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Introduction Single Particle Xsuite Ensembles

Introduction to Optics Design

Goal

The aim of the “Introduction to Optics Design” lecture is
three-fold:

to recall the matrix formalism applied to Linear Optics,

to use the matrix formalism to perform Linear Optics Design,

to break the ice for the concepts that will be generalized
during the next days.
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References I

66-years anniversary of the seminal paper of linear optics.
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References II

A list1 of books presenting Linear Optics (and much more).

1Very incomplete! Apologies for the omissions.
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Alternating-gradient as Beam Dynamics foundations

The alternating-gradient was a breakthrough in the history of
accelerators based on linear algebra! It is still the very first step for
any new technology,

and for facing the non-linear problems that you will discuss during
the following lectures and your professional life.
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The three ways

One can consider three typical approaches to introduce the linear
optics:

solving the equation of motion (the historical one),

using Hamiltonian formalism (opening the horizon to the
non-linear optics, see later Lectures),

using the linear matrices (natural choice for the linear optics
design).
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Our reference system I

To describe the motion of a particle in a machine, as usual, we
fix a coordinate system to define the status of the particle at a
given instant t1 and a set of laws to transform the coordinates of
the system from t1 to a new instant t2.

XZ

Y

x(s)

z(s)

y(s)

Closed orbit

Particle trajectory

Reference orbit
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Coordinates

It is convenient to define the motion along a reference
trajectory of the 3D phase space (reference particle
trajectory/orbit), so to consider only the variations along that
trajectory (Frenet-Serret frame).

In addition, it is convenient to replace as independent variable
the time, t, with the longitudinal position, s, along the
reference trajectory/orbit.

The natural choice for the variables are (x , pxp0 , y ,
py
p0
, z , pzp0 )

(phase-space, see Hamiltonian approach) with p0 being the
momentum of the particle.

Typically, we also consider the trace-space
(x , x ′ = dx

ds , y , y
′ = dy

ds , z ,
∆p
p0

) (see equation of motion
approach).
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Linear transformations

We have established the phase space (x , pxp0 , y ,
py
p0
, z , pzp0 ), now we

need to study the particle evolution in there. We assume linear
transformation. A system is linear IFF the evolution from the
coordinates U to V can be expressed as

V = M U

where M is a square matrix and does not depend on U.

BUT we are interested only on a special set of linear
transformation: the so called symplectic linear transformations,
that is, the ones associated to a symplectic matrix.
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Bi-linear transformations

To introduce symplectic matrix we need a short digression on
bi-linear transformations.
Let us define the bi-linear transformation F as

V T F U. (1)

This is a function of two vectors (e.g. U and V ).
Let us consider, for simplicity, the 2D case, that is,

U = (ua, ub)
T and V = (va, vb)

T .
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EXAMPLE: orthogonal matrix

Assuming

F = I =

(
1 0
0 1

)
, (2)

the bilinear transformation I is the dot-product between
V = (va, vb)

T and U = (ua, ub)
T :

V T I︸︷︷︸
F

U = vaua + vbub.

A matrix M preserves the bi-linear transformation I (then the
projections) IFF

V TMT︸ ︷︷ ︸
(M V )T

I M U = V T I U → MT I M = I ,

then M is called orthogonal matrix.
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EXAMPLE: symplectic matrix

Assuming

F = Ω =

(
0 1
-1 0

)
,

the bi-linear transformation Ω is proportional to the amplitude of
the cross-product between V = (va, vb)

T and U = (ua, ub)
T :

V T Ω︸︷︷︸
F

U = vaub − vbua.

that is proportional to the area defined by the vectors. A matrix M
preserves the bi-linear transformation Ω (related to the
cross-product) IFF

V TMT Ω M U = V T Ω U → MT Ω M = Ω ,

then M is called symplectic matrix.
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EXAMPLE: visualise transformations.
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Figure 1: Identity transformation.
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EXAMPLE: visualise transformations.
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Figure 2: Orthogonal transformation (dot-product preserved).
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EXAMPLE: visualise transformations.
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Figure 3: Symplectic transformation (cross-product preserved).
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Matrix symplecticity in 2nD

From 2D this can generalized to 2nD and Ω becomes a 2n × 2n
matrix:

Ω =


0 1
−1 0

0

. . .

