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Lecture II
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(based on previous lectures by Rhodri Jones)
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Outline

• Lecture I - yesterday

• Introduction

• Beam position monitoring

• Beam intensity monitoring

• Beam loss monitoring

• Lecture II - today

• Transverse beam profile monitoring

• Tune measurements

• Coupling measurements

• Chromaticity measurements

• Diagnosing accelerator issues

Advanced CAS 24 Introduction to Beam Instrumentation and Diagnostics I 2



Transverse beam profile 
monitoring
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Beam profile monitoring using wires
Secondary Emission Monitors (SEM, HARP)
• Secondary electrons emitted from beam-wire interaction – electric current in the wire
• Current in each wire read-out independently – beam profile reconstruction
• Wires can overheat – not ideal for circular machines
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Beam profile monitoring using wires
Wire scanners

• Single thin wire swept across the 
beam – corelate beam-wire 
interactions with the wire 
position

• Low-energy beams: current in 
the wire due to secondary 
emission 

• High-energy beams: secondary 
shower measured outside of the 
vacuum (e.g. with scintillator)

• Absolute measurements – can 
be used for cross-calibration of 
other instruments
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Wire scanner limitations
• Wires can (and do!) get damaged
• Mechanical failures – due to errors in motor 

controls
• Melting / sublimation – energy deposition in 

the wire, large energy density for small 
beams

• Thermal behaviour of the wire depends on the 
heat capacity (increases with temperature!) 
and cooling (negligible during a ~ 1 ms scan 
time)

• Wire material: good mechanical properties, 
high heat capacity, high melting / sublimation 
point (e.g. 3915 K for carbon)
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Beam profile monitoring using screens

Luminescence / scintillating 
screens

• Light emission upon beam-
screen interaction

• Straight-forward instrument for 
beam size and position 
monitoring

• 2D information with CCD 
cameras

• Thick screens are destructive to 
the beam but work with low 
intensities
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Beam profile monitoring using screens
Optical Transition Radiation (OTR) 
screens

• Radiation emitted when a charged 
particle goes through an interface 
with different dielectric constants

• Surface phenomenon – very thin  (10 
um) screens possible

• Multiple screen in single-pass lines

• Measurement over hundreds of 
turns in rings

• Less destructive than scintillation but 
requires higher energy / intensity 
beams

• Extremely high resolution possible
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Beam profile monitoring using synchrotron light

Synchrotron light monitors
• Light emission when the trajectory of a charged beam is bent (e.g. by a 

dipole, undulator, wiggler)
• Scientifically exploited in light sources 
• Powerful diagnostic tool – non-invasive measurements
• Measurements in the visible range possible in some conditions
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Beam profile monitoring using synchrotron light

• Imaging possible with different 
camera types

• Standard CCD cameras –
average beam size 
measurements

• Gated intensified cameras –
bunch-by-bunch measurements

• X-ray pin hole cameras – for 
small, high-energy electron 
beams

• Streak cameras – for short 
bunch diagnostics 
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Optics measurements - 3 monitor method
• Reconstruction of optics functions and initial emittance using transport matrix
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Optics measurements - 3 monitor method
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Optics measurements - 3 monitor method
• Tomography – deriving the distribution of particle density in 2D from 1D 

beam profile measurements
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Hybrid phase space tomography – CERN Linac4
• Random phase space 

at the reconstruction 
position

• Transport it to the 
measurement 
position (track 
particles)

• Compare the 
simulation output to 
the measurement

• Deduce a better 
distribution at the 
reconstruction 
position

• Repeat iteratively
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Injection matching with OTR screens
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Tune measurements
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Accelerator tune
• Characteristic frequency of the 

magnetic lattice – betatron oscillation 
of off-axis beam particles
• Set by the strength of quadrupoles

• For each transverse plane (H and V):
• Q – full betatron tune
• q – fractional tune (operating point)

• Real life is more complex
• Oscillations in both planes are 

coupled
• Betatron oscillations are non-linear 

at large amplitudes
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Betatron motion and accelerator tune
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• Beam size is defined by the incoherent 
betatron motion of all particles

• Momentum spread of beam particles leads to 
a spread of focusing strenght by the 
quadrupoles and to a spread in the frequency 
of the betatron oscillations (chromaticity)

• Coherent oscillations eventually de-cohere

• Hadrons do not forget and once hit they 
keep oscillating – there is no damping 
mechanism

• Any excitation must be kept as low as 
possible
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Tune measurements

• Integer tune

• Seen in beam orbit 
measurements of all BPMs

• Fractional tune (q)

• Seen in turn-by-turn 
measurements of a single 
BPM if a beam is kicked

• Resonant frequency (q) 
identification in the 
frequency domain through 
Fast Fourier Transform 
(FFT)
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LHC: ~ 550 BPMs per beam; Integer tunes: H: 59, V: 64



Tune measurements
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Tune measurements
• Pre-requisite: turn-by-turn position measurements from a BPM
• BPM electrode signal is proportional to the beam/bunch intensity and 

weakly modulated by the beam position (1-10% per mm of beam 
displacement)
• Such signals are difficult to simulate in laboratory environment
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Tune measurements
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BaseBand Tune (BBQ) system based on Direct Diode Detection

• Single RF Schottky diode – peak voltage handling up to 50 V
• Several diodes in series possible (e.g. 6 for the LHC)

• Downmixing of the betatron modulation to below the revolution frequency
• Signal processing with relatively inexpensive high-performance audio ADCs

