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Collective effects

Part 4: Electron cloud — build up and effects on beam dynamics
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The CERN Accelerator School

We have learned about the concept of particles, macroparticles and particle distributions as well as some
peculiarities of multiparticle dynamics in accelerators.

We have learned about the basic concept of wake fields and how these can be characterized as a collective
effect in that they depend on the particle distribution.

We have learned the impact of these in the longitudinal and transverse planes.
We are ready to look into a new, but popular ©, source of collective effects, i.e. the electron cloud.

Part 4: Electron cloud — Build up and effects on beam dynamics

e Electron cloud build up
e Electron production and multiplication
* QObservation in accelerator rings
* Scrubbing and other techniques of mitigation/suppression

 E-cloud induced instabilities and incoherent effects
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The CERN Accelerator School

We will look into the description and the impact of electron cloud.
We will discuss the conditions for an electron cloud to build in the vacuum chamber of an accelerator and
mitigation/suppression techniques.

We will also show some examples linked to electron cloud effects such as beam induced instability and
incoherent effects.

Part 4: Electron cloud — Build up and effects on beam dynamics

e Electron cloud build up

* Electron production and multiplication

* QObservation in accelerator rings
* Scrubbing and other techniques of mitigation/suppression
e E-cloud induced instabilities and incoherent effects
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Reminder: The instability loop
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Reminder deo'e
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Interaction of the
beam with the
external environment

Pure EM interaction e L N
— Maxwell’s equations (E, B)
o The beam as the source term
o Boundary conditions given by the Additional electromagnetic field
chamber in which the beam is acting on the beam, besides RF
propagating and external magnetic fields
o Generation of wake /

functions/impedances
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Different type of interaction possible
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external environment
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The electron cloud

— Electron production and
accumulation

— Poisson’s equation with

o The electron cloud as the source

term

o Boundary conditions given by the
chamber in which the electron

cloud builds up

- (#9)

Additional electromagnetic field
acting on the beam, besides RF

and external magnetic fields
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Electron production de'e,

The CERN Accelerator School

Generation of charged particles inside the

vacuum chamber
(primary, or seed, electrons)

Residual gas Desorption from the
ionization losses on the wall

Photoelectrons from
synchrotron radiation
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Electron production de'e,

The CERN Accelerator School

Generation of charged particles inside the

vacuum chamber
(primary, or seed, electrons)

Residual gas Desorption from the
ionization losses on the wall

Photoelectrons from
synchrotron radiation

* Gas ionization and wall desorption produce both electrons and ions (the former
one with the same rate, the second one with different rates depending on the
desorption vyields), photoemission is only a source of electrons

* The dominant mechanism depends upon e.g.
o Beam type and parameters (e.g. lepton vs hadrons, beam energy)
o Vacuum level
o Design (material, shape), roughness, cleanness of the inner surface of chamber
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Electron production de'e,
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Generation of charged particles inside the
vacuum chamber
(primary, or seed, electrons)

* Acceleration of primary electrons in the beam field
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Electron production de'e,

The CERN Accelerator School

Generation of charged particles inside the
vacuum chamber
(primary, or seed, electrons)

* Acceleration of primary electrons in the beam field
* Secondary electron production when hitting the wall

Secondary Electron Yield (SEY)

dmax=1-3, normal incidence —
25} dmax=1-3, 6=90° —— -

SEY

0 100 200 300 400 500 600 700

Ep (eV)
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Electron production
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Generation of charged particles inside the
vacuum chamber
(primary, or seed, electrons)

* Acceleration of primary electrons in the beam field
Secondary electron production when hitting the wall
* Avalanche electron multiplication if

Beam chamber

Bunch spacing (e.g. 25 ns) Time
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Beam pipe transverse cut
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Assume an initial distribution of electrons
(from any of the mechanisms discussed before)
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Beam pipe transverse cut
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“Pinch” of electrons when bunch is passing
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Beam pipe transverse cut
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“Pinch” of electrons when bunch is passing
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Beam pipe transverse cut
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“Pinch” of electrons when bunch is passing
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Beam pipe transverse cut
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Few high energy (>100 eV) electrons reach the
chamber wall already on the falling edge of
the bunch and start producing secondaries
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Beam pipe transverse cut
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Few high energy (>100 eV) electrons reach the
chamber wall already on the falling edge of
the bunch and start producing secondaries
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Electron cloud formation cartoon

