
0

RF Feedback

H. Damerau

CERN

13 November 2024

Advanced Accelerator Physics



1

• Introduction

• Direct RF feedback
• Globally reduce a cavity impedance

• Long delay feedback
• Reduce impedance at revolution frequency harmonics

• Global feedback
• Detect and fight the effect of an instability

• Time and frequency domain

• Summary

Outline
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Introduction
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• Open loop system subject to

→ Imperfections

→ Perturbations

→ Feed output back to input → correction

→ New system with new dynamics 
• Control parameters of system

• Make naturally unstable system stable again 

Feedback

+
-

+

Why feedback?

System to be 
controlled

‘plant’
Input Output
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Why RF feedback?

Image current of beam induces voltage surrounding structure

→ RF cavities particularly affected due to intentionally 
large impedance

→ Longitudinal instabilities

→ Degradation of longitudinal beam quality

How to improve?

→RF feedback 
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• Control longitudinal
parameters

• Longitudinally unstable beam
• Beam induced voltage

RF system 
identified as source

Source
unknown

Tree of RF feedback systems
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Onion model of RF feedback
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Direct RF feedback



8

Cavity parameters

• The resonance of a cavity can be understood as simple 
parallel resonant circuit described by R, L, C

→ Resonant circuit can also be described by R, R/Q, w0 or any 
other set of three parameters

R CL

Z(w)

Dw-3dB
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Objective of local impedance reduction

• Induced voltage in cavity may cause

1. Dephasing of total cavity voltage

2. Longitudinal instability

→ Reduce beam induced voltage

→ Reduce cavity impedance experienced by the beam

✓ Beam induced voltage reduced: R/(R+Rshunt)

- Power for given voltage increased: (R+Rshunt)/R
B
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V

CRRshunt

→ $$$
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Direct feedback

CRL
Ig IbRg

Cavity

Drive

Power amplifier Beam

• Use amplifier to counteract beam induced voltage

→ Decrease only apparent impedance experienced by beam

V
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• Use amplifier to counteract beam induced voltage

→ Decrease only apparent impedance experienced by beam

• Gap signal, V: Beam and generator contributions

• Drive signal, Vdrive: Pure generator

→ Compare drive signal (no beam) with gap (beam and generator)

→ Amplify inverted difference

Direct feedback

CRL
Ig IbRg

CavityPower amplifier Beam

Vdrive

FB ret.

+
-

+

V
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• Use amplifier to counteract beam induced voltage

→ Decrease only apparent impedance experienced by beam

→ Feedback parameterized by

• Open loop gain, G

• Total loop delay, t → frequency dependent phase shift

Direct feedback

CRL
Ig IbRg

CavityPower amplifier Beam

Vdrive

+
-

+

V

G

t
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Issue with delay

• Dephasing due to physical delay

• Delay is natural enemy of every feedback system

→ Propagation delay in cables and electronics

→ Latency of conversion and signal processing

→ Phase rotation of complex signal:

tS
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• Use amplifier to counteract beam induced voltage

→ Decrease only apparent impedance experienced by beam

→ Total current in cavity (Vdrive = 0):

Direct feedback

CRL
Ig IbRg

CavityPower amplifier Beam

Vdrive

+
-

+

V

G

t
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• Total cavity voltage:

• Impedance with feedback:

→ Differential change of cavity, dVt voltage for beam 
induced current, dIb

Impedance with direct feedback
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• Dephasing due to loop delay at Dwt

• Which dephasing results in unity absolute loop gain?

