Introduction to
Beam Instrumentation and Diagnostics
Lecture ll

Michal Krupa
(based on previous lectures by Rhodri Jones)
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Outline

* Lecturel-yesterday
* Introduction
 Beam position monitoring
 Beam intensity monitoring
 Beam loss monitoring
* Lecture Il - today
* Transverse beam profile monitoring
°* Tune measurements
Coupling measurements
Chromaticity measurements
Diagnosing accelerator issues
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Transverse beam profile
monitoring
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Beam profile monitoring using wires

Secondary Emission Monitors (SEM, HARP)

* Secondary electrons emitted from beam-wire interaction — electric current in the wire
* Current in each wire read-out independently — beam profile reconstruction

* Wires can overheat — not ideal for circular machines
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Beam profile monitoring using wires

Wire scanners

* Single thin wire swept across the
beam - corelate beam-wire
interactions with the wire
position

* Low-energy beams: current in
the wire due to secondary
emission

* High-energy beams: secondary
shower measured outside of the
vacuum (e.g. with scintillator)

* Absolute measurements —can
be used for cross-calibration of
other instruments
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Wire scanner limitations

* Wires can (and do!) get damaged

* Mechanical failures —due to errors in motor
controls

* Melting / sublimation — energy deposition in
tbhe wire, large energy density for small
eams

* Thermal behaviour of the wire depends on the
heat capacity (increases with temperature!)
and cooling (negligible during a ~ 1 ms scan
time)

* Wire material: good mechanical properties,
high heat capacity, high melting / sublimation
point (e.g. 3915 K fFor carbon)

aged wire
> V -
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Beam profile monitoring using screens

Luminescence / scintillating -
screens i

* Light emission upon beam- g
screen interaction =

* Straight-forward instrument for Q
beam size and position b
monitoring

* 2D information with CCD
cameras

* Thick screens are destructive to
the beam but work with low
intensities
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Beam profile monitoring using screens

Optical Transition Radiation (OTR) N
screens ANS @_.\
* Radiation emitted when a charged Beam '\

particle goes through an interface

with different dielectric constants /] L

* Surface phenomenon —very thin (10 OTRt— — Exit window
um) screens possible Screen
 Multiple screen in single-pass lines Intensifier -

* Measurement over hundreds of CD
turns in rings

I C
| = ™~ —
* Less destructive than scintillation but | S~
requires higher energy / intensity \ -7
beams ror N\ Il_——

Mir ]]
* Extremely high resolution possible K | ens /
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Beam profile monitoring using synchrotron light

Synchrotron light monitors

* Light emission when the trajectory of a charged beam is bent (e.g. by a
dipole, undulator, wiggler)

* Scientifically exploited in light sources
* Powerful diagnostic tool — non-invasive measurements
* Measurements in the visible range possible in some conditions ciical wavelengtn
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Beam profile monitoring using synchrotron light

* Imaging possible with different
camera types

* Standard CCD cameras -
average beam size
measurements

* Gated intensified cameras -
bunch-by-bunch measurements

e X-ray pin hole cameras - for
small, high-energy electron
beams

* Streak cameras - for short

bunch diagnostics PHOTONIS
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http://www.photonis.com/en/

Optics measurements - 3 monitor method

* Reconstruction of optics functions and initial emittance using transport matrix

profile measurement

quadrupole - .
e.g. SEM gnid
magneit(s) . (c8 . ) -
- - -
—a -
. e o beam path
S Ry NI | gy Ry ARy g -ccccnaaaad -

Measured beam profiles

RMS phase-space ellipses
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Optics measurements - 3 monitor method

profile measurement
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Optics measurements - 3 monitor method

* Tomography — deriving the distribution of particle density in 2D from 1D
beam profile measurements

N

profile measurement
(e.g. SEM grid)
.

quadrupole
magnet(s)
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Best results for low-current and/or £ £’
high-energy beams — no non- x 3:_4
linear effects (e.g. space charge) &
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®
m Advanced CAS 24 Introduction to Beam Instrumentation and Diagnostics |




