

RF Manipulations I & II Longitudinal Regulation of Beams in Synchrotrons

Advanced CAS, Spa, Belgium, 13th November 2024

With many thanks to S. Albright, T. Argyropoulos, H. Damerau, B. Karlsen-Baeck, A. Lasheen, N. Gallou, and I. Karpov

Helga Timko CERN, SY-RF Group

What are RF manipulations and why do them?

RF manipulations ('gymnastics') = manipulations done by changing the RF voltage, phase, frequency, harmonic...

... for regulating the beam longitudinally

Example: CERN proton injector chain

	Proton Synchrotron Booster (PSB)	Proton Synchrotron (PS)
bunches	1 bunch/ring (4 rings)	2 injections, 6 → 36/48/72 bunches
		How to make so
bucket length	>500 ns	>25 ns <i>How to make these</i>

Super Proton Synchrotron (SPS)

3-5 injections, up to 288 bunches

Large Hadron **Collider (LHC)**

> ≥20 injections, up to 2808 bunches

ke so many bunches out of one?

5 ns

these bunches fit into the bucket?

2.5 ns

2

Bunch length regulation

- Adiabatic changes
- Rotation
- Splitting, merging \bullet

Phase space regulation

- Diffusion, noise injection
- **Resonant excitation**
- Longitudinal painting
- Debunching

Contents

Advanced manipulations

- Momentum slip stacking
- Barrier bucket ullet

Integration in an RF system

- Beam loading
- RF voltage/power limitations ullet
- **Designing RF parameters** \bullet

Bunch length regulation

- Adiabatic changes
- Rotation
- Splitting, merging

Phase space regulation

- Diffusion, noise injection
- Resonant excitation
- Longitudinal painting
- Debunching

Contents

Advanced manipulations

- Momentum slip stacking
- Barrier bucket

Integration in an RF system

- Beam loading
- RF voltage/power limitations
- **Designing RF parameters**

Coordinates & notations

Single RF system, no intensity effects

- Frequently used conjugate variables are [1] (φ , $\Delta E/\omega_{rev}$) ${\color{black}\bullet}$
 - Kick and drift equations

$$\dot{\varphi} = \frac{h\omega_{\text{rev}}^2 \eta}{\beta_d^2 E_d} \left(\frac{\Delta E}{\omega_{\text{rev}}}\right) = h\omega_{\text{rev}}\eta\delta$$
$$\frac{d}{dt} \left(\frac{\Delta E}{\omega_{\text{rev}}}\right) = \frac{\beta_d^2 E_d}{\omega_{\text{rev}}}\dot{\delta} = \frac{eV}{2\pi}(\sin\varphi - \sin\varphi_d)$$

Hamiltonian

$$H\left(\varphi,\frac{\Delta E}{\omega_{\text{rev}}}\right) = \frac{1}{2} \frac{h\eta\omega_{\text{rev}}}{\beta_d^2 E_d} \left(\frac{\Delta E}{\omega_{\text{rev}}}\right)^2 + \frac{eV}{2\pi} \{\cos\varphi - \cos\varphi_d + \frac{eV}{2\pi}\} + \frac{eV}{2\pi} + \frac{eV}{2\pi}$$

- Subscript 'd' denotes the design particle
 - Following the design energy and frequency ramp
 - In simple cases, corresponds to the synchronous particle

 $(\varphi - \varphi_d) \sin \varphi_d$

β_d	relativistic beta from design momentum					
$\Delta E =$	$= E - E_d$ relative particle energy					
$\delta = -$	$\frac{\Delta p}{p_d} \simeq \frac{\Delta E}{\beta_d^2 E_d} \text{relative momentum offset}$					
$\eta = \eta$	$\eta(\delta) = \eta_0 + \eta_1 \delta + \eta_2 \delta^2 + \dots$ slippage factor					
φ	RF voltage phase at particle arrival					
φ_d	phase of design particle					
$\omega_{\rm rev}$	$\omega_{ m rev}$ angular revolution frequency					
е	elementary charge					
E	particle energy					
E_d	energy of design particle					
E	particle energy					
h	harmonic number					
V	RF voltage amplitude					

General kick and drift equations

- For tracking, more convenient conjugate variables are [2] ($\Delta t, \Delta E$) ${\bullet}$
 - Coordinate transformation: $\varphi = \omega_{\rm rf} \Delta t + \varphi_{\rm rf}$
 - Kick equation (discrete)

$$\Delta E_{(n+1)} = \Delta E_{(n)} + \sum_{k=1}^{n_{rf}} qV_{k,(n)} \sin(\omega_{rf,k,(n)} \Delta t_{(n)} + \varphi_{rf,k,(n)}) - (E_{d,(n)})$$
Multiple RF systems
in one location
Change of design er
(magnetic field)

- Drift equation (discrete)

$$\Delta t_{(n+1)} = \Delta t_{(n)} + T_{\text{rev},(n+1)} \frac{\eta_{0,(n+1)}\Delta E_{(n+1)}}{\beta_{d,(n+1)}^2 E_{d,(n+1)}} + \mathcal{O}(\delta^2)$$

Hamiltonian (continuous)

$$\begin{split} H(\Delta t, \Delta E) &= \frac{\eta_0}{2\beta_d^2 E_d} (\Delta E)^2 + \sum_{k=0}^{n_{\rm rf}-1} \frac{qV_k}{T_{\rm rev} \omega_{\rm rf}^k} \left(\cos(\omega_{\rm rf}^k \Delta t + \varphi_{\rm rf}^k) - \dot{E}_d (\Delta t - \Delta t_d) + \frac{E_{\rm other}}{T_{\rm rev}} (\Delta t - \Delta t_d) \right. \end{split}$$

[2] H. Timko et al.: 'Beam Longitudinal Dynamics simulation suite BLonD', Phys. Rev. Accel. Beams 26, 114602 (2023).

What happens to the synchronous phase when the energy is first constant, then increased linearly (everything else remains constant)?