• Phase margin defined as

Stability with feedback

Open loop:
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Stability with feedback

→ Phase margin:

• Conventional stability limit defined for 

→ Maximum stable gain:
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Impedance with feedback

• Normalized impedance:

Cavity with 
direct feedback

Z(w) Zfb(w)

Amplifier Beam
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• Coaxial cavity, f0 ≈ 57 MHz

• ‘Power’ amplifier: ~10 mW

→ No risk of damage

→ Usually more:
Tens to hundreds of kilowatts

Example: direct feedback lab experiment

PhaseMeasured transfer function

Open loop

With 
feedback

With feedback

Open
loop
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Frequency [MHz]

Transfer function with 
and without feedback

~24 dB

Example: 10 MHz RF system in CERN PS

• Feedback gain of 24 dB

→ Equivalent impedance,
Zfb(w) reduced by more than 
order of magnitude

→ Impedance for amplifier 
remains unchanged, Z(w)

More feedback gain

Pushed to 
stability limit
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Example: CERN PS 10 MHz cavity feedback

• 10 + 1 ferrite loaded cavities, tunable from 2.8…10 MHz

• Two resonators excited in parallel by one amplifier

Simplified 
model

Drive
Equivalent circuit

+

FB ret.

B
e
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p
.

→ Realistic amplifier behaviour
with higher order modes
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• Time domain response of cavity and amplifier

→ Comparing with measured response to beam excitation

Modelling a real cavity – time domain

Exciting bunch Cavity response: open loopCavity response: closed loop

→ No instantaneous damping 
due to inherent delay

→ Filling time significantly 
reduced with feedback
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• Contributions to maximum feedback gain

1. Decrease shunt impedance → not a good idea

2. Reduction of delay has physical limits

→ How close can amplifier be to cavity?

→ Minimum delay of feedback chain?

3. Decrease bandwidth

→ Reduce bandwidth of feedback chain instead of cavity?

Limitations of direct feedback

using
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Feedback with delay
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Why?

→ Loop delay cannot be made short: amplifier not close 
enough to cavity

→ Cavity to be damped has large bandwidth

→ Need impedance reduction beyond stability limit of direct 
feedback

How?

→ Cleverly use the properties of the beam spectrum

→ Profit from of slow synchrotron motion

Feedback with delay



26

Longitudinal
beam spectrum
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• Circular accelerator

→ Beam signal periodic with revolution frequency: wrev

→ Spectral components at:

Longitudinal beam spectrum

wrev

Spectrum of single bunch

Multi-bunch beam

wRF

2wRF

3wRF
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• Longitudinally unstable bunches may perform oscillations

→ Synchrotron frequency is basic periodicity: wS

→ Adds sidebands at wrev harmonics:

→ Sidebands usually close to wrev harmonic since

Longitudinal beam spectrum

Oscillation with wS: dipole Oscillation with 2wS: quadrupole

~500 turns ~500 turns
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→ Beam can only induce voltage at frequencies

→ Relevant frequencies from RF point of view

→ Feedback only needs to damp these frequency components

→ Can one profit from this property for RF feedback beyond 
conventional stability limit?

Beam spectrum
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Periodic filters
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• Transfer function periodic in frequency

• Niche application in communication technology

→ Who wants to listen to multiple radio stations at the same time?

• Very useful for circular accelerators thanks to properties of 
beam spectrum

→ How to build such filters?

Periodic notch and comb filters
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• Add signal with itself, but delay by a fixed delay, t

• Addition (maxima) or subtraction (minima)

Periodic notch and comb filters

Delay, t

+Vin Vout
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• Add signal with itself, but delay by a fixed delay, t

• Addition (maxima) or subtraction (minima)

→ Filter to remove (notch) revolution frequency harmonics

Periodic notch and comb filters

Amplitude and phase filter transfer function
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• Delay output signal by t and add to input signal

• Addition (maxima) or subtraction (minima)

Periodic notch and comb filters

Delay, t

+Vin Vout

1-a
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• Delay output signal by t and add to input signal

• Ansatz:

• Addition (maxima) or subtraction (minima)

→ Remove everything but revolution frequency harmonics

Periodic notch and comb filters

Amplitude and phase of filter transfer function
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Feedback with
periodic filters
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1-turn delay feedback
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Drive

1. Comb filter to extract revolution frequency harmonics

2. Delay to complete physical delay of cables and signal 
processing to 1 revolution period
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+

