Space Charge in Linear Machines

Massimo.Ferrario@LNF.INFN.IT

Spa – November 14 - 2024

Different Regimes of Beam Propagation

Space charge dominated

Emittance dominated (Wake Fields)

Plasma dominated

Radiation dominated

Users dominated

Matching Conditions are fundamental

OUTLINE

- The rms emittance concept
- rms envelope equation
- Space charge forces
- Space charge induced emittance oscillations
- Matching conditions and emittance compensation

Typical coordinates to describe the particle motion (6 per particle)

Trace space of an ideal laminar beam \overrightarrow{f} \overrightarrow{i} x \overrightarrow{dx} $\overrightarrow{p_x}$ $\overrightarrow{p_z}$ $\overrightarrow{p_z}$ $\overrightarrow{p_z}$ X' $\sf X$

Trace space of a laminar beam

Trace space of non laminar

In a system where all the forces acting on the particles are linear (i.e., proportional to the particle's displacement x from the beam axis), it is useful to assume an elliptical shape for the area occupied by the beam in $x-x'$ trace space or $x-p_x$ phase space.

Twiss bg - a^2 = 1 Ellipse equation: Geometric emittance: $e_{\rm g}$ g*^x 2* $+ 2axx\mathbb{C} + bx\mathbb{C}^2$ $=\theta_{\stackrel{}{g}}$ $\bm{\mathcal{b}}$ t = -2*a*

parameters: Ellipse area:

 $A = \rho e_{\varrho}$

Fig. 17: Filamentation of mismatched beam in non-linear force

Phase space evolution

No space charge => cross With space charge => no cross

$$
\oint_{-\frac{4}{3}x}^{\frac{4}{3}x} \oint_{-\frac{4}{3}x} f(x, x^{\circ}) dx dx^{\circ} = 1
$$
\n
$$
\text{This beam envelope:}
$$
\n
$$
S_x^2 = \left\langle x^2 \right\rangle = \oint_{-\frac{4}{3}x}^{\frac{4}{3}x} \oint_{-\frac{4}{3}x}^{\frac{4}{3}x} f(x, x^{\circ}) dx dx^{\circ}
$$

Define rms emittance:

$$
gx^2 + 2axx\mathfrak{C} + bx\mathfrak{C}^2 = e_{rms}
$$

such that:

$$
S_x = \sqrt{\langle x^2 \rangle} = \sqrt{be_{rms}}
$$

$$
S_{x'} = \sqrt{\langle x^2 \rangle} = \sqrt{ge_{rms}}
$$

 $\beta' = -2\alpha$ Since:

it follows:
$$
\partial = -\frac{1}{2e_{rms}}\frac{d}{dz}\left\langle x^2 \right\rangle = -\frac{\left\langle xx^2 \right\rangle}{e_{rms}} = -\frac{S_{xx}}{e_{rms}}
$$

$$
S_x = \sqrt{\langle x^2 \rangle} = \sqrt{be_{rms}}
$$

$$
\sigma_{x'} = \sqrt{\langle x'^2 \rangle} = \sqrt{ge_{rms}}
$$

$$
S_{xx'} = \langle xx \rangle = -a e_{rms}
$$

It holds also the relation:

$$
gb-a^2=1
$$

Substituting
$$
\partial
$$
, ∂ , ∂ we get

$$
\frac{S_{x'}^2}{\theta_{rms}} \frac{S_x^2}{\theta_{rms}} - \frac{\mathfrak{E} S_{xx'}}{\mathfrak{E} \frac{S_{xx'}}{\theta_{rms}}} \frac{\mathfrak{F}^2}{\mathfrak{E}} = 1
$$

We end up with the definition of rms emittance in terms of the second moments of the distribution:

$$
e_{rms} = \sqrt{S_x^2 S_x^2 - S_{xx}^2} = \sqrt{\left(\left\langle x^2 \right\rangle \left\langle x\ell^2 \right\rangle - \left\langle xx\ell \right\rangle^2\right)}
$$

$$
x \mathbb{I} = \frac{p_x}{p_z}
$$

What does rms emittance tell us about phase space distributions under linear or non-linear forces acting on the beam?