Hybrid phase space tomography - CERN Linac4

Random phase space
at the reconstruction

oy o ; h ” 5 th ; .
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Injection matching with OTR screens

* |njection off-axis due to machine-machine mismatch

* Filamentation — beam moves around the phase space (oscillation) and
fills the entire phase space ellipse

* Emittance growth — beam quality degradation

/ L~ Acceptance of the magnetic system

simulations

measurements

Phase

Position [pixels]

| 1 L L ! 1 L
-2 18 -1 08 0 08 1 15 2

Position
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Tune measurements
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Accelerator tune o @ O oD

* Characteristic frequency of the
magnetic lattice — betatron oscillation
of off-axis beam particles s SF sD

* Set by the strength of quadrupoles
* For each transverse plane (H and V):

* Q- full betatron tune

* q-fractional tune (operating point)
¢ Real life is more complex

* Oscillations in both planes are
coupled

* Betatron oscillations are non-linear
at large amplitudes

SF
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Betatron motion and ag:g:Selerator tune

Q — turn n+1
: turn n+2
q = 0.25 turn n+3

turn n+4
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Betatron motion and accelerator tune

beam size %

==

* Beam size is defined by the incoherent
betatron motion of all particles

 Momentum spread of beam particles leads to
a spread of fFocusing strenght by the il beam size
quadrupoles and to a spread in the frequency A A A
of the betatron oscillations (chromaticity)

* Coherent oscillations eventually de-cohere
* Hadrons do not forget and once hit they

Position

Final beam size

keep oscillating — there is no damping

mechanism o i
 Any excitation must be kept as low as .

possible
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Tune measurements . e

* Integer tune l Tﬂm i]HT;nullW mn“ l““nh
* Seenin beam orbit L [ L H bl
measurements of all BPMs T -

 Fractional tune (q)

* Seenin turn-by-turn
measurements of a single
BPM if a beam is kicked

* Resonant frequency (q)
identification in the
frequency domain through
Fast Fourier Transform - R - I
(FFT) T T

amplitude [a.u.]
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Tune measurements

M. Gasior (CERN)

- - - _

o7 Global beam Betatron oscillation IS
/ // excitation measurement on a ‘,
" kicker _ / single BPM K

N | pick-up o

‘Hh*\._, - I H -—#____..—-"'f-‘”

= - = = S L R
L. + - Oscillation
excitation beam respo‘ly frequency
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Tune measurements

* Pre-requisite: turn-by-turn position measurements from a BPM

* BPM electrode signal is proportional to the beam/bunch intensity and
weakly modulated by the beam position (1-10% per mm of beam

displacement)
* Such signals are difficult to simulate in laboratory environment

01 23

n n+l1 n+2 n+3  t/T rev M. Gasior (CERN)
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Tune measurements

PreC|5|on issues
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BaseBand Tune (BBQ) system based on Direct Diode Detection

* Single RF Schottky diode — peak voltage handling up to 50 V
* Several diodes in series possible (e.g. 6 for the LHC)
* Downmixing of the betatron modulation to below the revolution frequency
* Signal processing with relatively inexpensive high-performance audio ADCs

* Similar to an AM radio receiver but with extremely low noise, very slow discharge, and with
brutal filtering of the carrier (revolution) frequency and the out-of-band signals

pick-up % diode peak detectors (S&H)

<—DC suppression—<—differential amplifier—><—band-pass 0.1-0.5 f,,—>¢ amplifier >

ol

high frequency

‘ low frequency
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LHC BBQ performance

damper H exc1tat10n 4’ 47 damper v ex01tat10n
at 0.17 (3.8 um rms) at 0.18 (3.9 um rms)

Intentional beam . —— Hplane
excitations : — Vplane
V spectrum shifted by 0.001 .
~ Residual beam
freq. . . .
(upper freq. axis) oscillation with no
< 1 added excitation
0.1F _

Magnitude [um rms]