Beam pipe transverse cut
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More high energy electrons (>100 eV) reaching
the chamber wall keep producing secondaries
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Beam pipe transverse cut
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More high energy electrons (>100 eV) reaching
the chamber wall keep producing secondaries
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Beam pipe transverse cut
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As they are produced, the emitted secondaries
form a halo near the chamber wall because
they have low energy (up to 10 eV)
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Beam pipe transverse cut
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As they are produced, the emitted secondaries
form a halo near the chamber wall because
they have low energy (up to 10 eV)
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Beam pipe transverse cut
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While the halo gets more and more populated,
the center is gradually depleted
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While the halo gets more and more populated,
the center is gradually depleted
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Electron cloud formation cartoon 0D
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While the halo gets more and more populated,
the center is gradually depleted
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While the halo gets more and more populated,
the center is gradually depleted
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Beam pipe transverse cut
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While the halo gets more and more populated,
the center is gradually depleted
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Beam pipe transverse cut
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The center is strongly depleted
No more secondaries are produced because there are
no longer high energy electrons reaching the walls
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Beam pipe transverse cut
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No more secondaries are produced because there are
no longer high energy electrons reaching the walls
Some low energy electrons are absorbed at the walls
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Beam pipe transverse cut
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No more secondaries are produced because there are
no longer high energy electrons reaching the walls
Some low energy electrons are absorbed at the walls
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No more secondaries are produced because there are
no longer high energy electrons reaching the walls
Some low energy electrons are absorbed at the walls
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Beam pipe transverse cut
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No more secondaries are produced because there are
no longer high energy electrons reaching the walls
Some low energy electrons are absorbed at the walls
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No more secondaries are produced because there are
no longer high energy electrons reaching the walls
Now the center gets repopulated
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Beam pipe transverse cut
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No more secondaries are produced because there are
no longer high energy electrons reaching the walls
Now the center gets repopulated
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But then the next bunch comes, there is a new pinch
and the whole process starts all over
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And it all repeats until the next bunch comes
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Beam pipe transverse cut
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* Electrons generated (ANeg) depend on bunch charge, chamber radius and surface SEY

* Electrons lost (AN,) depend on chamber radius and probability of reflection at low energy
* Balance between the two depends on bunch spacing
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Bunch passage

* Bunch after bunch, the e-cloud grows exponentially (if SEY above a certain threshold value)
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Bunch passage

* Bunch after bunch, the e-cloud grows exponentially (if SEY above a certain threshold value)
* The exponential rise stops when the space charge of the electrons becomes significant 2> At
this point electron generation and loss compensate each other
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Electron cloud formation cartoon
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Bunch passage

* Bunch after bunch, the e-cloud grows exponentially (if SEY above a certain threshold value)
* The exponential rise stops when the space charge of the electrons becomes significant 2> At

this point electron generation and loss compensate each other
* The electron cloud decays in the gaps between trains
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E-cloud build up in a dipole E-cloud build up in a quadrupole
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L Signpost 00

: I i The CERN Accelerator School

We have learned that electrons are generated in the vacuum chamber of an accelerator when the beam passes.

We have learned that:
* The number of electrons can grow because of secondary electron emission at the chamber walls
* The process at some point saturates because of the electron cloud space charge

» Asignificant electron density builds up in the machine while bunches are passing = electron cloud

Once the machine operates with electron cloud, what do we observe?

Part 4: Electron cloud — Build up and effects on beam dynamics

e Electron cloud build up
e Electron production and multiplication
* QObservation in accelerator rings

CE?W 1954-2024
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Electron cloud effects 0D

The CERN Accelerator School

* The presence of an e-cloud inside an accelerator ring is revealed by several typical signatures
v’ Fast pressure rise, outgassing
v’ Additional heat load
v’ Baseline shift of the pick-up electrode signal
v’ Synchronous phase shift along the bunch train due to energy loss

AP / 1e(E) (@, (E))dE

AW = [ (®.(E))EdE
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Electron cloud effects
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* The presence of an e-cloud inside an accelerator ring is revealed by several typical signatures

v’ Fast pressure rise, outgassing

v’ Additional heat load

v’ Baseline shift of the pick-up electrode signal

v’ Synchronous phase shift along the bunch train due to energy loss

v’ Tune shift along the bunch train

v’ Coherent instability

v’ Single bunch effect affecting the last bunches of a train
v’ Coupled bunch effect

v Poor beam lifetime and emittance growth

v" Active monitoring: signal on dedicated electron detectors
(e.g. strip monitors) and retarding field analysers

~

J \

Machine
> observables

- Beam observables
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Electron cloud effects: pressure rise 0D

