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Typical coordinates to describe the particle motion
(6 per particle)

Configuration Space Phase Space
Trace Space

/ *' / p.

X X X
position position position
velocity angle momentum
rx pz — ,ymovz
1o_dx _p, '
U TE T p, = Pym,c




Trace space of an

beam

1deal laminar

2




Trace space of a lamilinar
beam




Trace space of non laminar
beam




In a system where all the forces acting on the particles are linear (i.e.,
proportional to the particle’s displacement x from the beam axis), it is
useful to assume an elliptical shape for the area occupied by the beam

in X-x* trace space or x-p, phase space.
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Geometric emittance: €

Fllipse 2 s )
equation: 8 +2aod + bxt” = Eg
Twiss by -a’ =1 bt=-2a
E PGS CerSs . A = pe,

Jer )
el |
e




Fig. 17: Filamentation of mismatched beam in non-linear force



Phase space evolution
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rms emittance ErmS
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Define rms emittance:

@ + 2anxt+ bt’ = e

such that: 5. = \/<7> =./be,,.
S, = 1/<x¢2> = M

Since: B'==-2a

it follows:  a=-—_ d<x2>:_<



It holds also the relation: gh-a’ =1

Substituting & b, gwe get ~ >x Zx
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We end up with the definition of rms emittance in terms of the

second moments of the distribution:

e = \/5555. -5’ = \/(<x2><x¢2> _ <xx¢>2)

xt =%
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What does rms emittance tell us about phase space distributions
under linear or non-linear forces acting on the beam?

X’ g = <x2><x¢2> - <xx¢>2 e

rms

Assuming a generic X, X{ correlation of the type: xt = Cx"

Whenn=1 => ¢ =0

e =C*|(x* xzn—x”ﬂz/
= (1))~ >)\

Whenn#1 => ¢_. #(

ms



Normalized rms emittancee:

N, rms

Canonical transverse momentum: p, =p.xt=mcbgxt  p »p

o = mioc\/sjslf -S,,= mioc (<x2><p§>_<x]9x>z)

Liouville theorem: the density of particles n, or the volume V
occupied by a given number of particles in phase space
(X,Px:¥:Py,Z,P,) remains invariant under conservative forces.

dn

—
dt

It hold also In the projected phase spaces (X,p,),(Y:Py)(,Z,p,)
provided that there are no couplings.
But rms emittance is not Liouvillian!
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Envelope Equation without

Acceleration
Now take the derivatives:

ds.__|d /* 1 S
x: = __2 () o oot
dz 25 dz 2S <xx> S

szx _|ds,_, _ 1 ds,_, _ S§x¢ _ 1 (<x¢2>+<xx”>) S _ S§¢+<xx®> _ S?

dz |dzs, s, dz s’ s S s s

X X X X X

1 1 . —_ 5555 _ij' <xx®> — efms <xx®>
And simplify: | st= = + s, = o + s,

We obtain the rms envelope equation in which the rms emittance
enters as defocusing pressure like term.
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Fnvelope Equation with Linear
Focusing

(ob) &
St S s’

X X

Assuming that each particle is subject only to a linear focusing

force, without acceleration: x¢+k’x =0

take the average over the entire particle ensemble <xx¢t> = -k’ <x2>

st +kls, =-ms

We obtain the rms envelope equation with a linear focusing force
In which, unlike in the single particle equation of motion, the rms
emittance enters as defocusing pressure like term.
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Space Charge: what does 1t mean?

The net effect of the Coulomb interactions in a multi-particle system can be
classified into two regimes:

1) Collisional Regime ==> dominated by binary collisions caused by close
particle encounters ==> Single Particle Effects

2) Space Charge Regime ==> dominated by the self field produced by the
particle distribution, which varies appreciably only over large distances
compare to the average separation of the particles ==> Collective Effects
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A measure for the relative importance of collisional versus collective effects is the

Debye Length A,

Let consider a non-neutralized system of identical charged particles

We wish to calculate the effective potential of a test charged particle
surrounded by other particles that are statistically distributed.
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The plasma responds to an external charge by rearranging the charge distribution around it.
This response 1s governed by the Boltzmann distribution for the density of particles at thermal equilibrium



The effective potential of a test charge can be defined as the sum of
the potential of the single particle 5 and a “perturbed” term An.