For a single RF system, and in the absence of intensity effects, $\sin \varphi_d =$

Solution

• There will be discontinuity in the synchronous phase

Beam observables

Beam profile

- Gaussian: $\lambda(\Delta t) = \lambda_0 e^{\frac{-\Delta t^2}{\sigma_t^2}}$ •
- **Binomial:** $\lambda(\Delta t) = \lambda_0 \left(1 4 \left(\frac{\Delta t}{\tau_{\text{full}}}\right)^2\right)^{\mu + \frac{1}{2}}$

Bunch length

- Full bunch length τ_{full}
- R.m.s. bunch length σ_t
- Four-sigma equivalent FWHM bunch length:

$$\tau_{4\sigma} \equiv \frac{2}{\sqrt{2\ln 2}} \tau_{\rm FWHM}$$

Bunch emittance

The area enclosed by the phase-space trajectory at a given bunch length

$$\varepsilon \equiv \oint_{\Delta t = \tau/2} \Delta E(\Delta t) \, d(\Delta t)$$

Distribution functions (left) and line densities (right) from [3]

0.6

[3] J. Esteban Müller: 'Longitudinal intensity effects in the CERN Large Hadron Collider', CERN-THESIS-2016-066 (2016).

Adiabatic change of RF voltage

How to do it?

Slowly in(de)crease the voltage to de(in)crease the bunch length

$$\frac{\tau'}{\tau} = \sqrt[4]{\frac{V}{V'}}$$

Drawback: already a small decrease requires a large voltage change

What is adiabatic?

Has to be slow w.r.t. synchrotron period, adiabaticity parameter:

$$\alpha \equiv \frac{1}{\omega_s^2} \left| \frac{d\omega_s}{dt} \right| \ll 1, \ (\mathcal{O}(0.1)) \qquad \qquad \omega_{s,0} = \omega_{\text{rev}} \sqrt{\frac{heV}{dt}}$$

In our example, the change happens over 10'000 turns, while the synchrotron period decreases from 240 to 120 turns

When is it applied?

- Voltage increase: typically in the acceleration ramp, also for beam stability reasons
- Voltage decrease: e.g. to create continuous beam for fixed target experiments

- $|\eta_0 \cos \varphi_d|$
- $2\pi\beta_d^2 E_d$

Injection errors

Phase and energy errors

- Usually undesired \bullet
 - Use beam phase and frequency loops to counteract it
- Causes beam losses and filamentation
- On rare occasions, can also be used for lengthening the bunch! ${\color{black}\bullet}$

Filamentation after injection with phase error

Separatrix and bucket

Unstable fixed point and turning point

- Unstable fixed point (UFP): $(\pi \varphi_d, 0)$ lacksquare
- Turning point: $(\varphi_u, 0)$
 - Determined by the equation

 $H(\pi - \varphi_d, 0) = H(\varphi_u, 0)$

Separatrix

- Determined by the equation $H(\pi \varphi_d, 0) = H(0, \Delta E_{sep})$
- No intensity effects:

$$\Delta E_{\rm sep} = \pm \sqrt{\frac{2\beta_d^2 E_d}{\eta_0} \left\{ \sum_{k=0}^{n_{\rm rf}-1} \frac{qV_k}{T_{\rm rev}\omega_{\rm rf}^k} \left[\cos(\omega_{\rm rf}^k \Delta t_{\rm ufp} + \varphi_{\rm rf}^k) - \cos(\omega_{\rm rf}^k \Delta t_{\rm sep} + \varphi_{\rm rf}^k) \right] + \dot{E}_d (\Delta t_{\rm ufp} - \Delta t_{\rm sep}) \right\}}$$

• Using
$$\varphi_{ufp} = \pi - \varphi_s$$
 and $\dot{E}_d = qV \sin \varphi_s / T_{rev}$

$$\Delta E_{sep} = \pm \sqrt{\frac{2\beta_d^2 E_d qV}{2\pi h \eta_0}} \left\{ \cos(\pi - \varphi_d) - \cos \varphi + (\pi - \varphi_d - \varphi) \sin \varphi \right\}$$

Separatrices for different stable phase values [1]

Top: above transition energy Bottom: below transition energy

Adiabatic change of bucket area

Magnetic ramp

- To avoid beam losses, the bucket area should not decrease
- Make adiabatic changes, avoiding discontinuities in \dot{E}_d
 - Simplest model: parabolic linear parabolic energy ramp
- Bucket area in [eVs]:

$$A_b = \oint d(\Delta t_{\rm sep}) \Delta E_{\rm sep}(\Delta t_{\rm sep})$$

Separatrix for single RF system, no intensity effects:

$$\Delta E_{\rm sep}(\Delta t_{\rm sep}) = \pm \sqrt{\frac{\beta_d^2 E_d e V_{\rm rf}}{\pi h |\eta_0|}} \left\{ -\cos(\omega_{\rm rf} \Delta t_{\rm sep} + \varphi_{\rm rf}) - (\omega_{\rm rf} \Delta t_{\rm sep} - \omega_{\rm rf} + \varphi_{\rm rf}) \right\}$$

Bucket area in this case:

$$A_b = \frac{2}{\omega_{\rm rf}} \sqrt{\frac{\beta_d^2 E_d e V_{\rm rf}}{\pi h |\eta_0|}} \int_{\pi - \varphi_d}^{\varphi_u} d\varphi \sqrt{\cos(\pi - \varphi_d) - \cos\varphi + (\pi - \varphi_d)}$$

Example: LHC parabolic-exponential-linear-parabolic ramp

What happens to the bucket area when the voltage is increased linearly (everything else remains constant)?

Solution

Assuming phase-space coordinates $(\Delta t, \Delta E)$, \bullet the bucket area is $A_b \approx \frac{16}{10} \left(\frac{\beta^2 E_d e V_{\rm rf}}{10} \right)$ ω_{rf} $2\pi h |\eta_0|$

For a single RF system, and in the absence of intensity effects, $A_b \propto \sqrt{V_{
m rf}}$

Bunch rotation

What is it?

Bunch rotation is an "exchange" of the longitudinal conjugate variables \bullet Δt and ΔE

How is it done?

- Non-adiabatic, large increase in RF voltage, then extract or recapture the beam
- Exchange of energy spread and bunch length happens for the bunch core after $1/4T_s$
 - The larger the tails, the more distortion there is in the bunch halo
 - The optimum extraction time depends on the initial bunch length

Why use it?

To significantly shorten/lengthen the bunch length/energy spread

Example: PS rotation in double-harmonic RF, before extraction to the SPS

Bunch rotation

Where is it applied?

- The LHC-type proton beam is rotated in the PS before extraction to the SPS
 - To fit the long PS bunches (~4 ns after rotation) into the short (5 ns) SPS bucket
 - Thus, to limit the capture losses upon PS-to-SPS bunch-to-bucket transfer
 - Fine-tuning of timings requires modelling with intensity effects

What does it require from the hardware?