• Similar to an AM radio receiver but with extremely low noise, very slow discharge, and with 
brutal filtering of the carrier (revolution) frequency and the out-of-band signals
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LHC BBQ performance
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Real-time tune measurements
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LHC tune measurements during the energy ramp
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Early LHC - what happens without good tune control



LHC tune feedback

Advanced CAS 24 Introduction to Beam Instrumentation and Diagnostics I 28

Tune
Feedback

OFF

• FFT peak fit with 0.1-0.3 Hz bandwidth

• Feedback correction with trim quadrupoles

Tune
Feedback

ON



Coupling measurements
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Coupling

• Measured tunes - the physical observables seen in FFT

• Often called the ‘normal modes’ or ‘eigenvalues’ 

• Set tunes - what the tunes would be in absence of coupling

• Tune split  = ( Qx - Qy ) – difference between the set X and Y tunes

• Magnitude of the coupling coefficient |C−|

• The closest QI & QII can approach each other - ‘closest tune approach’

• Any closer is a ‘forbidden zone’ in a system of coupled oscillators
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Coupling measurements
• Decoupled machine – only horizontal tune in horizontal FFT

• Gradually increase coupling – vertical mode shows up and frequencies shift
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Coupling measurements
• Orbit changes
• Change orbit in one plane by exciting steering correctors or by 

changing injection conditions and measure effect in other plane
• Large coupling sources identified as locations where horizontal orbit 

change generates a vertical kick and vice versa
• Acquire large numbers of orbits for excitation of different correctors 

to determine skew quadrupole component of each magnet
• Closest tune approach
• Approach horizontal and vertical tunes until they cross
• Coupling derived from how close tunes can approach 

• Kick response
• Kick the beam in one plane & measure in other using Tune FFT or 

pairs of BPMs to derive Resonance Driving Term
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Closest tune approach
• Measure tunes while changing the quadrupole strength
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Kick response
• Kick the beam in one plane and measure the tune in the other

• Magnitude of local coupling can be derived from amplitude ratios of tune peaks
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Coupling and tune feedback at RHIC (BNL)

Measurement 
during the 
acceleration cycle 
using 4 PLLs:

QH (excite in H, 
measure in H), 
QH,V (excite in H, 
measure in V),

QV (excite in V, 
measure in V),

QV,H (excite in V, 
measure in H)
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Coupling and tune feedback at RHIC (BNL)

At several points 

the measured 

tune is defined 

by coupling –

tune feedback 

breaks at these 

points

Coupling must 

be corrected 

first
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Coupling and tune feedback at RHIC (BNL)
Measure coupling and correct with skew 

quadrupoles to maintain a decoupled machine
Coupling and tune feedback tracks and corrects 

tune through the acceleration cycle
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Chromaticity measurements
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Chromaticity
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• Spread in the machine tune due to particle energy spread

• Controlled by sextupole magnets



Chromaticity measurement methods
• Tune change for different beam momenta

• Standard method used on all machines

• Can be combined with PLL tune tracking to give on-line measurement

• Width of tune peak or damping time

• Model dependent, non-linear effects, not compatible with active transverse damping

• Amplitude ratio of synchrotron sidebands

• Difficult in hadron machines (low synchrotron tune); influence of collective effects

• Width ratio of Schottky sidebands

• Used often and ideally suited to unbunched or ion beams; very slow

• Bunch spectrum variations during betatron oscillations

• Difficult to disentangle all other sources – e.g. bunch filling patterns, pick-up response

• Head-tail phase advance  (same as above, but in time domain)

• Good results but requires kick stimulus (emittance growth!)
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Tune change for different beam momenta

• Slow RF modulation with continuous tune measurement

• Amplitude of the tune modulation is proportional to chromaticity
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Example from the LHC

• Sinusoidal RF modulation at 
0.05 Hz

• Tune continuously tracked in 
both planes of both beam

• Chromaticity calculated once 
acquisition complete
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Tune change for different beam momenta

• Slow RF modulation with continuous tune measurement

• Amplitude of the tune modulation is proportional to chromaticity
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Example from LEP (CERN)

• Triangular RF modulation

• Allows sign of chromaticity to 
be easily determined

Applied Frequency Shift Qh & Qv Variation



Tune change for different beam momenta
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Tune change for different beam momenta
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Example from LHC
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Amplitude ratio of synchrotron sidebands
• Particle energy modulated by synchrotron motion – tune changes modulated at the synchrotron 

frequency due to chromaticity
• Successfully demonstrated at Diamond (UK)
• Beam Transfer Function (BTF) measurements on a single bunch using the transverse bunch-by-

bunch feedback system
• Emittance blow-up of the single affected bunch irrelevant
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Amplitude ratio of synchrotron sidebands
• Must be careful with high-intensity effects!
• Modification of tune spectra by space charge and impedance observed by GSI
• Relative heights and mode structure given by chromaticity – can be calculated with 

simplified analytical models
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Diagnosing accelerator issues 
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LEP (CERN) – no circulating beam

• Phase advance from BPMs show that optics is not longer correct after a 

specific quadrupole
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LEP (CERN) – no circulating beam

• After long investigation – open the vacuum chamber of QL10.L1

• And 10 m downstream!
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QL10.L1

Double sabotage – both bottles were empty!
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Summary

• We covered the most common BI systems and their 
diagnostics usage

• Two more lectures on longitudinal diagnostics by L. Bobb 
next week

• Much More at BI CAS in 2025!

• Take home message: BI systems can give you a good insight 
into the beam and its behaviour

• Go and talk to your BI colleagues to see what is possible
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