From Poisson Equation:

— e - e —
V°F, (r) = —d(r) +— Dn(r)
eO 60
e ne
Dn=ne ™" - n~-—F,
k, T
2 — .\ _ € -
V°F,(F)+ L,F,(F)= e—d(r)
. e k,T
N => total number of particles / D= 5
n => particle density (N/V) en
kz=> Boltzman constant C
T => Temperature - (77:) - e—r/ I/
kg T => average kinetic energy of the particles D 7

The Debye length indicates the distance over which charge imbalances are neutralized by the
collective behavior of the plasma.



the effective interaction range of the test particle 1s limited to the
Debye length

The charges sourrounding the test particles have a screening effect

I:D (;7) — ge—r/ID b -‘!,-FD (I_’:) » F(I_’:) for r<< ID

r TF, (F)<<F(F) for r31,

-
R > .0
-
Smooth functions for the charge and field distributions can be used

as long as the Debye length remains small compared to the particle
bunch size




The net effect of the Coulomb interactions in a multi-particle system can be
classified into two regimes:

1) Collisional Regime ==> dominated by binary collisions caused by close
particle encounters ==> Single Particle Effects
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2) Space Charge Regime ==> dominated by the self field produced by the
particle distribution, which varies appreciably only over large distances
compare to the average separation of the particles ==> Collective Effects,
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In a charged particle beam moving at a longitudinal relativistic
velocity, assuming that the random transverse motion in the
beam is non-relativistic, the Debye length has the following

form:
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ContinuousUniform Cylindrical Beam
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Bunched Uniform Cylindrical Beam
Model
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Ir
E (rsq)= S,
(1,5,9) o bcg( 9)

Lorentz Force

F. =e(E, - bcB,) :e(l— bz)Er = L, B, _Pg

2

g C

1s a linear function of the transverse coordinate

ek, _ elr g(s, g)

dp, _ . _
=k, = 2 2, p2
dt 9° 2pge,R" b

The attractive magnetic force , which becomes significant at high velocities, tends to
compensate for the repulsive electric force. Therefore space charge defocusing is
primarily a non-relativistic effect. Using R=2c, for a uniform distribution:
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Envelope Equationwith Space Charge

Single particle transverse motion:

p, =F p.=p xt= bgm cxt
dt
d d
—(pxt) = bc—(p xt) = F
g PR = be g (p ) =E
xb= F,
bcp

p = const.
elx
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Now we can calculate the term (xxt)that enters in the envelope equation

ezms <XX®> < xx@> — ksc

(<)

0 |3
“
V)
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Including all the other terms the envelope equation reads:

Space Charge De-focusing Force

2 4 /
St+k’s = 6"2 4 e
(bg)"s; S,

/
_ \
Emittance Pressure

External Focusing Forces

Laminarity Parameter:|r= 5




The beam undergoes two regimes along the accelerator

Thermal Beam

Fig. 11: Particle trajectories in non-zero emittance beam
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Surface charge density Surface electric field

Plasma oscillations

b
ﬂ Ox = ["5*{] o COS [ {-Ur.l t]




Single Component

2 A — SC(
S(HkSS_T Relativistic Plasma

Equilibrium solution:

Small perturbation:

5(2) =5, s) +45(9

ds(s) =ds,(s)cos \/Eksz

ast(s) + 2k? ds(s) =0

Perturbed trajectories oscillate around the equilibrium with the same frequency
but with different amplitudes:

S(S) =S, (S) +ds, (S) cos \/Eksz




Continuous solenoid channel
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r  Slice orbit deviation O,(2) Actual slice orbit O_S(Z)

b 0,5 \

Nominal equilibrium orbit

o} _ S .
€q Slice equilibrium orbit

Perturbed trajectories oscillate around the equilibrium with the same frequency
but with different amplitudes:




Envelope oscilllations drive Emittance
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Emittance Oscillations are driven by space charge differential
defocusing in core and tails of the beam
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Perturbed trajectories oscillate around the
equilibrium with the

but with

X’
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High Brightness Photo-Injector




Envelope Equation with Acceleration

dpx — d (px(I) bci(px@):O p:bgmoc
dt dt dz 0
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Beam subject to strong

acceleration
VA — N
— p— —
k2 e’ k¢
sp+ls+ s = o s
q % gs, g5,

2
We must include also the RF focusing force: ki = %
o _ 21

ksc = _g(S’ g)



Space charge dominated beam (Laminar)




This solution represents a beam equilibrium mode that
turns out to be the transport mode for achieving minimum
emittance at the end of the emittance correction process




An important property of the laminar beam
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Matching Conditions with a TW Linac
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Emittance Compensation for a SC dominated beam:
Controlled Damping of Plasma Oscillations

‘g, oscillations are driven by Space Charge

- propagation close to the laminar solution allows control of
g, oscillation “phase”

‘1 g, sensitive fo SC up to the transition energy
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