- Capability to significantly increase the voltage within a few machine turns
- Capability to time extraction/recapture within a few machine turns
- Large peak voltage and power during $1/4T_s$
 - In the PS, the 80 MHz cavities cannot capture the beam, but can rotate it

timings! 600

Example: PS rotation in double-harmonic RF, before extraction to the SPS

[4] H. Timko *et al.*, 'Longitudinal transfer of rotated bunches in the CERN injectors', Phys. Rev. ST Accel. Beams **16**, 051004 (2013).
 [5] A. Lasheen *et al.*, 'Improvement of the longitudinal beam transfer from PS to SPS at CERN', Proc. IPAC'18, Vancouver, Canada (2018).

Can you imagine any other way to achieve bunch rotation?

You want to move the particles separatrix in energy

You want to move the particles with a large longitudinal coordinate close to the

16

Phase jump

How is it done?

Jump by 180° to unstable phase and stay for a few turns

- Duration determines how much the bunch is stretched
- Jump back to stable phase and recapture
 - Need to have sufficient voltage compared to the amount of stretch
 - Let the bunch rotate till momentum spread is maximum > $1/4T_s$
- Extract or switch RF off for debunching

Where is it used?

- For SPS slow extraction, to create a coasting beam with large dp/p
 - This is then extracted slowly by slices of dp/p

Pros and cons

CERN

- Does not require large peak power
- Rotation is $> 1/4T_{c}$ and increases halo distortion in the distribution

Example: SPS phase jump on flattop for the slow extraction of fixed-target beams

Bunch splitting

What is it?

- Split one bunch into two or more bunches
 - Double splitting: $1 \rightarrow 2$ bunches, triple splitting: $1 \rightarrow 3$ bunches, etc.

How is it done?

- Have the bunch fully captured in one RF system
 - For better splitting efficiency, lower the voltage to lengthen the bunch
- Adiabatically increase the voltage of a higher-harmonic system
 - Use the second harmonic for double splitting
- Once split, adiabatically decrease the voltage of the lower-harmonic system

Why use it?

- To increase the number of bunches
- To divide the longitudinal emittance
 - In principle, preserving the total emittance and phase-space distribution

Example: two double splittings at PS flattop

Bunch splitting

Where is it applied?

- In the PS at flattop, the LHC-type beam is double split twice
 - From a 10 MHz RF system, it is transferred to a 40 MHz RF system
 - Creating the '25 ns beam' for the SPS and LHC

What does it require from the hardware?

- Sufficient voltage and power in the higher-harmonic RF system to fully capture the beam without the lower-harmonic system
- Adiabatic voltage changes
- Good control of the relative RF phase between the two systems
 - Stable RF phase for both systems
 - Second RF in bunch lengthening mode, i.e. in phase

Example: two double splittings at PS flattop

H TIPS

You want to divide the bucket length into three equal pieces

H. Timko | RF Gymnastics I & II

How to split one bunch into three?

Where is it applied?

- In the PS at flat bottom, the LHC-type beam is triple split \bullet
 - First one batch of 4 bunches, then one batch of 2 bunches is injected on h = 7
 - After the splitting, 18 bunches are obtained on h = 21

How is it implemented?

- Requires the presence of double and triple harmonic RF systems
 - In the PS, all is done on the broad-band 2.8-10 MHz cavities
 - These are grouped into 3 different groups and controlled at h = 7, h = 14, h = 21; all groups in phase
 - After the splitting, all cavities are tuned on h = 21 to accelerate the beam with the full RF voltage
- Requires the fine-adjustment of the timings and voltages to get three equal distributions

Triple splitting

Example: triple splitting at PS flat bottom

[6] D. Grier 'The PS 10 MHz cavity and power amplifier', CERN PS-RF-NOTE-2002-073 (2002). [7] R. Garoby et al.: 'Demonstration of bunch triple splitting in the CERN PS', Proc. EPAC (2000).

What is it?

The inverse process of bunch splitting; RF cavities in phase

Why use it?

- To add up the bunch intensities into one bunch
 - As the transverse emittance is not affected, the beam brightness increases

What does it require?

- Bunches with equal longitudinal emittance in neighbouring buckets
- Good control of the relative RF phase between the two systems

Where is it applied?

- In the PS for the production of the high-brightness LHC-type beam called 'BCMS' = batch compression, merging, and splitting
 - We'll come back to it

Bunch merging

Example: triple splitting at PS flat bottom

Batch compression

What is it?

Batch compression is continuous, adiabatic reduction of the bunch spacing

How is it done?

- Step-by-step RF frequency change corresponding to a harmonic change $\omega_{\rm rf} = h\omega_{\rm rev}$
- A continuous change in RF frequency would result in a phase slippage and therefore in a bucket slippage
 - Instead, the RF voltages of nearby harmonics are ramped up/down

Why use it?

- To bring adjacent bunches closer to each other
 - E.g. in order to match the spacing required in the downstream machine
 - E.g. in order to merge the bunches

PS batch compression from [8]

[8] C. Lombard et al.: 'Improved antiproton production beam at CERN', Proc. IPAC'23, TUPM075, Venice, Italy (2023).

Batch compression

Where is it applied?

- In the PS, to produce the proton beam for the Antiproton Decelerator (AD)
 - This beam is then shot on a target to generate antiprotons
 - The AD is 3x smaller in circumference than the PS, and needs therefore batch compression

What does it require from the hardware?

- Broad-band cavities or many cavities at different harmonics
- E.g. PS main RF system is tuneable from 2.8-10 MHz
 - Nine out of ten cavities are grouped in three groups
 - Two groups are active at a time, while the third is tuned to the next harmonic
 - After compression, 5 bunches are condensed to 1/4 of the circumference

PS batch compression for the AD beam from [8] $h_{\rm PS} = 8 \rightarrow 9 \rightarrow 10 \rightarrow 11 \rightarrow 12 \rightarrow 14 \rightarrow 16 \rightarrow 18 \rightarrow 20$

[8] C. Lombard et al.: 'Improved antiproton production beam at CERN', Proc. IPAC'23, TUPM075, Venice, Italy (2023).

PS BCMS beam

Batch compression, merging, and splitting

High-brightness beam for LHC proton physics production

PS momentum and voltage programmes for the BCMS cycle, with the bunch profile evolution as simulated in BLonD, from [9]

[9] A. Lasheen et al.: 'End-to-end longitudinal simulations in the CERN PS', Proc. HB2021, MOP17, Batavia, USA (2021).

