

