- — ~ 10 nm noise floor

=
)
—_

0001 Lo o U v e e b e
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Frequency [ ]
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Real-time tune measurements

no comment provided - horizontal plane
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CERN SPS example:
Tune clearly visible
from residual
oscillations without
additional excitation
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LHC tune measurements during the energy ramp
Early LHC - what happens without good tune control

o
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LHC tune feedback
FFT peak Fit with 0.1-0.3 Hz bandwidth

* Feedback correction with trim quadrupoles
45

40 Tune

35 Feedback
25
20
15
10

Tune
Feedback |
(0])

time [minutes]

(9.27 0.28 0.29 0.3 0.31 0.: (9.27 0.28 0.29 0.3 0.31 0.32
frequency [frev] frequency [frev]
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Coupling measurements
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Coupling

Measured Tunes 1 Set Tunes
[ \ f | \ 2
Q1,11=§ Qx"‘Qyi\/(Qx—Qy) +|C|°

* Measured tunes - the physical observables seen in FFT
* Often called the ‘normal modes’ or ‘eigenvalues’
e Set tunes - what the tunes would be in absence of coupling
* TunesplitA=(Q,-Q,)—difference between the set X and Y tunes
* Magnitude of the coupling coefficient |C|
* The closest Q, & Q,, can approach each other - ‘closest tune approach’
* Any closeris a ‘forbidden zone' in a system of coupled oscillators
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Coupling measurements

* Decoupled machine —only horizontal tune in horizontal FFT
* Gradually increase coupling — vertical mode shows up and frequencies shift

T \Y Set Tunes
4 Horizontal
) .
) Acquisition
o Plane FFT
c
(o)l
)
® =
H
Frequency
—
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Coupling measurements

* Orbit changes

* Change orbit in one plane by exciting steeriné; correctors or by
changing injection conditions and measure effect in other plane

* Large coupling sources identified as locations where horizontal orbit
change generates a vertical kick and vice versa

* Acquire large numbers of orbits for excitation of different correctors
to determine skew quadrupole component of each magnet

* Closest tune approach
* Approach horizontal and vertical tunes until they cross
* Coupling derived from how close tunes can approach

* Kick response

* Kick the beam in one plane & measure in other using Tune FFT or
pairs of BPMs to derive Resonance Driving Term
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Closest tune approach

* Measure tunes while changing the quadrupole strength

Measured Tunes

it = 5('Qx TO+ (0 -0,)" + |C-|2)

Set Tunes

TUNFIHTSTORY  Lune differanca)
i

Borizostal & werlical Leawx verx

ux Sime

15706792 11:23: 33

W\“"H\_K O
-\‘M\' \T[/
-\—\—-\. o 0 B eI I
| -]
TEP (PLL) S
(o [
= QII(V)
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Kick response

* Kick the beam in one plane and measure the tune in the other
* Magnitude of local coupling can be derived from amplitude ratios of tune peaks
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Coupling and tune feedback at RHIC (BNL)

0,25
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Coupling and tune feedback at RHIC (BNL)

At several points
the measured
tune is defined
by coupling -
tune feedback
breaks at these
points

Coupling must
be corrected
First
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Coupling and tune feedback at RHIC (BNL)

Measure coupling and correct with skew Coupling and tune feedback tracks and corrects
quadrupoles to maintain a decoupled machine tune through the acceleration cycle
Tunes with coupling feedback ON and OFF [Feb 06] RHIC ramp tunes (tune & coupling feedback ON) [Feb 06]
0.74 T T T T 0-74 T T T
Measured
0.735 eigentune 1 | 0.73 - d
@ m END
= 2 acceleration
T 073 2072} 1
s 8 .
L alculated 1 L |
§ 0.725 Galculated E 0.71 SEGIN -
g g acceleration squeeze
S o072t S 07+ 1
ﬁ é st o
2 Al
0.715 ¢ Measured 0800552]‘”9 Decoupling 0.69 |- )
| P
eigentune 2 loop SEF
0.71 : ' ‘ ‘ 0.68 : * : ‘ : | :
0 60 120 180 240 300 0 100 200 300 400
Time [sec] Time [sec]
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Chromaticity measurements
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Chromaticity