Bunch length regulation

- Adiabatic changes
- Rotation
- Splitting, merging

Phase space regulation

- Diffusion, noise injection
- **Resonant excitation**
- Longitudinal painting
- Debunching

Contents

Advanced manipulations

- Momentum slip stacking
- Barrier bucket

Integration in an RF system

- Beam loading
- RF voltage/power limitations
- **Designing RF parameters**

Intermezzo: how can we generate diffusion in phase space?

You can make use of the cavity voltage vector

H. Timko | RF Gymnastics I & II

Diffusion in phase space

Diffusion equation in action space

Hamiltonian of conjugate pair with a perturbation term:

$$\mathcal{H}(\vartheta, \vartheta', t) = H(\vartheta, \vartheta') + \Delta H(\vartheta, t)$$
$$\Delta H(\vartheta, t) = -\frac{\omega_{s,0}}{hV_{\text{acc}} \sin \varphi_s} \int \Delta V(\tilde{\vartheta}, t) d\tilde{\vartheta}$$

- We describe the phase-space distribution in action space $F(J, \psi, t)$
 - The equations of motion in action-angle space are $\frac{d\psi}{dt} = \frac{\partial\epsilon}{\partial J} = \omega_s(\epsilon)$ $\frac{dJ}{dt} = -\frac{\partial \epsilon}{\partial t} = 0$

RF noise introduces diffusion described by the diffusion coefficient D

Evolution of the phase-space distribution is stochastic, only described for the ensemble average

$$\partial_t < F > (J,t) = \partial_J \left\{ D\partial_J F(J,t) \right\}$$

$$D(J) = \frac{1}{2} \left(\frac{\omega_{s,0}^2}{hV_{\text{acc}} \sin \varphi_s} \right)^2 \Re \left\{ \sum_{m=-\infty}^{\infty} m^2 \sum_{k,l=-\infty}^{\infty} \frac{I_{mk}^*(J)}{k} \frac{I_{ml}(J)}{l} 2 \int_0^\infty <\Delta V_k(t) \Delta V_l^*(t-\tau) > e^{im\omega_s(J)\tau} d\tau \right\}$$

[10] S. Krinsky, J.M. Wang: 'Bunch diffusion due to RF noise', Part. Accel. 12, 107–117 (1982). [11] G. Dôme: 'Diffusion due to RF noise', CERN Accelerator School '85, Oxford, UK, 370–401 (1985).

V_{acc} Nominal accelerating voltage $\Delta V(\vartheta, t)$ A given realisation of random noise K(x)Complete elliptic integral of 1st kind E(x)Complete elliptic integral of 2nd kind In action-angle variables, $8\omega_{s,0}$ $J_{\text{sep}} = -\frac{1}{\pi h^2}$ $J(x) = J_{sep} \left(E(x) - (1 - x^2) K(x) \right)$ $\omega_s(x) = \omega_{s,0} \frac{\pi}{2K(x)}$

Normalisation

$$\frac{1}{2\pi} \iint_{\text{sep}} dJ d\psi F(J, \psi, t = 0) = 1$$

Fourier expansion coefficients for a plane wave in multipole oscillations:

$$I_{m,k}^*(J) \equiv \frac{1}{2\pi} \int_{-\pi}^{\pi} d\psi e^{ik\varphi(J,\psi) - im\psi}$$

Diffusion for small bunches

Semi-analytic solver on discrete grid [12]

- Matrix iteration over time step $\Delta t = \left(\mathbf{A} + \frac{1}{2}\Delta t\mathbf{B}\right) \vec{F}$
- Diffusion coefficient for amplitude a and phase noise ϕ

Distribution and diffusion coefficient discretised over the grid $l \in [0, L-1]$

$$\overrightarrow{F} = \begin{pmatrix} F_0 \\ F_1 \\ \vdots \\ F_{L-1} \end{pmatrix} \quad A = \begin{pmatrix} \frac{1}{3} & \frac{1}{6} & \cdots & \\ & \frac{1}{6} & \frac{2}{3} & \frac{1}{6} & \cdots \\ & & \frac{1}{6} & \frac{1}{3} \end{pmatrix} \Delta J \qquad B = \begin{pmatrix} \overline{D}_0 & -\overline{D}_0 & \\ & -\overline{D}_{l-1} & \overline{D}_l \\ \vdots & & & \\ & & & \vdots \end{pmatrix}$$

Bunch length evolution in short-bunch approximation

For a given double-sided power spectral density $P_{DS} = \left[\frac{\text{rad}^2}{\text{Hz}}\right], \sigma = [\text{rad}]$

$$\sigma(t) = \sqrt{\sigma_0^2 + \omega_{s,0}^2 P_{DS}(\omega_{s,0})t}$$

$$\vec{F}_{n+1} = \left(\mathbf{A} - \frac{1}{2}\Delta t\mathbf{B}\right) \vec{F}_n$$

- $|I_{mq}(J)|^2 \frac{1}{4} (1 \pm (-1)^m)^2$ = 2j and $m^{(\varphi)} = 2j + 1$
- $d \overline{D}_l = \frac{1}{\Delta J_l} \int_{l=1}^l dJ D(J)$ $\begin{array}{ccc} \cdots & & & \\ \overline{\mathcal{I}}_{l-1} + \overline{D}_l & -\overline{D}_l & \cdots \\ & & & \\ \cdots & & -\overline{D}_{L-1} & \overline{D}_{L-1} \end{array} \right) \frac{1}{\Delta J}$

Diffusion due to band-limited white noise

Controlled emittance blow-up

What is it?

Controlled increase of the phase-space area through noise injection

How is it done?

- Injection of RF (phase) noise, applied on the mair
- RF (phase) modulation on a higher-harmonic RF system

Why use it?

- To regulate the bunch length to a desired value
 - E.g. for extraction requirements or RF heating of sensitive equipment
- To counteract loss of Landau damping (LLD) in the energy ramp
 - At injection, there might not be enough bucket area to have a large enough emittance that would be stable at flattop
 - During the ramp, the bucket area increases as the energy (and voltage) increase
 - The bunch length shrinks adiabatically if nothing is done _

Intensity threshold for LLD

Binomial distribution μ

$$F(H) = F_0 \left(1 - \frac{H}{H_0} \right)$$

Maximum phase amplitude in distribution

Contains a hypergeometric function $_2F_3$

A recent model of loss of Landau damping threshold for a binomial distribution and an effective impedance

Controlled emittance blow-up

Where is it applied?

- PSB, SPS, and LHC: on main harmonic RF
 - Band-limited phase noise in a frequency band close to the central synchrotron frequency
- PS: on a dedicated 200 MHz RF system at a fixed frequency

What does it require from the hardware?