0
0 1
−1 0

 . (3)

Example of 2D symplectic matrix:
1 0 0 0
0 1 1 0
0 0 1 0
1 0 0 1

 .
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Domino effect
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Properties of symplectic matrices

If M1 and M2 then M = M1M2 is symplectic too.

If M is symplectic, then MT is symplectic.

Every symplectic matrix is invertible

M−1 = Ω−1MTΩ (4)

and M−1 is symplectic2.

A necessary condition for M to be symplectic is that
det(M) = +1. This condition is necessary and sufficient for
the 2D case. We will consider 2D case.

There are symplectic matrices that are defective, that is it

cannot be diagonalized, e.g.,

(
1 1
0 1

)
.

2Note that Ω−1 = −Ω.
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Symplectic matrix and accelerators

Please have a look on this generating set of the symplectic group

(
G 0
0 1

G

)
︸ ︷︷ ︸
thin telescope

,

(
1 L
0 1

)
︸ ︷︷ ︸

drift

,

(
1 0
−1

f 1

)
︸ ︷︷ ︸
thin quad

.

Among the above matrices you can recognise the one of a L-long
drift and thin quadrupole with focal length f .

Conveniently combining drifts and thin quadrupole one can find
back the well known matrices for the thick elements.
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EXAMPLE: a thick quadrupole I

One can derive the transfer matrix of a thick quadrupole of
length L by and normalized gradient K1 by considering the
following limit

lim
n

[(
1 0

−K1 L
n 1

)(
1 L

n
0 1

)]n
= cos

(√
K1L

)
sin(

√
K1L)√
K1

−
√
K1 sin

(√
K1L

)
cos
(√

K1L
)


Therefore we now have a correspondence between elements along
our machine (drift, bending, quadrupoles, solenoids,. . . ) and
symplectic matrices.
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EXAMPLE: a thick quadrupole II

To compute the above limit and, in general, for symbolic
computations one can profit of the available symbolic computation
tools (e.g., Mathematica™).

Code
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Tracking in a linear system

Given a sequence of elements M1,M2, . . .Mk (the lattice), the
evolution of the coordinate, Xn, along the lattice for a given
particle can be obtained as

Xn = Mn . . .M1 X0 for n ≥ 1. (5)

The transport of the particle along the lattice is called tracking.
The tracking on a linear system is trivial and boring. . .

In the following we will decompose the trajectory of the single
particle in term of invariant of the motion and properties of the
lattice, and via those properties we will describe the statistical
evolution of an ensemble of particles.

So instead of tracking an ensemble we will concentrate to solve
the properties of the lattice.
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Starting a long journey. . .

Voyager 1 is the Man-built object farther away from Earth
≈ 20 light-hours.
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Periodic lattice and stability I

We study now the motion of the particles in a periodic lattice,
that is a lattice constituted by an indefinite repetition of the same
basic C -long period MOTM , the so-called One-Turn-Map:

MOTM(s0) = MOTM(s0 + C ).

From Eq. 5 we get

Xn = Mn
OTM X0

and we study the property of MOTM to have stable motion in the
lattice, that is

|Xn| < |X̂ | for all X0 and n.

In other words, we need to study the if all the elements of the
Mn

OTM stay bounded.
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Periodic lattice and stability II

If MOTM can be expressed as a Diagonal-factorization

MOTM = P

(
λ1 0
0 λ2

)
︸ ︷︷ ︸

D

P−1 ,

after m-turns, it yields that

Mm
OTM = PDP−1︸ ︷︷ ︸

1

×PDP−1︸ ︷︷ ︸
2

× · · · × PDP−1︸ ︷︷ ︸
m

= PDmP−1.

Therefore the stability depends only on the eigenvalues of MOTM .