Assuming a generic x , $x^{\{t\}}$ correlation of the type: $x^{\{t\}} = Cx^n$

$$
e_{rms}^2 = C^2 \left(\left\langle x^2 \right\rangle \left\langle x^{2n} \right\rangle - \left\langle x^{n+1} \right\rangle^2 \right)
$$
 When $n = 1 \implies \varepsilon_{rms} = 0$
When $n \neq 1 \implies \varepsilon_{rms} \neq 0$

Normalized rms emittanc $\mathbf{\mathfrak{E}}^\bullet_{\pmb{\hbar},\textit{rms}}$

Canonical transverse momentum: $p_x = p_z x^{\uparrow} = m_o c b g x^{\uparrow}$ » *p*

$$
e_{n,rms} = \frac{1}{m_o c} \sqrt{S_x^2 S_{p_x}^2 - S_{xp_x}^2} = \frac{1}{m_o c} \sqrt{\left(\left\langle x^2 \right\rangle \left\langle p_x^2 \right\rangle - \left\langle xp_x \right\rangle^2\right)} \times \left\langle \frac{b g}{g} \right\rangle e_{rms}
$$

Liouville theorem: the density of particles *n*, or the volume V occupied by a given number of particles in phase space (x, p_x, y, p_y, z, p_z) remains invariant under conservative forces. sive is momentum: $p_x - p_z x = m_o c b y x$ p_z
 $\frac{\sqrt{3}c^2 s_{p_x}^2 - s_{xp}^2} = \frac{1}{m_o c} \sqrt{\left(\frac{x^2}{p_x}\right)^2 - \left\langle xp_x\right\rangle^2} \right) \left\langle \frac{b g}{p_{rms}} \right\rangle$

em: the density of particles *n*, or the volume

a given number of particles in phase spac

$$
\frac{dn}{dt} = 0
$$

It hold also in the projected phase spaces $(x, p_x), (y, p_y), (z, p_z)$ provided that there are no couplings.

OUTLINE

- The rms emittance concept
- rms envelope equation
- Space charge forces
- Space charge induced emittance oscillations
- Matching conditions and emittance compensation

Envelope Equation without Acceleration Now take the derivatives:

We obtain the rms envelope equation in which the rms emittance enters as defocusing pressure like term.

$$
S_x^{\text{m}} - \frac{\langle xx^{\text{m}} \rangle}{S_x} = \frac{e_{rms}^2}{S_x^3}
$$
\n
$$
\frac{e_{rms}^2}{S_x^3} \gg \frac{T}{V} \gg P
$$

Envelope Equation with Linear Focusing

$$
\mathcal{S}_{x}^{\mathbb{Q}} - \frac{\langle xx^{\mathbb{Q}} \rangle}{S_x} = \frac{e_{rms}^2}{S_x^3}
$$

Assuming that each particle is subject only to a linear focusing force, without acceleration: $x\mathbf{x} + k_x^2 x = 0$

take the average over the entire particle ensemble $\langle xx^{\dagger}\rangle = -k_x^2$ *x* 2

$$
S_{x}^{\text{m}} + k_{x}^{2} S_{x} = \frac{e_{rms}^{2}}{S_{x}^{3}}
$$

We obtain the rms envelope equation with a linear focusing force in which, unlike in the single particle equation of motion, the rms ssuming that each particle is subject only to a line
orce, without acceleration: $x^{\text{c}} + k_x^2 x = 0$
ske the average over the entire particle ensemble $\langle s_{\text{c}}^{\text{c}} + k_x^2 s_x = \frac{e_{rms}^2}{s_x^3} \rangle$
We obtain the rms envelope e

OUTLINE

- The rms emittance concept
- rms envelope equation
- Space charge forces
- Space charge induced emittance oscillations
- Matching conditions and emittance compensation

Space Charge: what does it mean?