- Turn-by-turn modulation of the RF phase
 - Can be implemented globally through the beam phase loop
 - Or locally on a given cavity controller
- In the LHC, x6 emittance blow-up is needed (cf. injectors 10-40 %)
 - Noise amplitude is regulated with a bunch length feedback

band-limited phase noise

RF phase noise generation

Generation in time domain by colouring white noise

Implementation for the SPS and LHC [15]

- Turn-by-turn injection:
$$\Delta t = T_{rev}$$

- Using a complex Fourier transform: $f_{\text{max}} = 1/\Delta t = f_{\text{rev}}$
- Generate white (carrier) noise in time domain:

$$w_k(t) = e^{2\pi i \text{RAND}_{1,k}} \sqrt{-2\ln \text{RAND}_{2,k}}$$

- Transform the generated white noise to frequency domain $W_{l}(f) = \text{FFT}[w_{k}(t)] = \sum_{k=1}^{N} w_{k}(t)e^{-2\pi i \frac{kl}{N}}$
- Colour the spectrum with the desired noise probability density [rad]: $\Phi_l(f) = s_l(f)W_l(f)$, where $s_l(f) = \sqrt{AS_l^{\text{DB}}f_{\text{max}}}$
- Transform back to time domain to obtain the RF phase noise $\varphi_k(t) = \text{IFFT}[\Phi_l(f)]$

Considerations

•	Frequency	is (changing	along	the	ran
---	-----------	------	----------	-------	-----	-----

- Need to readjust the spectrum every turn
- Need to make sure that the final sequence is continuous and has no jumps

LHC parameters

- Synchrotron frequency: ~20-50 Hz
- Noise band ~0.15 $f_{s,0}$
- Resolution needed: ~0.01 Hz (30 points)
- Revolution frequency: 11245 Hz
- Need at least 1.1 M points in the FFT for every single phase generated!

[15] J. Tückmantel: 'Digital generation of noise-signals with arbitrary constant or time-varying spectra',

RF phase noise generation

Generation in frequency domain by summing single frequencies

$$\Delta \varphi_{\mathrm{rf},(n)} = A \sin\left(2\pi \sum_{k=0}^{n} f_{\mathrm{mod},(k)} T_{\mathrm{rev},(k)}\right) + \varphi_{\mathrm{off},(n)}$$

Phase noise generation in frequency domain: a sum of single-frequency modulations applied in the PSB [16]

Sum of RF phase modulation from single sine-waves at different, close frequencies in the desired band

Used in the PSB operationally, gives a noise spectrum equivalent to the time-domain implementation

[16] S. Albright et al.: 'Time Varying RF Phase Noise for Longitudinal Emittance Blow-up', J. Phys.: Conf. Ser. 1350, 012144 (2019).

LHC implementation

Injection through the beam phase loop

- Designed to damp background RF noise at the central synchrotron frequency
 - To increase beam lifetime from 10s minutes to 10s hours
- Heavily distorts the spectrum of the injected noise
 - In the LHC, the noise is shaped with the beam transfer function (BTF) of a parabolic function to the beam phase loop
 - Assumes a constant 1.25 ns bunch length!

Noise amplitude regulation through bunch length feedback

- Bunch length acquired every 2 s, $\tau_{\rm meas} \equiv 2/\sqrt{2 \ln 2 \tau_{\rm FWHM}}$
- Noise amplitude iterated through a lossy low-pass filter:

$$x_{n+1} = ax_n + g(t)(\tau_{\text{targ}} - \tau_{\text{meas}})$$

- Memory factor: a = 0.87
- Gain: $g(t) = 0.2 \text{ ns}^{-1} [f_{s,0}(t=0)/f_{s,0}(t)]^2$

Top: injected vs measured noise spectrum [17] Bottom: operational noise spectrum

[17] P. Baudrenghien et al.: 'Longitudinal emittance blow-up in the large hadron collider', NIM A 726, 181190 (2013).

LHC bunch length and shape evolution

Shape transition in the first part of the ramp

- Exact evolution and outcome of each ramp is statistical
 - Depends heavily on initial conditions
 - Bunch length, bunch intensity, phase-space distribution...
- Only average behaviour can be compared to

Modelling challenges

- Ramp is 20 minutes, >14 M turns
 - Simulation requires control loops and intensity effects
- Limited to a few bunches
 - In the machine, the noise is regulated through the average bunch length of >2000 bunches!
- Would require ensemble averages over large scans to predict average behaviour

Left: phase-space distribution and longitudinal profile Right: RF frequency and phase evolution

Bunch length throughout the ramp Courtesy N. Gallou

[18] H. Timko et al.: 'Studies on controlled RF noise for the LHC', Proc. HB'14, THO4LR03, East-Lansing, USA (2014).

Intermezzo: how to shrink the longitudinal emittance?

You can make use of a physical phenomenon

H. Timko | RF Gymnastics I & II

Shrinking emittance - synchrotron radiation

In high-energy machines, synchrotron radiation & quantum excitation become significant

- Synchrotron radiation shrinks, quantum excitation blows up the bunch emittance
- Energy loss per turn [19]

$$\begin{split} E_{\text{other},(n)} &= -U_0 - \frac{2}{\tau_z} \Delta E_{(n)} + 2 \frac{\sigma_{\Delta E}}{\sqrt{\tau_z}} E_{d,(n)} \text{RANDN} \\ \uparrow & & \\ \text{Average energy loss} & & \\ \text{Difference in energy} \\ \text{loss for each particle} & & \\ \text{Quantum excitatio} \\ - & \text{Where the average energy loss is:} \\ U_0 &= \frac{4\pi}{3} \frac{r_{\text{cl}}}{m_p^3 c^6} \frac{1}{\rho} E_{d,(n)}^4 \frac{R}{C} \end{split}$$

Shrinking emittance in a controlled manner

- Stochastic cooling
 - Cooling with a pick-up and kicker feedback system
- Electron cooling
 - Thermal exchange of electron-ion plasma
- Laser cooling, ionisation cooling, etc.

magnet bending radius equilibrium energy spread damping time [turns] \mathcal{T}_{7} particle mass m_n RANDN normal random number in (0,1) classical particle radius

[19] J. Esteban Müller: 'Modification of the simulation code BLonD for lepton rings', Tech. Note, (2017) [20] C. Carli et al.: 'Stochasitic cooling at the CERN Antiproton Decelerator', Tech. Note CERN-PS-2000-024 (2000).

n

Resonant excitation

What is it?

