SPACE CHARGE IN CIRCULAR MACHINES
Massimo.Ferrario@LNF.INFN.IT

Direct self fields

Space Charge
Image self fields




OUTLINE

* Direct Space Charge Effects
* Intra-beam scattering IBS

* Image Charge Effects
* Image self fields
* Space charge effects in Storage Rings

The lifetimes of the beams In circular machines are much
longer than in linear devices



Collisional regime

1) Collisional Regime ==> dominated by binary collisions caused by close
particle encounters ==> Single Particle Effects
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1) multiple small-angle scattering events Intra-Beam Scattering (IBS)
2) large-angle single scattering events Touschek Effect



Liouville theorem does not hold anymore under
Collisions => non Conservative forces involved
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Beam Thermodynamics

Definition of beam temperature in analogy with kinetic theory of
gases :
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In a Circular machine when a particle accelerates above transition

energy 1t becomes slower and behaves like a particle with negative
mass:
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Conservation Law

Let us first consider the ideal machine with a smooth-focusing lattice
below transition and negligible dispersion.

The total thermal energy per particle in a smooth linear beam
channel is conserved, for a beam with constant energy (y, = const)

kgTy + kgTy + kgT) = const

Coulomb collisions drive the beam toward an isotropic thermal
equilibrium, 1n which case the three temperatures would be the same:

kpTy = kpTy = kT = kpTeq

We can put the conservation law 1nto the form:
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in a circular machine we must replace 1/y, by: |-n= iz —q = % — iz
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This relationship 1s the invariant for intra-beam scattering derived in
1974 by Piwinski. For a circular machine the behavior of the system
depends on the sign of 1 1.e. whether it 1s below transition (y, <1y,) or
above (v, > 7, ).

=>» below transition 1 < 0 =» thermal equilibrium can be reached.
=>»above transition 11 > 0 =» thermal equilibrium is not possible.

An increase in momentum spread must be balanced by a
corresponding increase 1n the transverse emittances to maintain the
“conservation law”

For instance, in the LHC at 7 TeV, although v = 7461 > v, ~53.8 (1, ~ 3.4x10~%), the undesirable

growth of the bunch emittances caused by IBS is counterbalanced by the synchrotron radiation
damping effect.



The emittance growth rate for intra-beam scattering in high-energy

circular machines defined a— ] l o
E
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can be written in the relativistic form
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where N is the total number of particles, I" the six-dimensional phase-space volume
occupied by N, and where the function H; depends on yy, the emittances €,, €, €,
and the lattice parameters ., D, B,, D., and B,. The function H; is averaged over

a lattice period and the subscript j denotes the three orthogonal directions (i.e.,
j = horizontal (x), vertical (y), and longitudinal (s)].
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Touschek Effect

In a relativistic storage ring, Coulomb collisions lead to a momentum
transfer from the transverse into the longitudinal direction that is
amplified by the Lorentz factor v,

(a) Beam Frame: (b) Laboratory Frame:
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While the total momentum 1n the collision is preserved, the two
particles emerge from this collision with opposite longitudinal
momentum components that are larger by the factor y, than the
original transverse momentum component before the collision.



If the longitudinal momentum acquired in such a collision 1s greater
than the momentum acceptance of the rf bucket that keeps the beam
longitudinally bunched, the two particles involved in such a
collisions will be lost.
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The net result 1s that the lifetime of the stored beam is reduced.



Proceedings of the CAS-CERN Accelerator School: Intensity Limitations in Particle Beams, Geneva, Switzerland, 2-11 November 2015,
edited by W. Herr, CERN Yellow Reports: School Proceedings, Vol. 3/2017, CERN-2017-006-SP (CERN, Geneva, 2017)

Intrabeam Scattering: Anatomy of the Theory

M. Martini
CERN, Geneva, Switzerland




OUTLINE

 Direct Space Charge Effects
* The rms emittance concept
* rms envelope equation
e Space charge forces
 Beam (Plasma) emittance oscillations

* Image Charge Effects
* Image self fields
* Space charge effects in Storage Rings



IMAGE SELF FIELDS

Direct self fields

2l Space Charge

Image self fields

Wake fields




Static Fields: conducting screens

Let us consider a point charge q close to a conducting screen.