Note that the if V is an eigenvector also kV , k ̸= 0 is an
eigenvector. Therefore P is not uniquely defined: we chose it such
that det(P) = −i and P11 = P12.
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Periodic lattice and stability III

For a real matrix the eigenvalues, if complex, appear in
complex conjugate pairs.

For a symplectic matrix MOTM

2n∏
i

λi = 1

where λi are the eigenvalues of MOTM .

Therefore for 2x2 symplectic matrix the eigenvalues can be
written as λ1 = e iµ and λ2 = e−iµ → Dm = D(mµ).

If µ is real then the motion is stable we can define the fractional
tune of the periodic lattice as µ

2π .
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R-factorization of the MOTM I

The Diagonal-factorization is convenient to check the stability
but not to visualize the turn-by-turn phase space evolution of the
particle. To do that it is convenient to consider the
Rotation-factorization

MOTM = P̄

(
cosµ sinµ
− sinµ cosµ

)
︸ ︷︷ ︸
R(µ) is orthogonal

P̄−1 . (6)

This is very important since implies that the MOTM is similar to a
rotation in phase space (see Yannis’s lectures).
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R-factorization of the MOTM II

To go from Diagonal to Rotation-factorization we note that

(
cosµ sinµ
− sinµ cosµ

)
︸ ︷︷ ︸

R(µ)

=

(
1√
2

1√
2

i√
2
− i√

2

)
︸ ︷︷ ︸

S−1

(
e iµ 0
0 e−iµ

)
︸ ︷︷ ︸

D(µ)

(
1√
2
− i√

2
1√
2

i√
2

)
︸ ︷︷ ︸

S

and therefore

Rm = R(mµ),

MOTM = P S︸︷︷︸
P̄

S−1 D S︸ ︷︷ ︸
R

S−1 P−1︸ ︷︷ ︸
P̄−1

We note that det(P̄) = 1.
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Twiss-factorization of MOTM I

We note that

R(µ) =

(
1 0
0 1

)
cosµ+

(
0 1
−1 0

)
sinµ,

yielding the, so called, Twiss-factorization

MOTM = P̄I P̄−1︸ ︷︷ ︸
I

cosµ+ P̄ΩP̄−1︸ ︷︷ ︸
J

sinµ

Where J has three properties: det(J) = 1, J11 = −J22, J12 > 0.

Code: J properties
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Twiss-factorization of MOTM II

Therefore the following parametric expression has been proposed

J =


α

>0︷︸︸︷
β

− 1 + α2

β︸ ︷︷ ︸
γ>0

−α


defining the Twiss parameters of the lattice at the start of the
sequence MOTM . It is very important to not that they are not
depending on m since

Mm
OTM = I cos(mµ) + J sin(mµ)

In other words the Twiss parameters are periodic.
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Twiss-factorization of MOTM III

From the definition of J follows, J = P̄ΩP̄−1, the one of

P̄ =

( √
β 0

− α√
β

1√
β

)
=

(√
β 0
0 1√

β

)(
1 0
− α√

β
1

)

We note that by choosing detP = −i we got det P̄ = 1 that is we
expressed M as the product of orthogonal and symplectic matrices.

and

P = P̄S−1 =

( √
β
2

√
β
2

−α+i√
2β

−α−i√
2β

)
.
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Where do we stand?

Given a symplectic MOTM(s), if diagonalizable, we can study
three equivalent periodic problems

MOTM(s)m = P D(mµ) P−1,

MOTM(s)m = P̄ R(mµ) P̄−1,

MOTM(s)m = I cos(mµ) + J sin(mµ).

The previous factorizations allow us to reduce the power of a
matrix to an algebric multiplication (mµ). We expressed P, P̄ and
J as function of β and α parameters.

→ IMPORTANT FOR LATTICE STABILITY ←

Code

From MOTM(s) compute D (check stability) and P (force
det(P) = −i , P11 = P12), then P̄ = PS and J = P̄ΩP̄−1. You
therefore get the fractional tune and the Twiss parameters at s0.
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MOTM(s0) and MOTM(s1)

MOTM(s) is a function of s: are Q, β and α all s-function?