1-turn delay feedback

1-turn delay feedback
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Drive

1. Comb filter to extract revolution frequency harmonics

2. Delay to complete physical delay of cables and signal 
processing to 1 revolution period
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1-turn delay feedback

Drive

Delay, t

1. Comb filter to extract revolution frequency harmonics

2. Delay to complete physical delay of cables and signal 
processing to 1 revolution period
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→ Transfer function with comb filter

→ Impedance between revolution frequency harmonics

→ Not excited by beam, but potential issue for stability

→ Total delay very critical

Cavity transfer function with 1-turn delay FB

Variation of feedback gain Variation of feedback delay
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• 1-turn delay feedback around 57 MHz resonator

→ Analogue comb filter with ~2.5 km optical fiber delay

→ Accelerator with frev ≈ 76 kHz (2pR ≈ 4 km circumference)

Example: long delay feedback lab experiment

Open/closed loop transfer function +2/-2 ns delay error (+/-1.4 ∙ 10-4)
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- Fast wide-band feedback 
around amplifier (internal)
→ Gain limited by delay

• Combination of direct and 1-turn delay feedback

Drive

+

FB ret.

- 1-turn delay feedback
→ High gain at n  frev+ 1-turn delay feedback
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Example: 1-turn delay in CERN PS
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Frequency Frequency
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→ Reduce cavity impedance beyond stability limit of wide-band FB

→ Important additional impedance 
reduction 

→ Clever usage of beam periodicity 
in circular accelerator

Frequency [MHz]

Spectrum at cavity gap return
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Multi-harmonic
feedback
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• Separate feedback loop by harmonic

→ Full flexibility of individual loop parameters

→ Empowered by processing power of modern digital hardware

Treat each harmonic independently

ADC DAC
Cavity 
return

Open loop transfer function

Cavity 
drive

4 adjacent harmonics

Single harmonic processing: 
band-pass  and dephasing 
Single harmonic processing: 

band-pass  and dephasing 
Single harmonic processing: 

band-pass  and dephasing 
Single harmonic processing: 

band-pass  and dephasing 
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• Multi-harmonic feedback reduces beam induced voltage

• First 12 revolution frequency harmonics damped

Example: Damping of wide-band cavity

Spectrum of beam induced voltage 

Feedback off
Feedback on

Feedback off
Feedback on

1 bunch

6 bunches

→ Damping beyond 
stability limit of 
direct feedback
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Global feedback
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1. Detect derivation of beam

→ Transverse: position offset

→ Longitudinal: phase offset

2. Signal processing to filter relevant information

3. Amplify and apply correction

→ Drive dedicated kicker

→ Drive accelerating cavities as longitudinal kickers

1. Detect derivation of beam

→ Transverse: position offset

Global RF feedback

Signal processing

Detection
Amplification

Correction
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• Longitudinally unstable beam, but driving source unknown

• Each bunch oscillation, but not with the same phase

Longitudinal oscillation of bunches

Bunches oscillating (dipole, 2p10/21 phase advance)
)

Time domain Frequency domain

• Measure phase of each bunch

→ Apply kick to bring phase 
back to reference position

• Measure spectral component 
corresponding to mode

→ Apply kick to remove that 
spectral component

→ “Bunch-by-bunch” →“Mode-by-mode”
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• Intuitive: Measure oscillation of each bunch and correct

→ Multiple feedbacks in time domain multiplex

→ Flexible control (gain/phase) for each bunch

Time domain: Bunch-by-bunch feedback

ADC
Beam
signal

DAC
To long.
kicker

Damping loop
bunch, b1

Damping loop
bunch, b2

Damping loop
bunch, bn

…
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Bunch phase
detection

Longitudinal
kicker

→ De-multiplexer
→ Signal processor 
→ Multiplexer

• Multi-bunch feedback developed for electron storage rings:

• Used at Advanced Light Source (ALS) at LBNL, PEP at SLAC,
DAfNE at INFN-LNF, etc.