The electrostatic field can be derived through the "image method". Since the
metallic screen is an equi-potential plane, it can be removed provided that a
"virtual" charge is introduced such that the potential is constant at the position of
the screen




A constant current in the free space produces circular magnetic field

If p ~1, the material, even in the case of a good conductor, does not
affect the field lines.
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Circular Perfectly Conducting Pipe (Beam at Center)

T

In the case of cylindrical charge distribution,
and y—o, the electric field lines are
perpendicular to the direction of motion. The
transverse fields intensity can be computed like
in the static case, applying the Gauss and
Ampere laws.
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there 1s a cancellation of the electric and magnetic forces




: Parallel Plates (beam at center) C e D

In some cases, the beam pipe cross section is such that we can consider only the
surfaces closer to the beam, which behave like two parallel plates. In this case, we
use the 1image method to a charge distribution of radius a between two conducting
plates 2h apart. By applying the superposition principle we get the total image field
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at a position y inside the beam.
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Where we have assumed: #>>a>y. g ‘

For d.c. or slowly varying currents, the boundary condition imposed by the
conducting plates does not affect the magnetic field. We do not need “image
currents “As a consequence there is no cancellation effect for the fields produced
by the "image" charges.



From the divergence equation we derive also the other transverse component,
notice the opposite sign:
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Therefore, for y>>1, and for d.c. or slowly varying currents the cancellation effect
applies only for the direct space charge forces. There 1s no cancellation of the
electric and magnetic forces due to the "image" charges.



Time-varying fields

It is necessary to compare the wall thickness and the skin depth (region of

penetration of the e.m. fields) in the conductor. 5, =
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If the fields penetrate and pass through the material, we are practically in
the static boundary conditions case. Conversely, if the skin depth is very
small, fields do not penetrate, the electric filed lines are perpendicular to
the wall, as in the static case, while the magnetic field line are tangent to
the surface.
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Parallel Plates (Beam at Center) a.c. currents

Usually, the frequency beam spectrum i1s quite rich of harmonics,
especially for bunched beams.

It 1s convenient to decompose the current into a d.c. component, I,
for which o0,>>A , and an a.c. component, I, for which o, ,<<A,.

While the d.c. component of the magnetic field does not perceives
the presence of the material, its a.c. component 1s obliged to be
tangent at the wall. For a charge density A we have [=Av.

We can see that this current produces a magnetic field able to cancel
the effect of the electrostatic force.
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There is cancellation of the electric and magnetic forces !!
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Incoherent and Coherent Transverse Effects

When the beam is located at the centre of symmetry of the pipe, the e.m. forces due
to space charge and images cannot affect the motion of the centre of mass

(coherent), but change the trajectory of individual charges in the beam
(incoherent).

N N
These force may have a complicate dependence on the charge position. A simple

analysis 1s done considering only the linear expansion of the self-fields forces
around the equilibrium trajectory.

v



Self Fields and betatron motion

Consider a perfectly circular accelerator with radius p,. The beam
circulates 1nside the beam pipe. The transverse single particle
motion 1n the linear regime, 1s derived from the equation of
motion. Including the self field forces in the motion equation, we
have




Self Fields and betatron motion

In the analysis of the motion of the particles in presence of the self
field, we will adopt a simplified model where particles execute

simple harmonic oscillations around the reference orbit.

This 1s the case where the focussing term is constant. Although this
condition in never fulfilled in a real accelerator, it provides a reliable

model for the description of the beam instabilities

xW(s)+ K x(s)=
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Transverse Incoherent Effects

We take the linear term of the transverse force in the betatron equation:
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The shift of betatron wave numbers (tune shift) is negative since the space charge
forces are defocusing on both planes. Notice that the tune shift 1s, in general,
function of “z”, therefore we have also a tune spread inside the beam. Furthermore,
by including hlgher order terms in the transverse force, we don’t have the harmonic
oscillator equation any more.



Consequences of the space charge tune shifts

In circular accelerators the values of the betatron tunes should
not be close to rational numbers in order to avoid the crossing of
linear and non-linear resonances where the beam becomes unstable.

The tune spread induced by the space charge force can make hard to
satisfy this basic requirement. Typically, in order to avoid major
resonances the stability requires

DO,[<0.3




Transverse Coherent Effects

If the beam experiences a transverse deflection Kkick, it starts to
perform betatron oscillations as a whole. The beam, source of the
space charge fields moves transversely inside the pipe, while
individual particles still continue their incoherent motion around
the common coherent trajectory.
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Circular Perfectly Conducting Pipe (Beam off Center)

b2 The image charge is at a distance “d” such that
d=— the pipe surface is at constant voltage, and pulls
P1p
A the beam away from the center of the pipe.




The effect 1s defocusing, the horizontal electric image field E and

the horizontal force F are:
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This coherent betatron tune shift, differently from the incoherent one
does not depend on the beam size but on the pipe radius and 1t 1s
inversely proportional to the beam energy.




Space Charge Effects
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