Given a C-long periodic lattice and two longitudinal positions s0
and s1 (s1 > s0), the transformation from s0 to s1 + C can be
expressed as

s0 s1 s1 + C

s0 s0 + C s1 + C

MOTM(s1) M = M MOTM(s0)

where M is the transformation from s0 to s1. This implies

MOTM(s1) = M MOTM(s0) M
−1

→ the matrices MOTM(s1) and MOTM(s2) are similar.
→ same eigenvalues: the MOTM is s-dependent but the Q is not.
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β and α transport I

On the other hand we observe that β and α are s-dependent
function and we have:

MOTM(s1) = M MOTM(s0) M
−1 = M (I cosµ+ J(s0) sinµ) M

−1,

therefore(
α(s1) β(s1)
−γ(s1) −α(s1)

)
︸ ︷︷ ︸

J(s1)

= M

(
α(s0) β(s0)
−γ(s0) −α(s0)

)
︸ ︷︷ ︸

J(s0)

M−1. (7)
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β and α transport II

To simplify from a computational point of view the Eq. 7 we can
use the Eq. 4 (inverse of a symplectic matrix M) and this yields(

α(s1) β(s1)
−γ(s1) −α(s1)

)
Ω−1 = M

(
α(s0) β(s0)
−γ(s0) −α(s0)

)
Ω−1 MT ,

that is (
β(s1) −α(s1)
−α(s1) γ(s1)

)
︸ ︷︷ ︸

J(s1) Ω−1

= M

(
β(s0) −α(s0)
−α(s0) γ(s0)

)
︸ ︷︷ ︸

J(s0) Ω−1

MT . (8)
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EXAMPLE: the β-function in a drift

To compute the Twiss parameters in a drift we can simply apply
the previous equation(

β(s) −α(s)
−α(s) γ(s)

)
=

(
1 s
0 1

)(
β0 −α0

−α0 γ0

)(
1 0
s 1

)
yielding

β(s) = β0 − 2α0s + γ0s
2

and
α(s) = α0 − γ0s.

→ IMPORTANT FOR INSERTIONS←
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The differential relation between α and β I

In order to see differential relations with the matrix formalism we
consider the general ∆M matrix for the infinitesimal “chunk of
quadrupole”, ∆s,

∆M =

(
1 ∆s

−K (s)∆s 1

)
.

Note that ∆M is symplectic only for ∆s → 0.

Then we have(
β(s +∆s) −α(s +∆s)
−α(s +∆s) γ(s +∆s)

)
︸ ︷︷ ︸

J(s+∆s)Ω−1

= ∆M

(
β(s) −α(s)
−α(s) γ(s)

)
︸ ︷︷ ︸

J(s)Ω−1

∆MT .
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The differential relation between α and β II

From that we have that

lim
∆s→0

J(s +∆s)− J(s)

∆s
Ω−1 =

(
β′(s) −α′(s)
−α′(s) γ′(s)

)
where we used standard notation d ·

ds = ·′. One gets

β′(s) = −2α(s)
α′(s) = −γ + K (s)β(s).

Replacing α and γ in the latter equation with functions of β we
get the non-linear differential equation:

β′′β

2
− β′2

4
+ Kβ2 = 1 .
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EXAMPLE: from matrices to Hill’s equation

Following the notation already introduced

X (s +∆s) = ∆M X (s)

with X (s) = (x(s), px (s)p0
)T ≈

p0≈ps
(x(s), x ′(s))T , therefore

X ′(s) =

(
x ′(s)
x ′′(s)

)
= lim

∆s→0

X (s +∆s)− X (s)

∆s
=

(
x ′(s)

−K (s)x(s)

)
we find back the Hill’s equation

x ′′(s) + K (s)x(s) = 0 .
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Where do we stand?

We learnt how to propagate via linear matrices the initial
Twiss parameters along the machine.

We also retrieved several differential relations between α and
β, β and K , and X and K : these are, in general, not practical
for computations.

