
Analysis Grand Challenge at REANA

Andrii Povsten
Mentors: Alex Held, Matthew Feickert (University of Wisconsin- Madison),

Oksana Shadura (University Nebraska-Lincoln), Tibor Simko (CERN)

FAIR and Open Science in High Energy Physics, OAC-2226378, OAC-2226379 and OAC-2226380

The Analysis Grand Challenge (AGC) project
The “Analysis Grand Challenge” (AGC) aims to help address the computing challenges of the HL-LHC

•coordinated by IRIS-HEP: research and development for HL-LHC (https://iris-hep.org/)

•organized jointly with the US ATLAS & US CMS operations programs

The AGC has two aspects:

1. define a physics analysis task of realistic scope & scale

2. develop analysis pipelines that implements the task

■find & address performance bottlenecks & usability concerns

2Analysis Grand Challenge

https://iris-hep.org/

Supporting new data analysis concepts for HL-LHC

New columnar data analysis concepts Distributed executors

3

Coffea Analysis Framework

ROOT RDataFrame

New analysis frameworks

The AGC physics analysis task
Main AGC analysis task: ttbar cross-section measurement

○using CMS Open Data (reformatted to 2 TB of NanoAODs): anyone can participate

○key feature: different kinds of systematic uncertainties & metadata handling

○sufficient complexity to demonstrate distributed scale-out performance

4Analysis Grand Challenge

Tools and services in IRIS-HEP AGC implementation
● Employing stack of Python HEP libraries for analysis tasks

● ServiceX used as data delivery service

● Execution on a coffea-casa analysis facility and NOW @ REANA

5Analysis Grand Challenge

func_adl

HEP-specific libraries used for data analysis data delivery services optional services

https://uproot.readthedocs.io/en/latest/
https://awkward-array.org/
https://hist.readthedocs.io/en/latest/
https://iminuit.readthedocs.io/en/stable/
https://mplhep.readthedocs.io/en/latest/
https://coffeateam.github.io/coffea/
https://vector.readthedocs.io/en/latest/
https://boost-histogram.readthedocs.io/en/latest/
https://cabinetry.readthedocs.io/en/latest/
https://pyhf.readthedocs.io/
https://iris-hep.org/projects/func-adl.html
https://servicex.readthedocs.io/en/latest/
https://coffea-casa.readthedocs.io/en/latest/
https://funcx.org/
https://iris-hep.org/projects/skyhookdm.html
https://github.com/slateci/XCache

Analysis Grand Challenge IRIS-HEP implementation
- Columnar data extraction from large dataset
- Processing of that data (event filtering, construction of observables, evaluation of systematic

uncertainties) into histograms
- Statistical model construction and statistical inference
- Relevant visualisation for this steps
+ Adding analysis preservation step to AGC pipeline

https://github.com/iris-hep/analysis-grand-challenge

From data delivery to statistical inference in a notebook

Implementation: ttbar analysis in a notebook

7Analysis Grand Challenge

multiple supported processing schemes

systematic variations

reconstructed observables

nuisance parameter pulls

post-fit distributions

https://github.com/iris-hep/analysis-grand-challenge/blob/main/analyses/cms-open-data-ttbar/ttbar_analysis_pipeline.ipynb

Porting Coffea analysis to Snakemake

● Our choice was to use Snakemake workflow management system (integrated in REANA)

● Snakemake key feature is a “rule” description, which enables the parallelisation within

REANA, running each rule in a separate pod.

● Snakemake allows you to create a set of rules, each one defining a “step” of your

analysis.

● In AGC case we defined each step as processing one of AGC sample (9 in total) with output

file containing processed histograms for given sample

● We end up having 2 rules for one sample and final merging rule, so in total we have 19 rules

which would generate 788 jobs.

Analysis Grand Challenge pipeline: Adapting to Snakemake

Each rule REANA sends to the Kubernetes cluster as separate node

 analyse file_ttbar_01 file_ttbar_02 file ... file_wjets_01 file_wjets_02 file_wjets_03 ...

 \ | / \ | /
 \ | / \ | /

 merge sample ttbar_nominal merge sample wjets_nominal

 \ /
 \ /

 merge all samples

 |
 |

 Plot

Snakemake checks the inputs and outputs in the rules to see the dependencies and order of execution

Examples of Snakemake rules

rule process_sample_ttbar_nominal:

 container:

 "ttbarkerberos:20240311"”

 resources:

 kubernetes_memory_limit="3700Mi"

 input:

 "file_merging.ipynb",

 expand(get_file_paths("ttbar__nominal"))

 output:

 "everything_merged_ttbar__nominal.root"

 params:

 sample_name = 'ttbar__nominal'

 shell:

 "papermill file_merging.ipynb merged_nominal.ipynb -p sample_name

{params.sample_name} -k python3"

rule process_sample_ttbar_nominal_one_file:

 container:

 "ttbarkerberos:20240311"

 resources:

 kubernetes_memory_limit="3700Mi",

 kerberos = True

 output:

 "histograms/histograms_ttbar__nominal_{filename}"

 params:

 sample_name = 'ttbar__nominal'

 shell:

 "/bin/bash -l && source fix-env.sh && python prepare_workspace.py

sample_{params.sample_name}_{wildcards.filename} && papermill

ttbar_analysis_reana.ipynb sample_{params.sample_name}_{wildcards.filename}_out.ipynb

-p sample_name {params.sample_name} -p filename {url_prefix}{wildcards.filename} -k

python3"

REANA AGC report

Optimising REANA k8s nodes configurations  
(depending on configuration)

The current execution time statistics

Issues with porting AGC IRIS-HEP implementation to be executed on
REANA

● Defining efficient resources = optimisation process
● Specify the kubernetes_memory limit that exact number of jobs are running in

one node.
● XCache switched off
● Dask switched off

○ Datasets at Nebraska are too far for CERN REANA instance and accessing datasets from
EOS Public is sometimes not efficient

● No native Dask support in REANA (WIP!)

Conclusion

- Add the recasting step using RECAST which would allow to submit, evaluate,
of additional sample which could be then merged on the final step

- Making more stress test experiments of AGC based on job memory
- Testing AGC ServiceX and Machine Learning pipelines in REANA
- Make a clear instruction for the reana-demo-agc-cms-ttbar-coffea.

Future Tasks

- We successfully implement the AGC ttbar analysis at REANA using
Snakemake

- You need to develop the Snakemake skills to be able to make your
analysis reproducible friendly.

https://github.com/reanahub/reana-demo-agc-cms-ttbar-coffea

Backup

AGC notebooks modification:

- Rerun the same notebook n-times but with different parameters => instead of processing all files,
samples we process one sample with one file

- Firstly we parallelized each sample from fileset:

- Second, parallelize each file for each sample:

The main idea is to see the whole picture of your analysis what steps suppose to be after another and modify
it on the early stages to have a separate pieces which could be count as 1 job.

original_dict = fileset

selected_file = original_dict[sample_name]['files']

new_dict = {sample_name: {'files': [filename], 'metadata': original_dict[sample_name]['metadata']}}

all_histograms, metrics = run(

 fileset={sample_name: new_dict[sample_name]},

 treename=treename,

 processor_instance=TtbarAnalysis(USE_INFERENCE, USE_TRITON)

)