The CERN Accelerator School

* Early LHC operation
* Routine operation with 150 ns beams started in Summer 2010

* Electron cloud made its first appearance as a pressure rise in the common chamber in presence of both beams,
i.e. for effectively lower bunch spacings
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Electron cloud effects: pressure rise
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Electron cloud effects: heat load d0e @)

The CERN Accelerator School

= Heat load on the LHC beam screen of the cold arcs
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Electron cloud effects: pickup signals

= Heat load on the LHC beam screen of the cold arcs

= The electron cloud signal first appeared in the SPS on the
signal from a pick up as a shift of the baseline
(depending on the charge collected by the electrodes)

= Correlation with train structure,
immediately apparent.
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Electron cloud effects: stable phase shift
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= Bunch-by-bunch phase shift reveals the shape of the e-cloud build up

= Larger electron cloud at 4 TeV is due to photoelectrons
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Electron cloud effects: tune shift deo'e
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Horizontal tune vs bunch number at 2 GeV Vertical tune vs bunch number at 2 GeV
for bunch currents 0.75 mA (blue), 1 mA (red), 1.25 mA (black) for bunch currents 0.75 mA (blue), 1 mA (red), 1.25 mA (black)
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= Bunch-by-bunch phase shift reveals the shape of the e-cloud build up

Bunch number

= Larger electron cloud at 4 TeV is due to photoelectrons

= Horizontal and vertical tune shifts along a 46 bunch train in Cesr-TA (Cornell facility used for electron cloud studies)
taken during a positron run

= Higher currents lead to stronger electron cloud.
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We have learned that electron clouds can build up in the vacuum chamber of an accelerator operating in a
certain range of beam parameters.

Electron clouds are associated to many detrimental effects, like pressure rise, additional heat load, tune and
stable phase shift, beam degradation through instability and emittance growth

How can we avoid or cure it?

Part 4: Electron cloud — Build up and effects on beam dynamics

* Scrubbing and other techniques of mitigation/suppression
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Surface scrubbing 00
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* Fortunately, the SEY of a surface is not a fixed property but it becomes lower under electron bombardment
(scrubbing)

e Laboratory measurements show that
* SEY decreases quickly at the beginning of the process, then slows down
* Electrons with different energies have different ‘scrubbing efficiency’
* The ‘final’ value of SEY depends on material, e- energy, temperature, vacuum composition, more?
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Surface scrubbing de'e,

The CERN Accelerator School

 Beam-induced scrubbing
* Has been measured directly at the SPS with a Stainless Steel rotatable sample exposed to the beam or to SEY
measurement device (2004)
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Surface scrubbing 00
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* Beam-induced scrubbing

* Is revealed by improving accelerator conditions over time, e.g. decrease of pressure rise, heat load, stable phase
shift, general improvement of beam quality (lower losses, less emittance growth)
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Example 1: Reduction of losses in LHC over 9 days of scrubbing
(no clear reduction visible in first phase due to increasing length of the injected trains)
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Surface scrubbing deo'e

The CERN Accelerator School

* Beam-induced scrubbing

* Is revealed by improving accelerator conditions over time, e.g. decrease of pressure rise, heat load, stable phase
shift, general improvement of beam quality (lower losses, less emittance growth)
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Example 2: Reduction of pressure rise in the dump kicker region of the SPS over 1 month of scrubbing
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Surface scrubbing

 Beam-induced scrubbing

* Is revealed by improving accelerator conditions
over time, e.g. decrease of pressure rise, heat
load, stable phase shift, general improvement
of beam quality (lower losses, less emittance
growth)

Example 3: Reduction of heat load in LHC sectors
over 3 years of running
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Mitigation/suppression techniques

Solenoids (only applicable in field-
free regions without equipment)

Clearing electrodes installed
along the vacuum chambers (only
local, may cause impedance,
aperture restriction)

Applying on the wall thin films with
intrinsically low SEY
* NEG coating (helps vacuum)

C coating (no activation)

gL
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Tolerate e-cloud, if possible, but damp
the instability: feedback system

Machine scrubbing during operation

Possible Solutions

secondary electrons
Grooves

Roughness
Sponges
Laser ablation

I35
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Operation with degraded beam
for some time

Limited by reachable SEY, may be
insufficient

Surface treatment to inhibit

57



 Signpost 00

I The CERN Accelerator School

We have learned that electron clouds can build up in the vacuum chamber of an accelerator operating in a
certain range of beam parameters.