Single sine-wave modulation injected on the RF phase

$$\Delta \varphi_{\mathrm{rf},(n)} = A_{\mathrm{mod}} \sin \left(2\pi f_{\mathrm{mod}} \sum_{k=0}^{n} T_{\mathrm{rev},(k)} \right) + \varphi_{\mathrm{off},(n)}$$

Results in a resonant change of the bunch profile

How is it done?

- The modulation frequency determines the final bunch length and bunch shape
- The modulation amplitude has to be above a given threshold, but does not influence the bunch length

Why use it?

- Shapes the bunch without generating tails
- A round core can be used to reduce space charge, IBS, etc.

100-150 ps increase for ~1.2 ns bunches

[21] C. Y. Tan et al.: 'Phase modulation of the bucket stops bunch oscillations at the Fermilab Tevatron', PRAB 15, 044401 (2012).

Resonant excitation

Where is it applied?

- In the LHC, during stable beams with protons
 - At 6.8 TeV (flattop), the bunch length is shrinking significantly due to synchrotron radiation
 - With bunch flattening, the luminous region in the experiments is kept about constant

What does it require from the hardware?

- Opening the beam phase loop while injecting the modulation
 - If done too often, or too long, can impact beam lifetime
- Experimentally, the best configuration found is to do three trapezoids in amplitude
 - Once the reshaping happened, subsequent applications of the modulation do not affect the beam anymore

Amplitude function used in the LHC

[22] E. Shaposhnikova et al.: 'Flat Bunches in the LHC', Proc. IPAC'14, Dresden, Germany (2014).

Regulating the luminous region

When the bunch length decreases

- With resonant excitation
- E.g. LHC protons at 6.8 TeV

Bunch length regulation in the range of 1.18-1.29 ns, with resonant exctitation

When the bunch length increases

- With adiabatic voltage steps
- E.g. LHC protons at 2.68 TeV

Bunch length regulation in the range of 1.36-1.38 ns, with steps of 0.5 MV

Bunch-to-bucket transfer: how do I know whether an extracted bunch is matched for a given injection bucket?

A matched bunch does not exhibit oscillations

Example:

PSB-to-PS transfer

Longitudinal painting

What is it?

- Filling out of the longitudinal phase space by injection of many micro-bunches
 - Injection over several turns, on different time and energy positions in phase space
 - Filamentation process thereafter

How is it done?

- Injection over tens or hundreds of turns
- Sweeping the energy offset and the length of the arriving batch

Why use it?

- To increase the bunch intensity
- To match the bunch into the injection bucket
- To fill out the phase space for longitudinal stability
 - Reduce space charge effects, for instance

Multi-turn injection and longitudinal painting

Courtesy of S. Albright

Longitudinal painting

Where is it applied?

- In the PSB at injection for ISOLDE and TOF (highest beam currents)
 - Linac4: 352 MHz vs PSB 1 MHz, so matching is not possible
 - Injecting a large number of micro-bunches

What does it require from the hardware?

- On the Linac4 side
 - Being able to modulate the extraction energy and calibrate it
 - In addition, need to phase the bunches at different energies
 - Being able to chop the bunches as a function of energy offset
- On the PSB side
 - Capture in double harmonic RF
 - Fill all four rings one after the other

The principle of the PSB painting with Linac 4 bunches, from [23]

)

Debunching

What is it?

Creation of continuous beam from bunched beam

How is it done?

- Switching off the RF voltage
 - Alternative: use low voltage and counter-phase cavities
 - Debunching time: *I*_{deb}

Why use it?

CERN

- For experiments that want a continuous beam (e.g. fixed target)
- Combined with re-bunching, to perform a change of harmonic number

Where is it applied?

- SPS fixed-target experiments lacksquare
- AD change of harmonic number
 - Need good control of RF frequency for capture

How debunching in the LHC would look like over 2000 turns...

(Re-)bunching

What is it?

• Creation of bunched beam from continuous (coasting) beam

How is it done?

- Slowly switching on the RF voltage
 - Adiabaticity factor

$$\alpha = 2\pi \frac{1}{\omega_s^2} \frac{d\omega_s}{dt}$$

- Voltage function with constant adiabaticity:

$$V_{\rm rf}(t) = \frac{V_i}{\left(1 - \frac{t}{\tau} \frac{\sqrt{V_f} - \sqrt{V_i}}{\sqrt{V_f}}\right)^2}$$

Why use it?

CERN

• To capture coasting beam

Where is it applied?

• AD beam capture

Bunch length regulation

- Adiabatic changes
- Rotation
- Splitting, merging

Phase space regulation

- Diffusion, noise injection
- **Resonant excitation**
- Longitudinal painting
- Debunching

Contents

Advanced manipulations

- Momentum slip stacking lacksquare
- Barrier bucket

Integration in an RF system

- Beam loading
- RF voltage/power limitations
- **Designing RF parameters**

A.) A particle accelerator configuration used to store two particle beams with different momenta in the same ring

B.) A process of combining two bunched beams in a synchrotron into a single beam

C.) An accumulation technique used at Fermilab to nearly double proton intensity

H. Timko | RF Gymnastics I & II

What is slip stacking?

Momentum slip stacking

What is it?

- Azimuthal slippage of two batches in opposite direction
 - In the same beam pipe, via slightly different momenta

How is it done?

- Capture two beams with two RF systems of slightly different frequency $V_{\rm rf} = V_{\rm rf,1} \sin(\omega_{\rm rf,1}t + \varphi_{\rm rf,1}) + V_{\rm rf,2} \sin(\omega_{\rm rf,2}t - \varphi_{\rm rf,2})$
- The small frequency difference results in a phase error $2\pi h\Delta\omega_{\rm rf}$ $\Delta \varphi_{\rm rf} =$
- And at constant magnetic field it translates to a slippage (drift) of

$$\frac{\Delta\omega_{\rm rf}}{\omega_{\rm rf,d}} = -\eta_0 \frac{\Delta p}{p_{\rm d}}$$

Recapture with the full RF system at the desired longitudinal position

Why use it?

- To interleave the batches, i.e. reduce batch spacing
- To merge the batches, i.e. increase the intensity

Simulated momentum slip stacking for ion beams in the SPS

Courtesy of D. Quartullo

[24] D. Boussard et al.: 'Production of beams with high line-density by azimuthal combination...', CERN-SPS-ARF-79-11 (1979). [25] K. Seiya et al.: 'Finalizing the Roadmap for the Upgrade of the CERN & GSI Accelerator Complex', Proc. BEAM'07 (2007).