* Spread in the machine tune due to particle energy spread
* Controlled by sextupole magnets

Optics Analogy: Lens First Order
[Quadrupole]

-1

A 1 Af

AQ=Q _p:[_z_ j o2

p 7 f
.S . Focal lengthis ‘f :g
Achromatic incident light energy dependent Q

[Spread in particle energy]
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Chromaticity measurement methods

Tune change for different beam momenta
* Standard method used on all machines
* Can be combined with PLL tune tracking to give on-line measurement

Width of tune peak or damping time
* Model dependent, non-linear effects, not compatible with active transverse damping

Amplitude ratio of synchrotron sidebands
* Difficult in hadron machines (low synchrotron tune); influence of collective effects

Width ratio of Schottky sidebands

* Used often and ideally suited to unbunched or ion beams; very slow

Bunch spectrum variations during betatron oscillations

* Difficult to disentangle all other sources —e.g. bunch filling patterns, pick-up response
Head-tail phase advance (same as above, but in time domain)

* Good results but requires kick stimulus (emittance growth!)
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Tune change for different beam momenta

* Slow RF modulation with continuous tune measurement

* Amplitude of the tune modulation is proportional to chromaticity
B views | (1| |m |23 \ll\ ﬁMorE,\rﬁn&

Z:Z:Z:S’lﬁ.

l].28'

0.2737

Legend
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T T T T T T
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« (QBEAMD,V

* Tune continuously tracked in

Hmm both planes of both beam
\J  Chromaticity calculated once

05030 065940 065950 070000 00010 O70E20 aCCIUiSitiOI'] complete

Time
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Tune change for different beam momenta

* Slow RF modulation with continuous tune measurement
* Amplitude of the tune modulation is proportional to chromaticity

Applied Frequency Shift
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Example from LEP (CERN)

» Triangular RF modulation

* Allows sign of chromaticity to
be easily determined
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Tune change for different beam momenta

1 00PHTSTORY Lune ) 21704792 01:-12:00
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Tune change for different beam momenta

(A') Advanced CAS 24
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Amplitude ratio of synchrotron sidebands

* Particle energy modulated by synchrotron motion — tune changes modulated at the synchrotron
frequency due to chromaticity

* Successfully demonstrated at Diamond (UK)

* Beam Transfer Function (BTF) measurements on a single bunch using the transverse bunch-by-
bunch fFeedback system

* Emittance blow-up of the single affected bunch irrelevant
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Amplitude ratio of synchrotron sidebands

* Must be careful with high-intensity effects!
* Modification of tune spectra by space charge and impedance observed by GSI

* Relative heights and mode structure given by chromaticity — can be calculated with

simplified analytical models / Peaks movel
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Diagnosing accelerator issues
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LEP (CERN) - no circulating beam

* Phase advance from BPMs show that optics is not longer correct after a
specific quadrupole
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LEP (CERN) - no circulating beam

* After longinvestigation — open the vacuum chamber of QL10.L1
* And 10 m downstream!

o

QL10.L1

Double sabotage — both bottles were empty!

®
m Advanced CAS 24 Introduction to Beam Instrumentation and Diagnostics |



https://www.google.ch/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiwo6fw-vnVAhUGQBQKHZH3A_cQjRwIBw&url=https://www.pinterest.com/pin/450852612672258882/&psig=AFQjCNHc0bYGCaejejbDeyamEImWR0t3pA&ust=1504010765725883
https://www.google.ch/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiwo6fw-vnVAhUGQBQKHZH3A_cQjRwIBw&url=https://www.pinterest.com/pin/450852612672258882/&psig=AFQjCNHc0bYGCaejejbDeyamEImWR0t3pA&ust=1504010765725883

Summary

* We covered the most common Bl systems and their
diagnostics usage

* Two more lectures on longitudinal diagnostics by L. Bobb
next week

* Much More at BI CASin 2025!

* Take home message: Bl systems can give you a good insight
into the beam and its behaviour

* Go and talk to your Bl colleagues to see what is possible
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