They are the origin of many detrimental effects, like pressure rise, additional heat load, beam degradation
through instability and emittance growth.

They can be self-healing through beam induced scrubbing or they can be avoided by design (surface
coating/treatment, solenoids, clearing electrodes).
What is the mechanism through which an electron cloud degrades the beam?

Part 4: Electron cloud — Build up and effects on beam dynamics

* E-cloud induced instabilities and incoherent effects
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Accelerator beam system - wakefields do'e

The CERN Accelerator School

* Our first ‘real’ collective interaction from impedances
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Accelerator beam system — electron clouds do'e
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e Two stream collective interaction — much more complicated

-

For this we need to solve >
 ppr(myy)
Aqb(:v,y)p+ -
€Q
e 'GEJ
Ad(a,y).. = —Le\@:Y)
€0

and apply the corresponding Kkicks
to the cloud and the beam
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Electron clouds in a drift space 0D
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* Two stream collective interaction — much more complicated
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For this we need to solve

£
A d(z,y) s :_M =
€0
A d(z,y)e- = — LDV
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and apply the corresponding Kkicks

to the cloud and the beam * Beam passage leads to a pinch of the cloud which in turn

t acts back on the beam — differently each turn
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Electron clouds in a bending magnet Je'e,
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* Two stream collective interaction — much more complicated

Long. bunch profile
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For this we need to solve _
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and apply the corresponding Kkicks

to the cloud and the beam * Beam passage leads to a pinch of the cloud which in turn

acts back on the beam — differently each turn
‘ E 13.11.2024
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Electron clouds in a quadrupole magnet do'e
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e Two stream collective interaction — much more complicated

Long. bunch profile
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For this we need to solve

y [mm]

Aqb(:v,y)p+ - _%:’y)
N _peg,y)

and apply the corresponding Kkicks

to the cloud and the beam * Beam passage leads to a pinch of the cloud which in turn

acts back on the beam — differently each turn
E 13.11.2024
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Accelerator beam system — e-cloud do'e

The CERN Accelerator School

. 1
M = ( o0 ) ( cos(Ap;) SIH(AM)> v
— \/,61_1 N — Sln(AﬂJi) COS(A/M;) \c/xg_o V /80
* Basic loop of tracking with electron clouds:
* Transport beam along segment to
interaction point
T Z
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Accelerator beam system — e-cloud 00
(VB 0 cos(Apu;)  sin(Au;) 10 0
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Particles in/fields from slice i

* Basic loop of tracking with electron clouds:

* Transport beam along segment to
interaction point

* Apply e-cloud kick
—> get fields from PIC step
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E-cloud beam system 0D

E The CERN Accelerator School

)

A

e PIC stands for Particle-In-Cell

V * We use this method to compute fields generated
by particles to solve e.g. the Poisson equation

A * Electron motion occurs at the time scale of a slice
of a bunch length = track single slices through
the e-cloud and apply integrated kicks

> * | Compute electric fields from bunch slice and from
e-cloud

* Apply kicks to protons and electrons
* Push electrons by one slice length
e Track next slice through e-cloud

For this we need to solve

Aqb(:v,y)er - _%:,y)
N _peg,y)

and apply the corresponding Kkicks
to the cloud and the beam
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E-cloud beam system deo'e

E The CERN Accelerator School
Slice index e PIC stands for Particle-In-Cell
V * We use this method to compute fields generated
iy o L by particles to solve e.g. the Poisson equation
l A * Electron motion occurs at the time scale of a slice
1 of a bunch length = track single slices through

the e-cloud and apply integrated kicks

* Compute electric fields from one slice and from e-
cloud

* Apply kicks to protons and electrons
* Push electrons by one slice length
* Track next slice through e-cloud

E-cloud at slice index
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Numerical model of electron cloud effects
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Numerical model of electron cloud effects 0D

The CERN Accelerator School

ﬂ--- ............. >

A\ 4

Multi-bunch beam
\ )

Primary and
secondary electron
production, chamber
properties

Noise | Equations of
motion of the
beam particles

Instability problem Build-up problem
- ) \ )
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Numerical model of electron cloud effects 0D

The CERN Accelerator School

* Coupled bunch electron cloud instability naturally needs a self-consistent solution of the electron cloud
problem

* A broad time scale to cover, currently working on the problem

* For the moment we simulate the two branches separately (similar to what is done for impedances):
e Electron cloud build up
v" Multi-bunch
v’ Usually single passage, single turn or just few turns
* Electron cloud instability
v' Single bunch
v" Multi-turn, or even multi-kick multi-turn

