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Matching Conditions are fundamental



• The rms emittance concept

• rms envelope equation

• Space charge forces

• Space charge induced emittance oscillations

• Matching conditions and emittance compensation
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Typical coordinates to describe the particle motion

(6 per particle) 
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In a system where all the forces acting on the particles are linear (i.e., 

proportional to the particle’s displacement x from the beam axis), it is 

useful to assume an elliptical shape for the area occupied by the beam 

in x-x‘ trace space or x-px phase space.
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Twiss 

parameters:

12 =-abg

Ellipse 

equation:

Geometric emittance:
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gx2 + 2ax ¢ x + b ¢ x 2 = eg

Ellipse area: A = peg

¢b = -2a





Phase space evolution

With space charge => no cross 

over

No space charge => cross 

over
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rms emittance
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rms beam envelope:

  

gx2 + 2ax ¢ x + b ¢ x 2 = erms
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Define rms emittance:

such that:
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It holds also the relation:

Substituting             we get
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We end up with the definition of rms emittance in terms  of the 

second moments of the distribution:
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Which distribution has no 

correlations?

x

x’

s xx ' = x ¢x = -aerms = 0?
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What does rms emittance tell us about phase space distributions 

under linear or non-linear forces acting on the beam?

Assuming a generic            correlation of the type:

  

x, ¢ x 
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Normalized rms emittance:

px = pz
¢x = mocbg ¢xCanonical transverse momentum:

Liouville theorem: the density of particles n, or the volume V

occupied by a given number of particles in phase space

(x,px,y,py,z,pz) remains invariant under conservative forces.

It hold also in the projected phase spaces (x,px),(y,py)(,z,pz)

provided that there are no couplings.

But rms emittance is not Liouvillian! 
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• The rms emittance concept

• rms envelope equation

• Space charge forces

• Space charge induced emittance oscillations
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Envelope Equation without 

Acceleration
Now take the derivatives:
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We obtain the rms envelope equation in which the rms emittance 

enters as defocusing pressure like term.
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Assuming that each particle is subject only to a linear focusing 

force, without acceleration:

take the average over the entire particle ensemble 

¢¢x + kx

2x = 0
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2s x =

erms
2

s x
3

x ¢¢x = -kx

2 x2

We obtain the rms envelope equation with a linear focusing force 

in which, unlike in the single particle equation of motion, the rms 

emittance enters as defocusing pressure like term.
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Envelope Equation with Linear 

Focusing
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Space Charge: what does it mean?

The net effect of the Coulomb interactions in a multi-particle system can be 

classified  into two regimes:

1) Collisional Regime ==> dominated by binary collisions caused by close 

particle encounters ==> Single Particle Effects

2) Space Charge Regime ==> dominated by the self field produced by the 

particle distribution, which varies appreciably only over large distances 

compare to the average separation of the particles ==> Collective Effects
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A measure for the relative importance of collisional versus collective effects is the

Debye Length lD

Let consider a non-neutralized system of identical charged particles

We wish to calculate the effective potential of a test charged particle

surrounded by other particles that are statistically distributed.
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FD r( ) = ?

Magnetic 

focusing

Magnetic 

focusing

The plasma responds to an external charge by rearranging the charge distribution around it.

This response is governed by the Boltzmann distribution for the density of particles at thermal equilibrium



FD r( ) =
C

r
e-r/lD

lD =
eokBT

e2n
N => total number of particles               

n => particle density (N/V)

kB=> Boltzman constant

T => Temperature

kB T => average kinetic energy of the particles

The effective potential of a test charge can be defined as the sum of 

the potential of the single particle d and a “perturbed” term Dn.
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The Debye length indicates the distance over which charge imbalances are neutralized by the

collective behavior of the plasma.



the effective interaction range of the test particle is limited to the 

Debye length

The charges sourrounding the test particles have a screening effect
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Smooth functions for the charge and field distributions can be used 

as long as the Debye length remains small compared to the particle 

bunch size

lD

>>   FD r( )FSC r( )
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In a charged particle beam moving at a longitudinal relativistic 

velocity, assuming that the random transverse motion in the 

beam is non-relativistic, the Debye length has the following 

form:
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R=1mm, L=3mm

Q=1nC, T=103 K
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Continuous Uniform Cylindrical Beam 

Model
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Bunched Uniform Cylindrical Beam 

Model



Fr = e Er - bcBJ( ) = e 1- b 2( ) Er =
eEr

g 2

The attractive magnetic force , which becomes significant at high velocities, tends to

compensate for the repulsive electric force. Therefore space charge defocusing is

primarily a non-relativistic effect. Using R=2sx for a uniform distribution:

is a linear function of the transverse coordinate
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Envelope Equation with Space Charge
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External Focusing Forces

Space Charge De-focusing Force

Emittance Pressure

Now we can calculate the term        that enters in the envelope equation
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Laminar Beam

Thermal Beam

The beam undergoes two regimes  along the accelerator
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Surface charge density Surface electric field

Restoring force

Plasma frequency

Plasma oscillations



Single Component 

Relativistic Plasma
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Equilibrium solution:
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Small perturbation:
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Perturbed trajectories oscillate around the equilibrium with the same frequency 

but with different amplitudes:
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Envelope oscillations drive Emittance 

oscillations
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Emittance Oscillations are driven by space charge differential 

defocusing in core and tails of the beam
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Perturbed trajectories oscillate around the 
equilibrium with the 

same frequency but with different amplitudes
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High Brightness Photo-Injector
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Other External Focusing Forces

Space Charge De-focusing Force

Adiabatic Damping Emittance Pressure
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Beam subject to strong 

acceleration
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We must include also the RF focusing force: kRF
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Space charge dominated beam (Laminar)

Emittance dominated beam (Thermal)



This solution represents a beam equilibrium mode that
turns out to be the transport mode for achieving minimum
emittance at the end of the emittance correction process
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Constant phase space angle:

An important property of the laminar beam
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Potential space charge emittance growth
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eth = 0.6 m

Eacc = 25 MV/m
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Matching Conditions with a TW Linac 
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Emittance Compensation for a SC dominated beam: 
Controlled Damping of Plasma Oscillations

 en oscillations are driven by Space Charge

• propagation close to the laminar solution allows control of
en oscillation “phase”

 en sensitive to SC up to the transition energy
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