Example: Bunch-by-bunch RF feedback

Time [ms]

Bunches in time domain

Bunch #

R
F

 p
h

a
se

 [
°]

Modes in frequency domain

Time [ms]Mode #

R
F

 p
h

a
se

 [
°]

FFT
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• Less intuitive: Suppress 
components in beam spectrum

• Fixed phase advance from bunch-
to-bunch creates sideband at nwrev

Frequency domain: Mode-by-Mode

2p10/21 phase advance: n = 10, m = 1

w

n∙wrev

+2wS-2wS

Quadrupole

+wS-wS

Dipole

2p10/21 phase advance: n = 10, m = 1
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• Less intuitive: Suppress
components in beam spectrum

• Fixed phase advance from bunch-
to-bunch creates sideband at nwrev

• No sidebands at +/-wS

→ Dipole oscillations removed

• No sidebands at +/-2wS

→ Quadrupole oscillations removed

Frequency domain: Mode-by-Mode

2p10/21 phase advance: n = 10, m = 1

w

n∙wrev

+2wS-2wS

Quadrupole

Dipole
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1. Filter synchrotron frequency side-bands

2. Inject correction to remove them → Stable beam

→ Multiple feedbacks in parallel

→ Optimum parameters (phase, gain) for each harmonic of wrev

Mode-by-Mode feedback

ADC
Beam
signal

DAC
To long.
kicker

Filter and dephasing
of +/-wS around n1wrev

Filter and dephasing
of +/-wS around n2wrev

Filter and dephasing
of +/-wS around nwrev

…
+
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Signal 
processing 
(10 chains)

Example: CERN PS coupled-bunch feedback

• Mode-by-mode dipole feedback

• 10 parallel processing chains         → stabilize beam for LHC

Splitter + amp.

 BEAM

FINEMET

GAP

Wideband cavity: 
longitudinal kicker

Feedback off: unstableFeedback on: stable
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Summary

1. Direct RF feedback

→ Globally reduce cavity impedance

2. Long delay feedback

→ Reduce impedance at revolution frequency harmonics

3. Global feedback

→ Just fix problems of (sometimes) not understood origin

• Chose feedback most appropriate to your problem

→ Prefer inner layers of feedback onion

→ Combination of different RF feedback types

• Delay is principal enemy of almost every RF feedback

→ Keep it short, you cannot beat causality!
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Thank you very much            
for your attention!
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Advantages Disadvantages

• Shunt impedance reduction of 
cavity resonance

• Robust, performance does not 
depend on beam parameters

• Excellent transient response

• Local feedback

• Amplifier must be close to cavity

• Feedback system per cavity

Direct RF feedback on cavity

• You know the driving impedance → RF cavity

• You can be close to the cavity
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Advantages Disadvantages

• Shunt impedance reduction of 
cavity resonance at revolution 
frequency harmonics

• Used in combination with direct 
feedback

• Low bandwidth, slow response 
to transient effects

• Feedback system per cavity

1-turn delay/multi-harmonic feedback

• You know the driving impedance → RF cavity

• You cannot be close to the cavity
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Advantages Disadvantages

• Globally reduced consequence of 
instability

• One feedback sufficient to 
control instability

• Treats consequence, not cause
of a problem

• Narrow range of application

• Dedicated longitudinal kicker

Global feedback

• You do not know the source of the problem

• You observe and analyse the effect of an instability
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RF system overview

Cavity

Power amplifier

Low-level RF
system

Beam

Beam
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Application of global corrections

• Local feedbacks → Act on individual RF stations

• Global feedbacks → Act on all RF stations simultaneously

Df2

Df1

Df3

Time of flight 
compensation

→ RF distribution to compensate time of flight between stations

→ All RF stations applying correction in unison

t12
t231

2

3

t31
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Frequency and wavelength ranges

100 kHz
3 km

1 MHz
300 m

10 MHz
30 m

100 MHz
3 m

1 GHz
30 cm

10 GHz
3 cm

100 GHz
3 mm

SPS 200 MHz

PS main RF 
system

PS longitudi-
nal damper

CLIC 12 GHz

Long wave

Medium/ 
short wave

VHF

Microwave 
links