The next question is, moving from the lattice to the particle,
is there an invariant of the motion?
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Courant-Snyder invariant I

Given a particle with coordinate X we can observe that the
quantity

XTΩ J−1 X

is an invariant of the motion: it is called the Courant-Snyder
invariant, JCS . In fact, from Eq. 8

XT
1 Ω J−1

1 X1 = XT
0 MT (M J0Ω

−1 MT )−1M X0 = XT
0 Ω J−1

0 X0

Code: find back the CS invariant in the trace-space
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Courant-Snyder invariant II

In the normalized phase-space, remembering that X = P̄ X̃ , we
have

XTΩ J−1 X = X̃T P̄TΩ J−1P̄︸ ︷︷ ︸
I

X̃ = X̃T X̃

that is the JCS is the square of the circle radius defined by the
particle initial condition.
This normalized phase-space is also called action-angle phase

space. The particle action JH is defined as JCS/2.
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What about the phase µ(s)? I

What is the ∆µ introduced by a linear matrix M =

(
m11 m12

m21 m22

)
?

In normalized space the transport from s to s +∆s does not
change JCS but the angle by ∆µ = µ(s +∆s)− µ(s).
To compute it we move to the normalized phase-space

X (s) = P̄(s) X̃ (s) and X (s +∆s) = P̄(s +∆s) X̃ (s)

and from
X (s +∆s) = M X (s),

it yields

X̃ (s+∆s) = P̄(s+∆s)−1 M P̄(s)X̃ (s) =

(
cos∆µ sin∆µ
− sin∆µ cos∆µ

)
X̃ (s).
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What about the phase µ(s)? II

That is

tan∆µ =
sin∆µ

cos∆µ︸ ︷︷ ︸
It does depend only on β and α in s!

=
m12

m11 β(s)−m12 α(s)
.

Code: derivation of ∆µ
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EXAMPLE 1: µ(s) differential equation

If M =

(
m11 m12

m21 m22

)
= ∆M =

(
1 ∆s

−K (s)∆s 1

)
then one gets

µ′ = lim
∆s→0

tan∆µ

∆s
= lim

∆s→0

1

β(s)− α(s) ∆s
=

1

β(s)
,

that is the well know expression

µ(s) =

∫ s

s0

1

β(σ)
dσ + µ(s0) .
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EXAMPLE 2: Betatron oscillation I

How we describe a betatronic oscillation from s1 to s2 in terms of
Twiss parameters and initial conditions?

X (s1)

X̃ (s1) X̃ (s2)

X (s2)

P̄
−
1
(s

1
)

R(µ12)

P̄
(s

2 )

It is easy by transforming the vector X in the normalized phase
space in s1, moving it from s1 to s2 in the normalized space (pure
rotation of the phase µ12) and back transform it in the original
phase space.
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EXAMPLE 2: Betatron oscillation II

Code

M = P̄(s2) R(µ12)P̄(s1)
−1 =

=

 √
β2
β1
(cosµ12 + α1 sinµ12)

√
β1β2 sinµ12

α1−α2√
β1β2

cosµ12 − 1+α1α2√
β1β2

sinµ12

√
β1
β2
(cosµ12 − α2 sinµ12)


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[√

m
m
]

X̄ (s2) trace-space

X (s1)

X̄ (s1) X̄ (s2)

X (s2)

P̄
−
1
(s

1
)

R(∆µ)

P̄
(s

2 )
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EXAMPLE 3: Solution of Hill’s equation

How we describe a betatronic oscillation in machine considering
a JCS and phase µ0? This is a special case of the previous one.
With the JCS and phase µ0 we are already in the normalized phase
space, therefore we need only to rotate by µ(s) and back transform
it in the original phase space.

X (s) = P̄(s)

( √
JCS cos(µ+ µ0)

−
√
JCS sin(µ+ µ0)

)
=

=

( √
JCSβ(s) cos(µ+ µ0)

−
√

JCS
β(s) [α(s) cos(µ+ µ0) + sin(µ+ µ0)]

)

where one recognizes the solutions of the Hill’s equation.
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Computing the closed orbit

Up to now we assumed that the closed orbit (CO) corresponded
to the reference orbit. This is not always true.