The net effect of the **Coulomb** interactions in a multi-particle system can be classified into two regimes:

1) Collisional Regime ==> dominated by **binary collisions** caused by close particle encounters ==> **Single Particle Effects**

2) Space Charge Regime = \geq dominated by the **self field** produced by the particle distribution, which varies appreciably only over large distances compare to the average separation of the particles ==> **Collective Effects**

Neutral Plasma •Oscillations

- •Instabilities
- •EM Wave propagation

Single Component Cold Relativistic Plasma

Magnetic focusing

Magnetic focusing

A measure for the relative importance of collisional versus collective effects is the

Debye Length λ_D

Let consider a **non-neutralized** system of **identical charged particles**

We wish to calculate the effective potential of a test charged particle surrounded by other particles that are statistically distributed.

The plasma responds to an external charge by rearranging the charge distribution around it. This response is governed by the Boltzmann distribution for the density of particles at thermal equilibrium

The effective potential of a test charge can be defined as the sum of the potential of the single particle δ and a "perturbed" term Δn .

From Poisson Equation:

$$
\nabla^{2}F_{D}\left(\vec{r}\right) = \frac{e}{e_{o}}d\left(\vec{r}\right) + \frac{e}{e_{o}}Dn\left(\vec{r}\right)
$$

$$
Dn = ne^{-eF_{D}/k_{B}T} - n \approx -\frac{ne}{k_{B}T}F_{D}
$$

$$
\nabla^2 \mathsf{F}_D(\vec{r}) + I_D \mathsf{F}_D(\vec{r}) = \frac{e}{e_o} d(\vec{r})
$$

$$
I_D = \sqrt{\frac{e_o k_B T}{e^2 n}}
$$

$$
F_D(\vec{r}) = \frac{C}{r} e^{-r/l_D}
$$

 $n \Rightarrow$ particle density (N/V) k_B => Boltzman constant $T \Rightarrow$ Temperature $k_{\rm B}$ T => average kinetic energy of the particles

The Debye length indicates the distance over which charge imbalances are neutralized by the collective behavior of the plasma.

the effective interaction range of the test particle is limited to the **Debye length**

The charges sourrounding the test particles have a screening effect

$$
F_D(\vec{r}) = \frac{C}{r} e^{-r/l_D} \quad \rhd \quad \int_{\vec{r}}^{\vec{r}} F_D(\vec{r}) \times F(\vec{r}) \quad \text{for} \quad r \ll l_D
$$

$$
F_{sc}(\vec{r}) \gg F_{D}(\vec{r})
$$

Smooth functions for the charge and field distributions can be used as long as the Debye length remains small compared to the particle bunch size

The net effect of the **Coulomb** interactions in a multi-particle system can be classified into two regimes:

Collisional Regime $==$ dominated by **binary collisions** caused by close $\bf{1)}$ particle encounters = = > Single Particle Effects

Space Charge Regime $==$ dominated by the **self field** produced by the $2)$ particle distribution, which varies appreciably only over large distances compare to the average separation of the particles $==$ Collective Effects, **Single Component Cold Plasma** $S_{x, y, z}$

In a charged particle beam moving at a longitudinal relativistic velocity, assuming that the random transverse motion in the beam is non-relativistic, the Debye length has the following form:

$$
I_D = \sqrt{\frac{e_o g^2 k_B T}{e^2 n}}
$$

 $2\rho e_{o}$ v

$$
B_{\vartheta} = \frac{\beta}{c} E_r
$$

$$
\hat{\mathbf{0}} B \times dl = m_o \hat{\mathbf{0}} J \times dS
$$

$$
B_J
$$

Ampere's law

$$
B_J = m_o \frac{Ir}{2\rho R^2} \quad \text{for} \quad r \in R
$$

$$
B_J = m_o \frac{I}{2\rho r} \quad \text{for} \quad r > R
$$

r

Bunched Uniform Cylindrical Beam Model

$$
E_z(0, s, g) = \frac{I}{2\rho g e_0 R^2 \hbar c} h(s, g)
$$

$$
(0, s, g) = \frac{I}{2\rho g e_0 R^2 \, bc} h(s, g)
$$
\n
$$
E_r(r, s, g) = \frac{Ir}{2\rho e_0 R^2 \, bc} g(s, g)
$$

$$
E_r(r,s,g) = \frac{Ir}{2\rho e_0 R^2 \hbar c} g(s,g)
$$
 Lorentz Force

$$
F_r = e(E_r - b c B_J) = e(1 - b^2)E_r = \frac{e E_r}{g^2}
$$

$$
B_{\vartheta} = \frac{\beta}{c} E_r
$$

is a **linear** function of the transverse coordinate

$$
\frac{dp_r}{dt} = F_r = \frac{eE_r}{g^2} = \frac{elr}{2\rho g^2 e_0 R^2 bc} g(s, g)
$$

The attractive magnetic force , which becomes significant at high velocities, tends to compensate for the repulsive electric force. Therefore space charge defocusing is primarily a non-relativistic effect. Using $R=2\sigma_x$ for a uniform distribution:

$$
F_x = \frac{eI x}{8\pi \gamma^2 \varepsilon_0 \sigma_x^2 \beta c} g(s, \gamma)
$$

Envelope Equation with Space Charge

Single particle transverse motion:

Now we can calculate the term $\langle xx \rangle$ that enters in the envelope equation

$$
S_{x}^{\mathbb{C}} = \frac{e_{rms}^{2}}{S_{x}^{3}} - \frac{\langle xx^{\mathbb{C}} \rangle}{S_{x}}
$$
 $\langle xx^{\mathbb{C}} \rangle = \frac{k_{sc}}{S_{x}^{2}} \langle x^{2} \rangle = k_{sc}$

Including all the other terms the envelope equation reads:

Space Charge De-focusing Force

 e_n^2

The beam undergoes two regimes along the accelerator

$$
S_x^{\text{m}} + k^2 S_x = \frac{e^2}{\sqrt{2\pi}} \left(\frac{k_{sc}}{S_x} \right)^2
$$

$$
\rho \gg 1
$$
 Laminar Beam

Fig. 10: Particle trajectories in laminar beam

$$
S_x^{\text{m}} + k^2 S_x = \frac{e_n^2}{(bg)^2 S_x^3} \sum_{x=1}^{3} k_x
$$

$$
\rho << 1
$$
 Thermal Beam

Fig. 11: Particle trajectories in non-zero emittance beam

OUTLINE

- The rms emittance concept
- rms envelope equation
- Space charge forces
- Space charge induced emittance oscillations
- Matching conditions and emittance compensation

Neutral Plasma •Oscillations

- •Instabilities
- •EM Wave propagation

Single Component Cold Relativistic Plasma

Magnetic focusing

Magnetic focusing

 $\sigma=e\,\mathfrak{n}\,\delta\mathfrak{x}$

Surface charge density Surface electric field

$$
E_x = -\sigma/\varepsilon_0 = -e\,n\,\delta x/\varepsilon_0
$$

Restoring force

$$
m\,\frac{d^2\delta x}{dt^2}=e\,E_x=-m\,\omega_p^{\ 2}\,\delta x
$$

Plasma frequency

$$
\omega_p^{\ 2}=\frac{n\ e^2}{\varepsilon_0\ m}
$$

Plasma oscillations

$$
\delta x = (\delta x)_0 \cos (\omega_p \, t)
$$

 $S\mathbb{I} + k_s^2$ $S =$ $k_{\textit{sc}}\big(s,g\big)$ s

Equilibrium solution:

$$
S_{eq}(s,g) = \frac{\sqrt{k_{sc}(s,g)}}{k_s}
$$

Small perturbation:

$$
S(Z) = S_{eq}(s) + dS(s)
$$

$$
\overline{dS}\mathbb{I}(s) + 2k_s^2dS(s) = 0
$$

Single Component Relativistic Plasma

$$
k_s = \frac{qB}{2mcbg}
$$

$$
dS(s) = dS_o(s) \cos\left(\sqrt{2}k_s z\right)
$$

Perturbed trajectories oscillate around the equilibrium with the same frequency but with different amplitudes:

$$
S(s) = S_{eq}(s) + dS_o(s) \cos(\sqrt{2k_s z})
$$

Continuous solenoid channel

Perturbed trajectories oscillate around the equilibrium with the same frequency but with different amplitudes:

$$
\sigma(s) = \sigma_{eq}(s) + \delta \sigma_o(s) \cos(\sqrt{2}k_s z)
$$

Envelope oscillations drive Emittance

Emittance Oscillations are driven by space charge differential defocusing in core and tails of the beam

Perturbed trajectories oscillate around the equilibrium with the same frequency but with different amplitudes

OUTLINE

- The rms emittance concept
- rms envelope equation
- Space charge forces
- Space charge induced emittance oscillations
- Matching conditions and emittance compensation

High Brightness Photo-Injector

Envelope Equation with Acceleration

Beam subject to strong acceleration

We must include also the RF focusing force:

$$
k_{sc}^o = \frac{2I}{I_A}g(s,g)
$$

Space charge dominated beam (Laminar)

Emittance dominated beam (Thermal)

$$
S_q = \frac{1}{g\sqrt[4]{\frac{2I}{I_A g}}}
$$

This solution represents a beam equilibrium mode that turns out to be the transport mode for achieving minimum emittance at the end of the emittance correction process

An important property of the laminar beam

= -

 $\mathscr{G}^{\mathbb{C}}$

2

$$
S_q = \frac{1}{g\sqrt[4]{\frac{2I}{I_A g}}
$$

$$
S_{q}^{'} = -\sqrt{\frac{2I}{I_{A}g^{3}}}
$$

Constant phase space angle: $q =$ g S $_q^{'}$ S_q

Laminarity parameter

$$
\mathcal{F} = \frac{2IS^2}{gI_A e_n^2} \circ \frac{2IS_q^2}{gI_A e_n^2} = \frac{4I^2}{g\ell^2 I_A^2 e_n^2 g^2}
$$

Transition Energy (p=1)

$$
g_{tr} = \frac{2I}{gV_{A}e_{n}}
$$

Matching Conditions with a TW Linac

Emittance Compensation for a SC dominated beam: Controlled Damping of Plasma Oscillations

e**ⁿ oscillations are driven by Space Charge**

• **propagation close to the laminar solution allows control of** e**ⁿ oscillation "phase"**

e**ⁿ sensitive to SC up to the transition energy**

References:

- [1] T. Shintake, Proc. of the 22nd Particle Accelerator Conference, June 25-29, 2007, Albuquerque, NM (IEEE, New York, 2007), p. 89.
- [2] L. Serafini, J. B. Rosenzweig, PR E55 (1997) 7565
- [3] M. Reiser, "Theory and Design of Charged Particle Beams", Wiley, New York, 1994
- [4] J. B. Rosenzweig, "Fundamentals of beam physics", Oxford University Press, New York, 2003
- [5] T. Wangler, "Principles of RF linear accelerators", Wiley, New York, 1998
- [6] S. Humphries, "Charged particle beams", Wiley, New York, 2002
- [7] F. J. Sacherer, F. J., IEEE Trans. Nucl. Sci. NS-18, 1105 (1971).
- [8] M. Ferrario et al., Int. Journal of Modern Physics A, Vol 22, No. 23, 4214 (2007)
- [9] J. Buon, "Beam phase space and emittance", in CERN 94-01