——>

Information on how many

electrons interact with a bunch:

CSEC, ... « detailed distribution PEHTS, ...
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Numerical model of electron cloud effects de @

The CERN Accelerator School

* In principle both coherent instability and incoherent emittance growth could be predicted by these
simulations

* Evolution of a beam interacting with an electron cloud depends on a significant number of parameters in a
non-trivial way

CE?W
\

Bunch length (longitudinal emittance)

Beam transverse sizes (emittances and beta functions at the electron cloud location)
Beam energy

Beam current (number of particles per bunch)

Chromaticity

Magnetic field (field-free, dipole, quadrupole)

Electron cloud density and distribution (in reality determined by many of the above parameters, but can be set
independently in simulations)

b 13.11.2024 Beam Instabilities IV - Kevin Li and Giovanni Rumolo - Spa 72

YEARS /ANS CERN



Electron cloud induced instabilities de @)

The CERN Accelerator School

* Typical e-cloud simulation try to identify the e-cloud central density threshold for an instability

* Scans in the central density are performed until an exponential growth can be observed in the emittance
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* Coherent instabilities occur when a certain central cloud density threshold is
breached

w

[m particles]
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e This leads to coherent intra bunch motion which grows exponentially

Charge-weighted mean position x

e A consequence is emittance blow-up and losses 15
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0 6
Slice number
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Ex. of coherent e-cloud effects in the LHC D

The CERN Accelerator School

 First injection of 48 bunches of 25 ns beam into the LHC in 2011

 Beam was dumped twice due to a violent instability in the vertical plane, causing losses above the interlock

threshold
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Ex. of coherent e-cloud effects in the LHC

48b injection test (26/08/11)

Some motion only
44 for last bunches ...
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FAIL simulations
onset of instability
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| I The CERN Accelerator School

We have learned that electron clouds can build up in the vacuum chamber of an accelerator operating in a
certain range of beam parameters.

We have seen some of the detrimental effects of electron clouds on the machine.
We have seen methods on how to suppress or mitigate the build up of electron clouds.

We have seen how we can conceptually model the beam-electron cloud interaction and some examples of
electron cloud induced instabilities.

Part 4: Electron cloud — Build up and effects on beam dynamics

e Electron cloud build up

* Electron production and multiplication

* QObservation in accelerator rings
* Scrubbing and other techniques of mitigation/suppression
e E-cloud induced instabilities and incoherent effects

CE?W 1954-2024
\ ‘ i t 13.11.2024 Beam Instabilities IV - Kevin Li and Giovanni Rumolo - Spa 76

N
YEARS /ANS CERN






PIC solvers in brief 0D

The CERN Accelerator School

* In many of our codes, Particle in Cell (PIC) algorithms are used to compute the
electric field generated by a set of charged particles in a set of discrete points (can be
the locations of the particles themselves, or of another set of particles)

* The solution typically consists of 4 stages:

1. Charge scatter from macroparticles (MPs) to grid (reduction of macroparticles)
2. Calculation of the electrostatic potential at the nodes
3. Calculation of the electric field at the nodes (gradient evaluation)

4. Field gather from grid to MPs
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PIC solvers in brief 0D

The CERN Accelerator School

e The solution typically consists of 4 stages:

1. Charge scatter from macroparticles (MPs) to grid (reduction of macroparticles)
2. Calculation of the electrostatic potential at the nodes
3. Calculation of the electric field at the nodes (gradient evaluation)

4. Field gather from grid to MPs
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Uniform square grid
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PIC solvers — basic steps

* The solution typically consists of 4 stages:

1. Charge scatter from macroparticles (MPs) to grid (reduction of macroparticles)

2. Calculation of the electrostatic potential at the nodes
3. Calculation of the electric field at the nodes (gradient evaluation)

4. Field gather from grid to MPs

' Xir1,Yis nMP d d
Kl Pij = Pij + th (1 - A);z) (1 - Ah>
nmp [ dx d
Pi1j = Piv1j+ th (Ah) (1 ~ Mk
nMPp d
Pij+1 = Pijr1+ th (1 - A;z)

Y

h
Xi+1!yj n d !
""" Pi+1,}'+1 — pi—l—l,j+1 + qAI}:IP ("ﬁ;) (_y)

— Beam Instabilities IV - Kevin Li and Giovanni Rumolo - Spa
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PIC solvers — basic steps

e The solution typically consists of 4 stages:

1. Charge scatter from macroparticles (MPs) to grid (reduction of macroparticles)

2. Calculation of the electrostatic potential at the nodes

3. Calculation of the electric field at the nodes (gradient evaluation)

4. Field gather from grid to MPs

» Different numerical approaches exist to solve
these types of equations each with its own
advantages and drawbacks:

p(x,y)

€0

* Open space FFT solver (explicit, very fast but
open boundaries)

Vi(x,y) = -

Boundary conditions (e.g., perfectly * Rectangular boundary FFT solver (explicit, very
conducting, open, periodic) fast but only rectangular boundaries)
* Finite Difference implicit Poisson solver (arbitrary
chamber shape, sparse matrix, possibility to use

Shortley Weller boundary refinement, KLU fast
routines, computationally more demanding)

* Dual or multi-grid in combination with direct or
iterative solvers
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PIC solvers — basic steps deo'e

The CERN Accelerator School

e The solution typically consists of 4 stages:

1. Charge scatter from macroparticles (MPs) to grid (reduction of macroparticles)

2. Calculation of the electrostatic potential at the nodes

3. Calculation of the electric field at the nodes (gradient evaluation)

4. Field gather from grid to MPs

Qi1 — Pi

(Ex)ij = 2Ah
E= -V
i1 — i
(Ey)f,j - N
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PIC solvers — basic steps Jo'e

The CERN Accelerator School

e The solution typically consists of 4 stages:

1. Charge scatter from macroparticles (MPs) to grid (reduction of macroparticles)
2. Calculation of the electrostatic potential at the nodes

3. Calculation of the electric field at the nodes (gradient evaluation)

4. Field gather from grid to MPs

Xi+1 !yJ+‘I

E (xmp, Yymp) =

d d

(1 - X _ _b’ U et s _ ¥
dy d d d

R TR (1 .f_\.) (,,j") B (Aii) (JL)

N
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Numerical model of electron cloud effects 0D

The CERN Accelerator School

* A self-consistent treatment requires the combination of an instability and a build-up code

* Becomes easily possible with modular structure and good design of codes (e.g. object orientation)

Instability code Build-up code Instability code

For each slice Transverse tracking
Initial e- distribution S 07 G

(from build-up sim.) e
Generate seed e
* Longitudinal tracking
5 Evaluate beam slice electric * Transverse feedback
cam field (Particle in Cell) * Impedances
* Space charge
Evaluate the e electric field P .
(Particle in Cell) O o
Apply kick on the beam Beam
particles
Compute e motion (t->t+At)
(possibly with substeps)
* Impedances
Detect impacts and generate
* Space charge secondaries
CE?W 1954-2024 — . e . .
\\_/ ;7\: 13.11.488gnd: From instability code — From build-yp cade. 7 tntgraction between the: g £98€Smolo - spa 84
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* Transverse tracking
- with Q’, octupoles
etc.

* Longitudinal tracking

* Transverse feedback




Ex. of incoherent e-cloud effects in the LHC 0D

The CERN Accelerator School

« Remember tune footprint from octupoles in Part |

0.200
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o 0.185

0.180

0.175

0.170
0.120 0.125 0.130 0.135 0.140 0.145 0.150
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Ex. of incoherent e- cloud effects in the LHC

* Macroparticl
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e simulations
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Ex. of incoherent e-cloud effects in the LHC 0D

0 36 The CERN Accelerator School

Octupole knob at 1 5 24
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Ex. of incoherent e-cloud effects in the LHC 0D

0 36 The CERN Accelerator School
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Backup - wakefields
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Electron clouds in a bending magnet D

The CERN Accelerator School

* Two stream collective interaction — much more complicated
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and apply the corresponding Kkicks

to the cloud and the beam * Beam passage leads to a pinch of the cloud which in turn

acts back on the beam — differently each turn
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Electron clouds in a quadrupole magnet

* Two stream collective interaction — much more complicated
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For this we

need to solve

(z,y) -
Pp+\T,Y >
A(a,y)y = -2 Y -
€0 -10
pe* ('Ta y) —15
AQb(SC,y)G— - - o
€0 -30 -20 ~10 0 10 20 30

X [mm]

and apply the corresponding Kkicks
to the cloud and the beam
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* Beam passage leads to a pinch of the cloud which in turn
acts back on the beam — differently each turn
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Electron clouds in a drift space Jeo'e,

The CERN Accelerator School

* Two stream collective interaction — much more complicated
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and apply the corresponding Kkicks

to the cloud and the beam * Beam passage leads to a pinch of the cloud which in turn

acts back on the beam — differently each turn
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