Assuming a MOTM(s0) and a single thin kick Θ at s0
(independent from Xn) we can write

Xn+1(s0) = MOTM(s0) Xn(s0) + Θ.

In the 2D case Θ can represent a kick of a dipole correction or
misalignment of a quadrupole (Θ = (0, θ)T ). The closed orbit
solution can be retrieved imposing Vn+1 = Vn (fixed point),
yielding

Xn(s0) = (I −MOTM(s0))
−1Θ(s0).

Please note that the CO is discontinuous at s0 so the previous
formula refers to the CO after the kick. In presence of multiple
Θ(si ) one can sum the single contributions along s.
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EXAMPLE: from the CO matrix to the CO formula

Code: closed orbit formula

We found back the known equation

xCO(s) =

√
β(s)β(s0)

2 sin(πQ)
θs0 cos(ϕ− πQ) (9)

where ϕ is the phase advance (> 0) from s0 to s.
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Computing dispersion and chromaticity I

Up to now we considered all the optics parameters for the
on-momentum particle. To evaluate the off-momentum effect of
the closed orbit and the tune we introduce the
dispersion,Dx ,y (s,

∆p
p0

), and chromaticity, ξx ,y (
∆p
p0

), respectively, as

∆COx ,y (s) = Dx ,y

(
s,

∆p

p0

)
× ∆p

p0
, Dx ,y (s + C ) = D(s)

and

∆Qx ,y = ξx ,y

(
∆p

p0

)
× ∆p

p0
.
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Computing dispersion and chromaticity II

In order to compute numerically the Dx ,y and ξx ,y one can

compute first the COx ,y and the Qx ,y as function of of ∆p
p0

.

To do that one has to compute MOTM(s, ∆p
p0

), that is evaluate

the property of the element of the lattice as function of ∆p
p0

.

In a thin quadrupole the focal length linearly scales with the
beam rigidity:(

1 0
− 1

f (∆p
p0

)
1

)
→

(
1 0

− 1
f0×(1+∆p

p0
)

1

)
.

A dipolar kick θ, scales with the inverse of the beam rigidity:(
0

θ(∆p
p0

)

)
→

(
0
θ0

1+∆p
p0

)
.
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Where do we stand?

We learnt how to compute

the invariant of the motions JCS and JH ,

the betatronic phase, µ(s), along the lattice,

the CO given a set of kicks,

the dispersion and chromaticity.

We will consider in the following an ensemble of non-interacting
particle and we will introduce the concept of beam emittance and
beam matching.
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Xsuite in 5 min. . .

DISCLAIMER

This material is intended to be a very brief introduction to
Xsuite: a large part of the code capabilities are not discussed
in details or are not discussed at all!

Please refer to https://xsuite.readthedocs.io to learn more.
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What is Xsuite?

Xsuite is a collection python packages for the simulation of
the beam dynamics in particle accelerators. It supports
different computing platforms, in particular conventional
CPUs and and Graphic Processing Units (GPUs)..

See reference paper Xsuite: An Integrated Beam Physics
Simulation Framework

It has been recently developed at CERN mainly on Linux and
macOS. However, it can also be used on Windows (under
Windows Subsystem for Linux using the same instructions as
for a vanilla Linux machine).
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Mainly intended as a tracking engine

Tracking circular machines, beam lines and linacs. . .
.

Describe parameters from machine description.

Design a lattice for getting the desired properties (matching).

Simulate beam dynamics, imperfections and operation.
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Describe an accelerator in Xsuite

Goals. . .

Describe, optimize and simulate a machine with several
thousand elements eventually with magnetic elements shared
by different beams, like in colliders.