Momentum slip stacking

Where is it applied?

- In the SPS for the 50 ns spaced ion beam production
 - Two 100 ns spaced batches are interleaved on an intermediate momentum plateau

What does it require from the hardware?

- The ability to control the RF cavities in two groups
 - In voltage, phase, and frequency
 - For LIU-SPS, implemented in the Long Shutdown 2
- Sufficient voltage in the two groups during slippage
- Sufficient total voltage for recapture
- Sufficient aperture in the beam pipe
- The timings for the exact voltage and frequency programs are very intricate
 - For the SPS, designed with particle tracking simulation scans

[26] J. Coupard, et al.: 'LHC Injectors Upgrade', Technical Design Report, CERN-ACC-2016-0041 (2016).

What is it?

A bunch rotation of many bunches, merging them together

How is it done?

- Via a non-adiabatic voltage increase at a harmonic that captures all bunches to be merged
 - Finally, the bunches are recaptured on the initial harmonic, with a much higher voltage

Why use it?

- Can significantly increase the bunch intensity
 - Also increases the longitudinal emittance

Where is it applied?

At the Fermilab main injector with protons

Top: sketch of coalescing from [27]

Bottom: coalescing in Fermilab from [28]

[27] A. Chao et al., 'Handbook of Accelerator Physics and Engineering', 2nd Ed., World Scientific, (2013). [28] D. J. Scott et al., 'Coalescing at 8 GeV in the Fermilab Main Injector', Proc. IPAC'12, New Orleans, USA, (2012).

Barrier bucket

What is it?

A non-sinusoidal RF bucket that is stretched longitudinally

How is it done?

- Single voltage pulse per turn, with same or opposite polarity
 - Results in an isolated or barrier bucket

Why use it?

- To create coasting beam within the potential well
- Can stretch or compress the bunch by moving the RF phase

Top: sketch of isolated and barrier bucket from [27] Bottom: potential well for barrier bucket from [29]

[27] A. Chao et al., 'Handbook of Accelerator Physics and Engineering', 2nd Ed., World Scientific, (2013).

[29] M. Vadai et al., 'Barrier bucket gymnastics and transversely split proton beams', Phys. Rev. Accel. Beams 25, 050101, (2022).

Barrier bucket

Where is it applied?

- In the PS, to generate beams for SPS fixed target use
 - Accelerated through the SPS
- Advantage w.r.t. coasting beam: leaving a kicker gap with no beam
 - Significantly reduces beam losses and irradiation

What does it require from the hardware?

- A broad-band RF systems
 - Intrinsically, the peak voltage is limited
 - In the PS, Finemet® cavities that are usable from 400 kHz -10 MHz

Slowly stretching and compressing the batch with the barrier-bucket mechanism [29]

Bunch length regulation

- Adiabatic changes
- Rotation
- Splitting, merging

Phase space regulation

- Diffusion, noise injection
- Resonant excitation
- Longitudinal painting
- Debunching

Contents

Advanced manipulations

- Momentum slip stacking
- Barrier bucket

Integration in an RF system

- Beam loading lacksquare
- RF voltage/power limitations \bullet
- **Designing RF parameters**

Beam-loading compensation

SPS case: normal-conducting, travelling-wave cavities at 200 MHz and 800 MHz

- The cavity impedance is reduced by a one-turn delay feedback (OTFB)
 - Strong beam-loading pattern
- Beam stability required controlled emittance blow-up to maximum acceptable emittance

Bunch-by-bunch longitudinal offset from beam loading Courtesy of B. Karlsen-Bæck

CERN

Maximum bunch length determined by the LHC bucket (half the size); LIU design for HL-LHC: (1.65 ± 0.15) ns

Maximum momentum spread determined by flattop RF voltages (10+2 MV) in the presence of beam loading: 5.32x10⁻⁴

Beam-loading compensation

LHC case: super-conducting, standing-wave cavities at 400 MHz

- Eight cavities per beam
- One klystron of 300 kW generating the RF power per cavity
 - For HL-LHC, these klystrons will be upgraded to 350 kW klystrons

The cavity impedance is reduced by a direct RF feedback

Analog high-pass branch: gain G_a , delay τ_a

$$y^{(n)} = \left[1 - \frac{T_s}{\tau_a}\right] y^{(n-1)} + G_a(x^{(n)} - x^{(n-1)})$$

Digital low-pass branch: gain G_d , delay τ_d

$$y^{(n)} = \left[1 - \frac{T_s}{\tau_d}\right] y^{(n-1)} + G_a G_d e^{i\Delta\varphi_{ad}} \frac{T_s}{\tau_d} x^{(n-1)}$$

- One-turn delay feedback (comb filter) boosts the analog gain
- Tuning and clamping loops

Model of the LHC cavity controller as in [30]

[30] J. Holma: 'The model and simulations of the LHC 400 MHz cavity controller', CERN-AB-Note-2007-012 (2007).

Half-detuning scheme

Cavity-transmitter-beam interaction can be described using a circuit model [31]

Cavity: RLC circuit, beam: current source, generator: transmission line

$$I_{\text{gen}}(t) = \frac{V_{\text{ant}}(t)}{2R/Q} \left(\frac{1}{Q_L} - 2i\frac{\Delta\omega}{\omega}\right) + \frac{dV_{\text{ant}}(t)}{dt}\frac{1}{\omega R/Q} + \frac{1}{2}R$$

Cavity tune chosen usually to minimise the RF power

- At LHC injection, we require the $\overrightarrow{V}_{ant} = const.$

Then the power becomes:

$$P_{\text{gen}} = \frac{1}{8} R/QQ_L \left(\frac{V_{\text{ant}}}{R/Q} \frac{1}{Q_L} + \Re(I_{b,\text{rf}})\right)^2 + \frac{1}{8} R/QQ_L \left(-2\frac{V_{\text{ant}}}{R/Q} \frac{\Delta\omega}{\omega_r} + \Im(I_{b,\text{rf}})\right)^2$$

And its minimum average value is [32]:

$$P_{\text{gen}} = \frac{1}{8} \frac{V_{\text{ant}}^2}{R/QQ_L} + \frac{1}{32} R/QQ_L I_{b,\text{rf}}^2 = \frac{1}{8} V_{\text{ant}} I_{b,\text{rf}}, \text{ with}$$

 $I_{\rm b,rf}(t)$

Without beam, and for a given cavity Q_{L} , the frequency is tuned to the centre of the resonance ω_r

the optimum detuning of $\Delta \omega_{\rm HD} = \frac{1}{4} R/Q \frac{I_{b,\rm rf}}{T} \omega_r$ *v*_{ant}

[31] J. Tückmantel: 'Cavity-beam-transmitter interaction formula collection with derivation', CERN-ATS-Note-2011-002 TECH (2011). 56 [32] D. Boussard: 'RF power requirements for a high intensity proton collider, parts 1 and 2', CERN-SL-91-20-DI-16 (1991).

Full-detuning scheme

$$P_{\text{gen}} = \frac{1}{8} \frac{V_{\text{ant}}^2}{R/QQ_L} + \frac{1}{2} R/QQ_L \left(\frac{V_{\text{ant}}}{R/Q} \frac{\dot{\varphi}}{\omega_r} - \frac{V_{\text{ant}}}{R/Q} \frac{\Delta \omega}{\omega_r} + \frac{1}{2} \frac{V_{\text{ant}}}{2} \frac{\Delta \omega}{\omega_r} + \frac{1}{2} \frac{V_{\text{ant}}}{2} \frac{\Delta \omega}{\omega_r} + \frac{1}{2} \frac{V_{\text{ant}}}{\omega_r} \frac{V_{\text{ant}}}{\omega_r} \frac{\Delta \omega}{\omega_r} + \frac{1}{2} \frac{V_{\text{ant}}}{\omega_r} \frac{V_{\text{ant}}}{\omega_r} \frac{V_{\text{ant}}}{\omega_r} \frac{V_{\text{ant}}}{\omega_r} \frac{V_{\text{ant}}}{\omega_r} + \frac{1}{2} \frac{V_{\text{ant}}}{\omega_r} \frac{V_{\text{a$$

- Now we have a "knob" to compensate the bunch-by-bunch variation of the beam current along the ring via $\dot{\phi}$ •
- Abracadabra: the minimum voltage becomes the same as if there was no beam loading!

 $P_{\text{gen}} \approx \frac{1}{8} \frac{V_{\text{ant}}^2}{R/OQ_I}$

Left: delay in collision time in IP1/5, *Right: displacement of the luminous* spot in IP2/8

CÉRN

- Once the beam is in the machine, we can let the phase slip and only keep $|\vec{V}_{ant}| = const.$
 - $\left(-\frac{3}{3} \left(e^{-j\varphi} I_{b,\mathrm{rf}} \right) \right)^2$

[cm]

HL-LHC optimum voltage at injection?

- The SPS bunches are long for the LHC bucket
 - Using a matched voltage is detrimental for capture losses
- In addition, the SPS beam loading pattern introduced a bunch-bybunch phase offset, making the situation worse
 - Injection phase and energy errors are kept to a minimum (± 60 MeV, $\pm 10^{\circ}$)
- To reduce beam losses, a larger-than-matched voltage is used
- On the other hand, we need to limit the capture voltage
 - Most power is used for beam-loading compensation (> 60-70 %)
 - Mismatch not beneficial for undamped oscillations observed at flat bottom

RF voltage and power limitations

HL-LHC beam loading at injection

- Equally spaced bunches arriving from the SPS
 - Require using the half-detuning scheme
 - For HL-LHC beam currents, $I_{b,rf} = 2.2$ A, the average power is close to 300 kW, and the peak power exceeds 315 kW in the best case
 - Need of high-efficiency klystrons

The complexity of beam losses

- Immediate capture losses determined by SPS-to-LHC transfer
- Blow-up along the flat bottom due to intra-beam scattering and **RF** noise
 - Debunching from the halo population
- Filling 15-20 batches, some batches spend only 5 minutes on flat bottom, while others may spend 1 hour
 - Injection and abort gap cleaning on
 - Bottleneck for HL-LHC: start-of-ramp losses

CERN

RF voltage and power limitations

Top: simulated power Bottom: start-of-ramp losses Courtesy of B. Karlsen-Baeck

If you were given the momentum programme of a machine, how would you design the RF voltage programme?

For different machines, different criteria should be considered

H. Timko | RF Gymnastics I & II

Example: LHC voltage design

- Operational momentum programme: Parabolic-Exponential-Linear-Parabolic (PELP)
 - Ramp rate of superconducting magnets limited, overall ramp takes ~20 minutes
 - Using a linear voltage ramp ensures a monotonic increase in bucket area
 - The blow-up with a constant target bunch length ensures beam stability through a constant filling factor

Experimental ramp: Parabolic-Parabolic-Linear-Parabolic (PPLP)

- Gain: 110 s
- Using a linear voltage ramp would decrease the bucket area at the start of ramp and thus create losses
- Voltage shaping applied to keep a monotonic increase in bucket area

Bucket area

$$A_{b} = \frac{2}{\omega_{\rm rf}} \sqrt{\frac{\beta_{d}^{2} E_{d} e V_{\rm rf}}{\pi h |\eta_{0}|}} \int_{\pi - \varphi_{d}}^{\varphi_{u}} d\varphi \sqrt{\cos(\pi - \varphi_{d}) - \cos\varphi + (\pi - \varphi_{d})\sin\varphi}$$

Designing the RF cycle

PPLP voltage (top) and bucket area (bottom)

Designing the RF system

What are the considerations to be taken into account e.g. for the FCC?

- Keep ~constant filling factor to counteract loss of Landau damping Similar to LHC, controlled emittance blow-up keeping constant bunch length
- At flattop, need an extra blow-up to counteract the fast SR damping
- Cavities similar to LHC design, with 2 MV maximum field
 - Maximum is actually not reached at flattop but during the ramp

[34] I. Karpov et al.: 'Transient beam loading and rf power evaluation for future circular colliders', Phys. Rev. Accel. Beams 22, 081002 (2019). [35] I. Karpov et al.: 'Longitudinal coupled-bunch instability evaluation for FCC-hh', Proc. IPAC'19, Melbourne, Australia (2019).

RF voltage design for FCC from [34]

Synchronous phase of the beam (red solid line) and the synchronous

Cycle design for FCC from [35]

Top: emittance and filling factor Bottom: total voltage and impedance budget for Landau damping

Summary

Bunch length regulation

- Adiabatic changes
- Rotation
- Splitting, merging

Phase space regulation

- Diffusion, noise injection
- Resonant excitation
- Longitudinal painting
- Debunching

Thank you for your attention!

Advanced manipulations

- Momentum slip stacking
- Barrier bucket

Integration in an RF system

- Beam loading
- RF voltage/power limitations
- Designing RF parameters