Define the
machine
hardware

Define
the beam
properties

Execute the
operations
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Xsuite

Let us show simple Xsuite example in putting all together...
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The Beam distribution, a set of N particles
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Figure 5: From single particle to particle ensembles.
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The Beam distribution, a set of N particles I

To track N particles is possible by using the same approach of the
single particle tracking were X becomes XBeam, a 2n × N matrix:

XBeam =
(
X1,X2, . . . ,XN

)
We will restrict ourself to the 2D case (n=1).
We are looking for one or more statistical quantities that

represents this ensemble and its evolution in the lattice.
A natural one is the average JH over the ensemble:

1

N

N∑
i=1

JH,i = ⟨JH⟩

From the definition it follows that the quantity is preserved
during the beam evolution along the lattice.
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Beam emittance

One can see that ⟨JH⟩ converges, under specific assumptions
(matched beam), to the rms emittance of the beam, ϵrms

ϵrms =

√√√√√det(
1

N
XBX

T
B︸ ︷︷ ︸

σ matrix

).

One can see that the ϵrms is preserved for the symplectic linear
transformation M from s0 to s1 (see Cauchy-Binet theorem):

ϵ2rms(s0) = det(
1

N
XBX

T
B )

ϵ2rms(s1) = det(M
1

N
XBX

T
B︸ ︷︷ ︸

σ(s0)

MT ) = detM︸ ︷︷ ︸
=1

det(
1

N
XBX

T
B ) detMT︸ ︷︷ ︸

=1

where XB denotes XB(s0). Note that σ(s1) = M σ(s0) M
T .
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The σ matrix

By its definition we have (e.g., 1D trace-space) that

σ =

(
1
N

∑N
i=1 xixi

1
N

∑N
i=1 xix

′
i

1
N

∑N
i=1 x

′
i xi

1
N

∑N
i=1 x

′
i x

′
i

)
=


x2rms︷︸︸︷
⟨x̄2⟩ ⟨xx ′⟩
⟨xx ′⟩ ⟨x̄ ′2⟩︸︷︷︸

x ′2rms


and therefore we can write

ϵrms =
√
⟨x2⟩⟨x ′2⟩ − ⟨xx ′⟩2.

So we show how to numerically transport the second-order
moments of the beam distribution.
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Matched beam distribution I

A beam distribution is matched to the specific optics functions ᾱ
and β̄ if the corresponding normalized distribution is statistically
invariant by rotation in the normalized space. In other words it has
an azimuthal symmetry.
It is worth noting that since P̄−1 is a symplectic matrix and

defining X̄B = P̄−1XB we have that ϵ̄rms = ϵrms and for a matched
beam we have

σ̄ =
1

N
X̄B X̄

T
B = P̄−1σ P̄ =


x̄2rms︷︸︸︷
⟨x̄2⟩ ⟨x̄ x̄ ′⟩
⟨x̄ x̄ ′⟩ ⟨x̄ ′2⟩︸︷︷︸

x̄ ′2rms

 =

(
ϵrms 0
0 ϵrms

)
.

Therefore σ̄ is diagonal.
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Matched beam distribution II
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Figure 6: A matched beam distribution in normalized trace-space.
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Matched beam distribution III
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Figure 7: A mismatched beam distribution in normalized trace-space.
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Matched beam distribution IV

For a beam distribution matched to the specific optics functions
ᾱ and β̄ the we have

σ = P̄σ̄ P̄−1 =

(
β̄ϵrms −ᾱϵrms

−ᾱϵrms γ̄ϵrms

)
(10)

where we found back the rms beam size and divergence

formulas,

√
β̄ϵrms and

√
γ̄ϵrms , respectively.

The rms size of a matched beam in a periodic stable lattice and
at given position s0 is a turn-by-turn invariant.
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JH and ϵrms

Before concluding this chapter we demonstrate that, for matched
beam, we have ⟨JH⟩ = ϵrms . In fact

JH =
x̄2 + x̄ ′2

2
, (11)

and, since the beam is matched then ⟨x̄2⟩ = ⟨x̄ ′2⟩ = ϵrms , it yields

⟨JH⟩ = ⟨
x̄2 + x̄ ′2

2
⟩ = ⟨x̄

2⟩+ ⟨x̄ ′2⟩
2

= ϵrms . (12)
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About ensembles

We extended the single particle computation method to
transport ensembles of particles.

We introduced the concepts of beam σ matrix, the ϵrms , its
relation with the ⟨JH⟩ and the concept of beam matching.
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Thank you!
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